Minimum-volume design of steel frames using reinforcement learning

Kazuki Hayashi and Makoto Ohsaki Department of Architecture and Architectural Engineering, Kyoto University

Why structural optimization x RL?

- 1. Capability <mark>of handling</mark> difficult problem
- 2. Inspiration from unexpected (and good) solutions
- 3. Reduction of computational cost
- → Simulate structural engineers' design process

	Whole graph embedding	Node embedding	Edge embedding
application	Comparison of chemical structures	Travelling Salesman problem	Link prediction between nodes
methods	Graph2vec (Narayanan et al., 2017) UGRAPHEMB (Bai et al., 2019)	Structure2Vec (Hanjun et al., 2016) DeepWalk (Perozzi et al., 2014)	Edge2Vec (Wang et al., 2020) edge input \rightarrow edge feature
Propose a new method for			w method for

<u>node and edge input \rightarrow edge feature</u>

Graph embedding

Expression of action value Q using μ

• Q(s,a): value to change design of member a at state s

Training of $\Theta = \{\theta_1, \dots, \theta_9\}$

- Observed reward $+\gamma \operatorname{Max.} Q$ at the next state Q at the current state of Q at the current state Q at the current Q at the curent Q at the curent Q at the curent Q at t
- Deep-Q Network (Mnih, 2015) minimize $L(\Theta) = \left(r(s') + \gamma \max_{a \in \Omega_{s'}} Q(s', a | \Theta) - Q(s, a | \Theta)\right)^2$ discount rate $\in [0, 1]$ previous trainable parameters
- The parameters Θ are updated to minimize the loss using RMSprop (Tieleman and Hinton, 2012)

6

Cross-section optimization of steel frames

minimize $V(\mathbf{A})$ Total structural volumesubject to $\sigma_i(\mathbf{A}) \leq \overline{\sigma}_i$ ($i \in \text{all members}$)Member stress $u_i^c(\mathbf{A})/L_i \leq 1/200$ ($i \in \text{columns}$)Deformation of columns $v_i^b(\mathbf{A})/L_i \leq 1/300$ ($i \in \text{beams}$)Deformation of beams $\beta_j(\mathbf{A}) \geq 1.5$ ($j \in \text{middle-layer nodes}$)Column-to-beam
overstrength factor

Two training cases

Reduce the size

Increase the size

index	Member input w _i	index	Node input v_k
1	1 if column, else 0	1	1 if supported; 0 else
2	1 if beam, else 0	2	1 if at the top, 0 else
3	(member length)/12.0	3	1 if at the side ends, 0 else
4	size index (200,250,, 1000)	4	COF ratio
5	stress ratio		
6	displacement ratio		

2 Action *a* (reducing size ver.)

Action a : Reduce size index J_a by one level

(Automatically adjust above columns' size if lower column becomes more slender)

Ji	$H \times B \times t \xrightarrow[]{\uparrow_t} H$	$H \times B \times t_1 \times t_2 \xrightarrow{\uparrow_{t_2}} H$	
200	$200 \times 200 \times 12$	$194 \times 150 \times 6 \times 9$	
250	$250 \times 250 \times 12$	$244 \times 175 \times 7 \times 11$	
÷	:		
900	$900 \times 900 \times 36$	$900 \times 300 \times 16 \times 28$	
950	$950 \times 950 \times 36$	$950 \times 300 \times 16 \times 28$	
1000	$1000 \times 1000 \times 36$	$1000 \times 300 \times 16 \times 28$	

③ Reward *r* (reducing size ver.)

Reward $r \in [-1,1]$: depends on the change of stress, displacement and COF

$$r = \frac{1}{3} \left(C \left(\frac{\max \tilde{\sigma}'_i}{\max \tilde{\sigma}_i} \right) + C \left(\frac{\min \beta_i}{\min \beta'_i} \right) + C \left(\frac{\max \tilde{d}'_i}{\max \tilde{d}_i} \right) \right)$$
Number of
size-changed stress ratio one-step previous values displacement ratio

$$members$$

$$C(x) = \begin{cases} \min\{x, 1.0\} & \text{if (solution is feasible)} \\ 0 & \text{else if } (x \text{ satisfies constraint}) \\ \frac{n_e}{\sqrt{n_s}} \max\{-\frac{1}{x}, -1.0\} & \text{else} \end{cases}$$

Number of stories

Applicability to different frames

Trained agents can be applied without re-training

index	Member input w _i	index	Node input v _k	
1	1 if column, else 0	1	1 if supported; 0 else	
2	1 if beam, else 0	2	1 if at the top, 0 else	
3	(member length)/12.0	3	1 if at the side ends, 0 else	
4	size index (200,250,, 1000)	4	COF ratio	
5	stress ratio			
6	displacement ratio			
$\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{m}, \mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\} \xrightarrow{\text{graph embedding}} \{\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{m}\} \simeq s$				

2 Action *a* (increasing size ver.)

Action a : Increase size index J_a by one level

(Automatically adjust lower columns' size if upper column becomes thicker)

Ji	$H \times B \times t \xrightarrow[]{}^{t} H$	$H \times B \times t_1 \times t_2 \xrightarrow{\uparrow_{t_2}} H$	
200	$200 \times 200 \times 12$	$194 \times 150 \times 6 \times 9$	a
250	$250 \times 250 \times 12$	$244 \times 175 \times 7 \times 11$	
•	÷		
900	$900 \times 900 \times 36$	$900 \times 300 \times 16 \times 28$	
950	$950 \times 950 \times 36$	$950 \times 300 \times 16 \times 28$	
1000	$1000 \times 1000 \times 36$	$1000 \times 300 \times 16 \times 28$	

③ Reward r (increasing size ver.)

Reward $r \in [-1,1]$: depends on the change of stress, displacement and COF

Applicability to different frames

Trained agents can be applied without re-training

VS particle swarm optimization (PSO)

problem	RL+GE(-)	RL+GE(+)	PSO	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t = 2.6 V = 6.778	t = 2.3 V = 6.418	t = 6.2 V = 6.642	<i>t</i> : elapsed CPU time <i>V</i> : structural volume
4 4 4 4 8 12 8 8 8	t = 1.7 V = 7.995	t = 2.4 V = 8.207	t = 8.0 V = 6.220	Smaller t \rightarrow RL+GE is faster than PSO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t = 3.9 V = 12.940	t = 3.9 V = 13.554	t = 18.3 V = 12.999	Similar V \rightarrow RL+GE can obtain solutions comparable to PSO

<u>Conclusion</u>

- A hybrid method of reinforcement learning and graph embedding is proposed for minimum-volume design of steel frames
- Trained agents are able to apply design change to members considering constraints and objectives of the structural design problem
- The trained agent can be applied to various structures at a low computational cost regardless of the number of nodes and members and shape