Linear mixed integer programming for topology optimization of trusses and plates

Makoto Ohsaki and Ryo Watada Kyoto University, JAPAN

Michell truss

A.G.M. Michell, The limits of economy in frame structures, 1904.

Infinite number of members in principal stress line

W. Prager, A note on discretized Michell structure, 1974

Finite number of members Consider nodal cost

Ground structure approach to topology optimization

W. Dorn et al., Automatic design of optimal structures, 1964

- 1. Assign all the nodes and members.
- Optimize cross-sectional areas as continuous variables.
- 3. Remove unnecessary members and nodes.

Optimization under stress constraints

Multiple loading condition

Single loading condition

Statically determinate fully stressed

Statically indeterminate generally not fully stressed

Formulation of topology optimization under stress constraints

Minimize total structural volume

s. t.
$$\sigma_i^L \le \sigma_i^k(\mathbf{A}) \le \sigma_i^U$$
 for $A_i \ge 0$

Stress constraints are given only for existing members

 A_i : cross-sectional area of member i

 $\sigma_i^k(\mathbf{A})$: stress of member i for load k

Multiple loading conditions

Optimal topology under multiple loading conditions cannot be obtained by conventional ground structure approach

Difficulties in topology optimization of trusses

- No stress constraint for non-existing member.
- Discontinuity in problem formulation.

Stress constraint suddenly disappear as area approach 0.

 Optimal solution may exist at a singular point (cusp).

Optimal solution \longrightarrow B C \longrightarrow A₁

Feasible region

Unstable optimal solution (member buckling)

Fix node 2 different slenderness ratio different stress bound

Infeasible optimal solutions

Intersection of members

Very thin member

Unstable node

Mixed integer programming for truss topology optimization with discrete variables

Topology optimization problem

minimize
$$V = \sum_{j} a_{j} l_{j}$$
 Structural volume

subject to
$$\mathbf{B}\mathbf{s} = \mathbf{f}$$
 equilibrium

Stress constraint

Force constraint

$$a_j \sigma_j^{\min} \le s_j \le a_j \sigma_j^{\max}$$

$$s_{j} = a_{j} \frac{E_{j}}{l_{j}} \mathbf{b}_{j}^{T} \mathbf{u}$$

$$a_{j} \ge 0$$
Nonlinear relation

$$a_i \ge 0$$

Variables: **s**, **u**, a_i

Select a_i from list of available sections

Select from available list

$$a_{j} \in \mathbf{A}_{j} = \{0, a_{j1}, \dots, a_{jN_{j}}\}$$

0-1variable

$$x_{jk} = \begin{cases} 1 & \text{if } a_j = a_{jk} \\ 0 & \text{otherwise} \end{cases}$$

Express using \mathcal{X}_{jk}

$$a_j = \sum_{k=1}^{N_j} x_{jk} a_{jk}, \quad \sum_{k=1}^{N_j} x_{jk} = x_j \le 1$$

$$s_{jk} = x_{jk} a_{jk} \frac{E_j}{l_j} \mathbf{b}_j^T \mathbf{u}, \quad s_j = \sum_{k=1}^{N_j} s_{jk}$$

Stress-displ. relation

Linearization of stress-disp. relation

Linearization of nonlinear constraints (Stolpe and Svanberg)

$$S_{ik} = x_{ik} a_{ik} \frac{E_i}{l_i} \mathbf{b}_i^T \mathbf{u}, \quad x_{ik} = 0 \text{ or } 1$$

$$x_{ik} c^{\min} \le s_{ik} \le x_{ik} c^{\max}$$

$$(1 - x_{ik}) c^{\min} \le a_{ik} \frac{E}{l_i} \mathbf{b}_j^T \mathbf{u} - s_{ik} \le (1 - x_{ik}) c^{\max}$$

C^{max}, C^{min}: sufficiently large/small value

Mixed integer linear programming (MILP)

Optimization of bridge truss from traditional configurations

Traditional configurations

• Selection

Select from three types

⇒ combination of traditional configurations.

Optimization results by CPLEX

Case 1: $f = 0.7 \times 10^{-4}$ V=65.410 CPU = 67900(sec)

Case 2: $f = 1.0 \times 10^{-4}$ V=74.610 CPU = 14600(sec)

Case 3: $f = 1.4 \times 10^{-4}$ V=81.203 CPU = 10600(sec)

- Warren truss for small loads.
 - ⇒ Howe truss near support for large loads.
- CPU time strongly depends on load magnitude.

 $(\mathbf{A} = \{0.0, 1.0, 1.8\})$

Optimization of space truss

Optimization of space truss

Ground structure

Selection pattern

Traditional configurations

A: Schuwedler dome

B: Lamella dome

Optimization results

Case 1: $f = 1.0 \times 10^{-4} \text{ V} = 1404.3$ Case 2: $f = 3.0 \times 10^{-4} \text{ V} = 1441.1$

Case 3: $f = 1.0 \times 10^{-4} \text{ V} = 1404.3$

- Lamella dome for small loads.
 - ⇒ Schuwedler dome in perimeter region for large loads.