AN OPTIMIZATION APPROACH TO DESIGN OF GEOMETRY AND FORCES OF TENSEGRITIES

M. Ohsaki, JY. Zhang, S. Kimura

Kyoto University, Japan

Background –1

- Difficulties of shape design of tensegrities
 - Interaction of shape and force
 - Cable (tension) and strut (compression)
- Force density method
 - Cannot specify force and direction

Background –2

Direct assignment of member directions:

 Ohsaki and Kanno (IASS-APCS 2003)
 Variables: member force vector nodal coordinates
 Too many variables to be specified

Objective

- Two stage approach for form finding
 - Step 1: Find member forces
 - Step 2: Find nodal locations
- Direct assignment of direction and force of member.
- Optimization for determination of member force vectors

Equilibrium equations

• Force vector of member k

 $\mathbf{v}_k = (v_k^x, v_k^y, v_k^z)^{\mathrm{T}}$

• Member force vector $\mathbf{v} = (\mathbf{v}_1^{\mathrm{T}}, \mathbf{v}_2^{\mathrm{T}}, \dots, \mathbf{v}_m^{\mathrm{T}})^{\mathrm{T}}$

 $-\mathbf{v}$ has 3m components

• Equilibrium equation

 $\mathbf{B}\mathbf{v} = \mathbf{0}$

Geometrical constraints w.r.t. force vector

- Rotational symmetry $\mathbf{v}_{k+1} = \mathbf{M}_k \mathbf{v}_k$ $\mathbf{M}_k = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- Direct constraints $\mathbf{S}\mathbf{v} = \mathbf{0}$ $\mathbf{v}_1 = \mathbf{v}_2$

Geometrical constraints w.r.t. force vector

• Geometrical constraints and equilibrium

– Hard constraints

$$\mathbf{C}\mathbf{v} = \mathbf{0}$$
 $\mathbf{C} = \begin{bmatrix} \mathbf{B}^{\mathrm{T}}, \mathbf{M}^{\mathrm{T}}, \mathbf{S}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$

- *r* : rank of **C**
- Specfy 2m-r components of v to obtain v

Not straightforward

Objective functions and constraints

• Soft constraints $\mathbf{R}\mathbf{v} = \mathbf{0}$

e.g. $v_7 = cv_9$

• Objective function

$$E(\mathbf{v}) = \frac{1}{2} \left(\mathbf{v} - \overline{\mathbf{v}} \right)^{\mathrm{T}} \mathbf{W}^{\mathrm{I}} \left(\mathbf{v} - \overline{\mathbf{v}} \right) + \frac{1}{2} \left(\mathbf{R} \mathbf{v} \right)^{\mathrm{T}} \mathbf{W}^{\mathrm{II}} \left(\mathbf{R} \mathbf{v} \right)$$

Constraints (hard constraints)
 Cv = 0

Optimization problem

- Minimize $E(\mathbf{v})$
- subject to $\mathbf{C}\mathbf{v} = \mathbf{0}$
- Lagrangian

$$L(\mathbf{v}, \boldsymbol{\mu}) = E(\mathbf{v}) + \boldsymbol{\mu}^{\mathrm{T}} \mathbf{C} \mathbf{v}$$

• Stationary condition $\begin{bmatrix} \mathbf{W}^{\mathrm{I}} + \mathbf{R}^{\mathrm{T}}\mathbf{W}^{\mathrm{II}}\mathbf{R} & \mathbf{C}^{\mathrm{T}} \\ \mathbf{C} & \mathbf{O} \end{bmatrix} \begin{pmatrix} \mathbf{v} \\ \mathbf{\mu} \end{pmatrix} = \begin{pmatrix} \mathbf{W}^{\mathrm{I}}\overline{\mathbf{v}} \\ \mathbf{0} \end{pmatrix}$ Equilibrium w.r.t. nodal coordinates

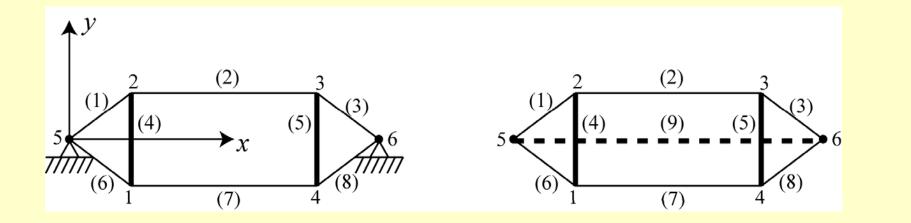
- Direction vector $\mathbf{d}_k = (d_k^x, d_k^y, d_k^z)^{\mathrm{T}}$
- Express **d** by **X**
- Equilibrium equation

