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A.G.M. Michell, The limits of economy in
frame structures, 1904.

Infinite number of members in W. Prager, A note on discretized
principal stress line Michell structure,1974

Finite number of members
Consider nodal cost



Ground structure approach to
topology optimization

W. Dorn et al., Automatic design of optimal
structures, 1964
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Assign all the nodes and members.

2. Optimize cross-sectional areas as continuous
variables.

3. Remove unnecessary members and nodes.



Optimization under stress
constraints
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Single loading condition
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Statically determinate
fully stressed
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Statically indeterminate
generally not fully stressed

Load case 1 Load case 2



Formulation of topology
optimization under stress constraints

Minimize  total structural volume
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Ai . cross-sectional area of member i

o (A) : stress of member i for load k



Optimal topology

Member 3 does not exist
Max. stress ratio = 4.03

V=12.812
P,_* Py

plbskessed,desisn Optimal topology under multiple
loading conditions cannot be
obtained by conventional
ground structure approach

V =15.986



Difficulties in topology optimization
of trusses

* No stress constraint for non-existing
member.

* Discontinuity in problem formulation.

— Stress constraint suddenly disappear as area

approach 0. AA

e Optimal solution may
exist at a singular
point (cusp).

Optimal solution



Unstable optimal solution

(member buckling)
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Fix node 2 ™ different slenderness ratio

mm) different stress bound
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Unstable node

Very thin

Intersection of

members

member



Mixed integer programming for
truss topology optimization
with discrete variables
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Stress-displ. relation
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Linearization of nonlinear constraints
(Stolpe and Svanberg)
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Cmax Ccmin: syfficiently large/small value

EEE)  Mixed integer linear programming (MILP)



Optimization of bridge truss from
traditional configurations
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Howe truss Platt truss

Select from three types

Warren truss K-truss onfigurations.

= combination of traditional




Optimization results by CPLEX

Case 1: f=0.7x10" V=65.410 CPU = 67900(sec)
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Case 2: f =1.0x10™" V=74.610 CPU = 14600(sec)
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Case 3: f=1.4x10" V=81.203 CPU = 10600(sec)
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® Warren truss for small loads.

= Howe truss near support for large loads. (A={0.0,1.0,1.8})

©® CPU time strongly depends on load magnitude.
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@ Loaded node




Optimization of space truss

e Traditional configurations
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Schuwedler dome Lamella dome




V(A ={0.0,1.0,2.0})
[ Lamella dome for small loads. J

= Schuwedler dome in perimeter region for large loads.




