OPTIMIZATION OF ENERGY DISSIPATION PROPERTY OF ECCENTRICALLY BRACED STEEL FRAMES

M. Ohsaki (Hiroshima Univ.) T. Nakajima (Kyoto Univ. (currently Ohbayashi Corp.))

Background

- Difficulty in optimization in building structures: Structures are not mass products
 ⇒ cannot spend much cost on optimization
- Shape optimization of special structures (long-span truss, free-form shell, etc.)
- Structural parts are mass products
 ⇒ optimization of parts of building frame

Purpose of study

- Optimization of Eccentrically Braced Frame (EBF)
 - Eccentricity between beam-brace connection
 - Dissipate seismic (earthquake) energy in link member between connections

Design specification of EBF

- Demand for large rotation $\gamma_p = \frac{L}{e} \theta_p$ (γ_p : plastic rotation of link, θ_p : interstory drift angle of frame)
- Specification by AISC: 0.02 ~ 0.08 (rad) (AISC:American Institute of Steel Construction)

Optimization approach

Tabu search:

single-point search heuristics based on local search

Optimization of link member

- Increase plastic energy dissipation
- Prevent buckling and collapse near connections
- 1. Optimize location and thickness of stiffeners
- 2. Optimize length of link member in a frame
- 3. Tabu search:

Approximate optimal solution with small number of analyses

Analysis model

- Wide-flange section (H-247×202×7×11)
 - Elastic modulus: 200.0 GPa , Yield stress: 359.0 Mpa Tensile strength: 592.0 MPa
 - Link length: e = 1219 mm (intermediate length)
 - Stiffeners: four, 10mm
- Shell element: nominal size 25mm
 - Forced vertical displacements
 - FEM code: ABAQUS

Failure Index

- Index for low cycle fatigue
- Defined by stress triaxiality ($\sigma_{\rm m}$ / $\sigma_{\rm e}$)

$$FI = \frac{\varepsilon_{p}}{\varepsilon_{p,critical}}$$

Equivalent plastic strain von Mises equivalent stress Mean stress

Critical plastic strain:

$$\varepsilon_{\text{p,critical}} = \alpha \exp\left(-1.5 \frac{\sigma_{\text{m}}}{\sigma_{\text{e}}}\right)$$

- Fracture occurs if FI=1.0
- Compute FI of all elements and find the max. value $I_{\rm f}$

 \mathcal{E}_{p}

 $\sigma_{\rm e}$

 $\sigma_{
m m}$

Verification with experimental results

- FE-analysis
 - Local buckling of flange and web
 - Cyclic softening
 - Location of element with $I_f = 1.0$

Optimization problem

Objective function

Plastic energy dissipation

Constraint

Max. value *I*_f of FI is less than 1.0

Design variables

- Location and thickness of stiffeners
- Discretize real variables x_i to integer variables J_i

$$x_i = x_i^0 + (J_i - 1) \times \Delta x_i$$

(i = 1, \dots, m)

maximize
$$F(J) = E_p(J)$$

subject to $I_f(J) \le 1.0$
 $J_i \in \{1, \dots, s\}$

Tabu search (TS)

- Randomly generate initial seed solution
 Initialize tabu list *T* as empty list
- 2. Generate neighborhood solutions $N = \{ J_j^N | j = 1, ..., q \}$
- Evaluate objective functions and constraints (penalty function for constraints)
- 4. Best solution in *N* that is not included in tabu list *T* ⇒ Next seed solution
- 5. Add the seed solution to T
- 6. Go to step 2 if termination conditions are not satisfied; otherwise, output the best solution satisfying constraints.

Parameters of TS

- 1. Number of neighborhood solutions: 3
- 2. Number of steps: 5
- 3. Length of tabu list: 5
- 4. Carry out TS five times from different random seeds.
- 5. Total number of analyses: $5 \times 5 \times 3 = 75$

Optimization using ABAQUS

TS Algorithm **Preprocessing** (Python Script) (1) Flange, web, plate parts Generate coordinates, thickness, length (2) Material and section (3) Assemble beam part (4) Boundary and load (5) FE-mesh (6) Submit to ABAQUS Postprocessing (Python Script) **Dissipated energy** Simulation Equivalent plastic Strain Compute objective and **ABAQUS/Standard** constraint functions

Optimization of location and thickness of stiffeners

- Stiffeners are located near center and ends
- Shear (reaction) force is incerased

Optimization of location and thickness of stiffeners

- Increase E_p , decrease I_f
- Dissipated energy E_p^{f} before failure is 42% larger than standard model

	Objective	Failure index	Dissipated	
	function		energy before	
			failure	
	E_{p}	l l _f	$E_{\rm p}^{\rm f}$	
Standard	336.0	1.06	323.0	+42%
Optimal	347.0	0.67	459.9	
<u> </u>			(kN ∙ m	i)

 $E_{\rm p}^{\rm f}$: dissipated energy before $I_{\rm f}$ reaches 1.0

Eccentrically braced portal frame

- Span L=4.0m , height 2.0m
- FE-model:

Link: shell element; Beam, column: beam element; Brace: truss element

• Assign story drift (=1/50) and maximize dissipated energy E_p^{f} before reaching l_f =1.0

Relation between length and responses

Optimization problem

Objective function

Plastic energy dissipation before reaching $l_{\rm f}$ =1.0

maximize
$$F(\mathbf{J}) = E_p^f(\mathbf{J})$$

subject to $J_i \in \{1, 2, ..., s\}$

Design variables

- Location and thickness of stiffeners
- Length of link beam
- Discretize real variables x_i to integer variables J_i
- $-x_i = x_i^0 + (J_i 1) \times \Delta x_i \quad (i = 1, \cdots, m)$
- Upper bound of length: *e* =1400 mm

Optimization of link length, location and thickness of stiffeners

	standard			optimal				
Location	0.0	0.0	0.0	0.0	+18.0	+18.0	-18.0	-18.0
Thickness	10.0	10.0	10.0	10.0	16.0	13.0	13.0	16.0

Model	Length	Plastic energy	Cycles	Angle	Shear force
	<i>e</i> (mm)	E _p f (kN⋅m)	N _{cycle} (times)	l∕ ^{max} (rad)	V _L ^{max} (kN)
Standard	1219	470.2	7	0.051	409.4
Optimal	800	593.0	7	0.083	505.5
S, Mises SNEG, (fraction = -1.0 +4.500e+08 +4.125e+08 +3.750e+08 +3.375e+08 +3.000e+08 +2.625e+08 +1.875e+08 +1.500e+08 +1.125e+08 +1.000e+08 +1.000e+08 +1.000e+08 +1.000e+08 +1.000e+08+00 +1.000e+08 +1.000e+00 +000e+00+00 +1.000e+00			$I_f=1.0$		

Conclusions

- 1. Shape optimization of link beam
 - Combine FEM (ABAQUS) and optimization algorithm (TS)
 - Maximize energy dissipation under constraint on failure index
 - Optimize location and thickness of stiffeners
 - Tabu search for improvement:
 Approximate optimal solution with small computational cost
- 2. Optimization of portal EBF
 - Optimize length of link beam
 - Energy dissipation has been drastically improved