 $\mathbf{F}\mathbf{X} = \mathbf{0}$

Form finding algorithm

- **Step 0:** Specify topology.
- **Step 1:** Construct the equilibrium matrix and specify the geometrical constraints (hard constraints).
- Step 2: Assign the target force vector, the soft constraints, to define the objective function.
- Step 3: Solve stationary condition for force vector.
- **Step 4:** Formulate the equilibrium equation with respect to the nodal coordinates.
- Step 5: Compute the rank of and specify independent components of to obtain nodal coordinates.

Numerical example



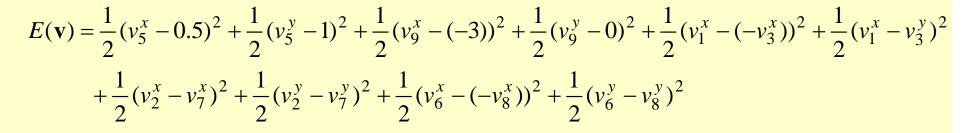
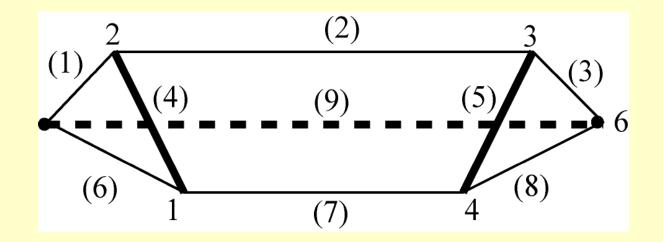


Table 1. Force vectors of the plane													
tensegrity													
Me mber	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)				
v_i^x	-1	1.5	1	0.5	0.5	-2	1.5	2	3				
v_i^y	-1	0	-1	-1	1	1	0	1	0				

Table 1 Force vectors of the plane

Table 2. Nodal coordinates

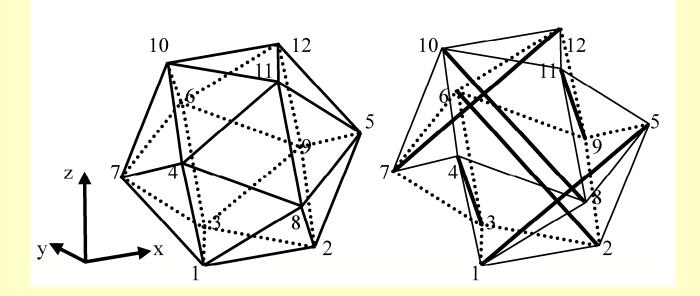
Node	1	2	3	4	5	б
x	2	1	7	6	0	8
у	-1	1	1	-1	0	0



3D-structure

 $\operatorname{rank}(\mathbf{F}) = 8$ n = 12

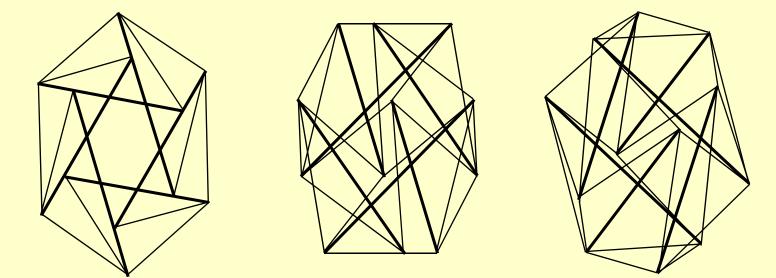
 $(x_2, x_5, y_5, x_6) = (1, 0, 0, 8)$



3D-structure (Example 1)

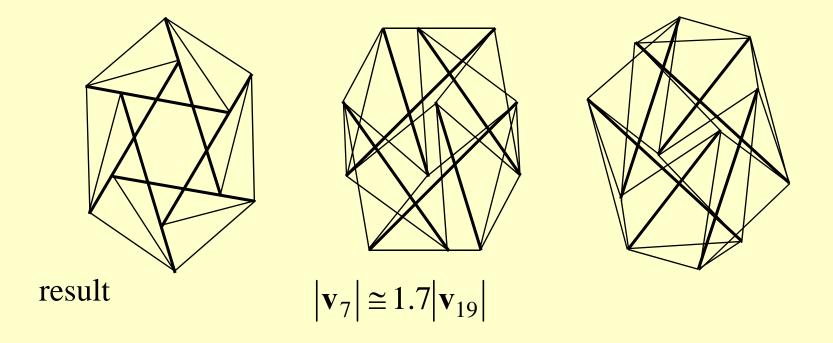
 $\operatorname{rank}(\mathbf{F}) = 8$ n = 12

