Optimization of flexible supports for seismic response reduction of long-span structures

Makoto Ohsaki (Kyoto Univ., Japan) Osamu lwatsuki (Obayashi Corp.) Yuji Miyazu (Hiroshima Univ.) Seita Tsuda (Okayama Pref. Univ.)

Purpose

- Optimization of supporting structure of long-span structures subjected to seismic excitation.
- 2. Reduction of acceleration and deformation of upper structure.
- 3. Utilization of
 - Flexibility of support.
 - Geometrical nonlinearity.

Background

- Complex dynamic property of arch-type structure.
 - Interaction of multiple modes.
 - Dependence on flexibility of support.
- Base isolation.

- Difficult for vertical excitation.

1st mode

2nd mode

3rd mode

Optimization of supporting structure (geometrically linear model)

Step 1: Topology optimization of truss model considering static response.

Step 2: Cross-sectional optimization for reduction of acceleration and deformation of upper structure.

Deformation in normal direction of arch

Geometrically linear model

Direction of displacement

- Pin-jointed truss
- Young's modulus: 2.05×10^5 N/mm²
- Mass at node A: 1800kg
- Mass at nodes 3~10: 600kg
- Variable: cross-sectional area
- Standard ground structure approach

Optimization problem

Maximize upward disp. due to horizontal forced disp. Forced displacement: Node A, 0.06m

 F_h : Horizontal reaction force

Maximize $U_A(A)$ D_A^v : Vertical disp. due to self-weight subject to $D_A^v(A) \le 0.005 m$, $F_h(A) \ge 200 kN$ \leftarrow Horizontal and vertical $0.19 cm^2 \le A_i \le 76 cm^2$ (i = 1, ..., 20) stiffness

Reduce number of members

Minimize structural volume

Minimize V(A)subject to $U_A(A) \ge U_A^{OPT}$ Constraint on vertical disp. Optimal value of step 1 $D_A^{\nu}(A) \le 0.005 m, \ F_h(A) \ge 200 kN$ $0.19 cm^2 \le A_i \le 76 cm^2 \ (i = 1, ..., 20)$

Optimization result 1

Optimization of supporting structure (geometrically nonlinear model)

Topology optimization of truss model considering geometrical nonlinearity.

Optimization of cross-section and nodal location.

Deformation like reverse pendulum

Geometrically nonlinear model

Upward deformation for both right and left displacements.

Optimization result 1

→ Small horizontal reaction Nonlinear horizontal stiffness

Attach arch to opt 1, and carry out further optimization

Optimization problem

Minimize $F^{N}(A) = \sqrt{\sum_{i=1}^{9} |\alpha_{i}^{N}|^{2}}$ Max. acceleration of node $i: \alpha_{i}^{N}$ subject to $D_{A}^{h} \le 0.01m, D_{A}^{v} \le 0.01m$ \leftarrow Stiffness against self-weight $0.19cm^{2} \le A_{i} \le 76cm^{2}$ (i = 1, ..., 20)

 $D_{\rm A}^{\nu}$: Vertical disp. at node A against self-weight $D_{\rm A}^{h}$. Using the formula of the self-weight is the self-weight formula of the self-weight sel

 D_A^h : Horizontal disp. at node A against self-weight

Objective function:

Square norm of acceleration in normal direction. Modal analysis: CQC method Rayleigh damping with h=0.02 for 1st and 2nd modes.

CQC method (complete quadratic combination)

Max. acceleration of node \boldsymbol{i} : $|\alpha_i^N|$

$$\left|\alpha_{i}^{N}\right| = \sqrt{\sum_{s=1}^{N}\sum_{r=1}^{N}\left(\beta_{s}^{N}\phi_{s}^{i}S_{s}\left(T_{s},h_{s}\right)\right)\rho_{sr}\left(\beta_{r}^{N}\phi_{r}^{i}S_{r}\left(T_{r},h_{r}\right)\right)}$$

 β_s : participation factor T_s : natural period h_s : damping factor S_s : acceleration response spectrum ω_s : natural circular frequency ^N ϕ_s^i : normal displacement component at node *i*

 P_{s_i} : modal correlation coefficient

$$\rho_{sr} = \frac{8\sqrt{h_s h_r} \left[h_r + \chi^3 h_s + 4\chi h_s h_r \left(h_r + \chi h_s\right)\right] \sqrt{\chi}}{\sqrt{\left(1 + 4h_s^2\right) \left(1 + 4h_r^2\right)} \alpha}$$
$$\alpha = \left(1 - \chi^2\right)^2 + 4\chi h_s h_r \left(1 + \chi^2\right) + 4\left(h_s^2 + h_r^2\right) \chi^2 \qquad \chi = \omega_r / \omega_s$$

Optimization result

Mode	Period	Frequency	Effective mass ratio	
	T (s)	F (Hz)	Horizontal (%)	Vertical (%)
1	0.506	1.976	29.62	0.0
2	0.441	2.268	0.0	2.29
3	0.321	3.115	0.04	0.0
4	0.236	4.237	0.0	38.23
5	0.145	6.897	0.0	6.77
6	0.114	8.772	62.26	0.0

Optimal model with damper

Damping coefficient: $c=5000 \text{ N} \cdot \text{s/m}$

Without damper 5

Acc., disp, stress: Reduction of <u>30~50%</u>

Response of optimal model

(Deformation \times 50)

Conclusions

- Flexibility of supports can be effectively utilized for reduction of seismic responses of structures.
- Two-stage procedure:
 - 1st stage: static optimization maximization of vertical displacement: variable: cross-sectional area minimization of structural volume: variable: cross-sectional area, nodal location
 - 2nd stage: dynamic optimization seismic response reduction variable: cross-sectional area