 $(x_2, x_5, y_5, x_6) = (1, 0, 0, 8)$



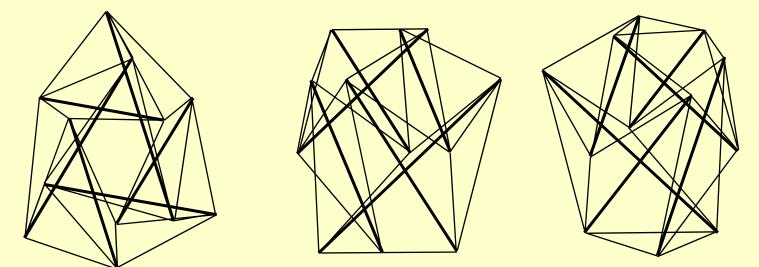
3D-structure (Example 2)

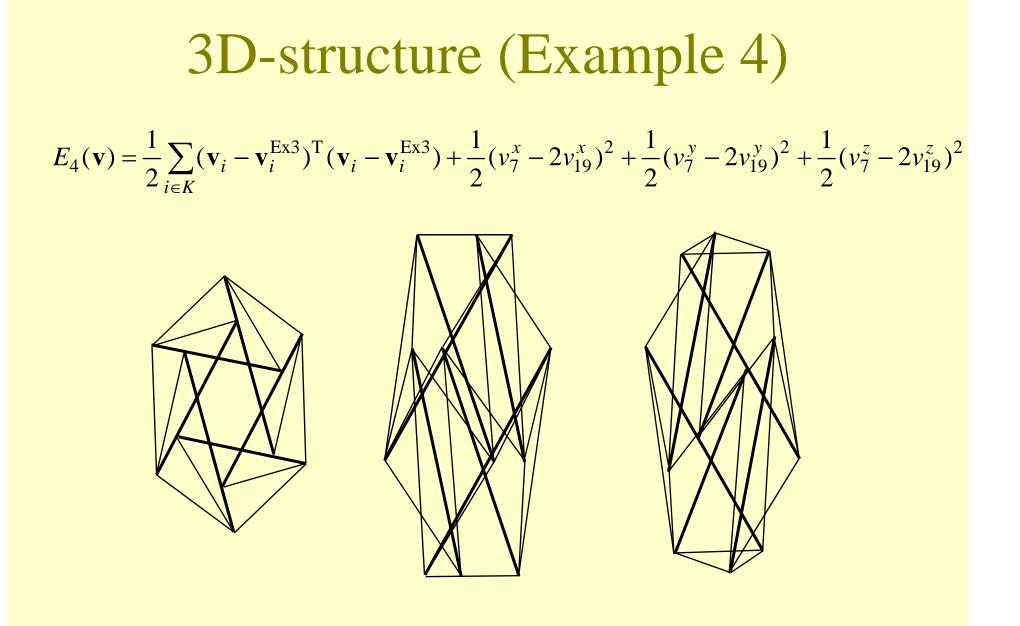
Add soft constraint $\mathbf{v}_7 = c\mathbf{v}_{19}$



3D-structure (Example 3)

$$E_{3}(\mathbf{v}) = \frac{1}{2} \sum_{i \in K} (v_{i} - \overline{v}_{i})^{2} + \frac{1}{2} (v_{7}^{x} - 0.75)^{2} + \frac{1}{2} (v_{7}^{y} - (-1.83))^{2} + \frac{1}{2} (v_{7}^{z} - (-4.20))^{2} + \frac{1}{2} (v_{19}^{x} - 0.75)^{2} + \frac{1}{2} (v_{19}^{y} - (-1.83))^{2} + \frac{1}{2} (v_{19}^{z} - (-4.20))^{2}$$





Conclusions

- Direct assignment or force vectors.
- Member direction can be specified.
- Hard constraints that should be satisfied.
- Soft constraints that are preferably satisfied.
- Determine force components by optimization.
- Shape and forces can be directly controlled as expected by modifying the target values and soft constraints on force components.