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Why structural optimization x RL?

1. Capability of handling difficult problem
2. Inspiration from unexpected (and good) solutions
3. Reduction of computational cost
→ Simulate structural engineers’ design process
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Graph embedding (GE)
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Convolution for graphs
to extract features=

Whole graph embedding Node embedding Edge embedding

application Comparison of chemical 
structures

Travelling Salesman 
problem

Link prediction between 
nodes

methods Graph2vec
(Narayanan et al., 2017)

UGRAPHEMB
(Bai et al., 2019)

Structure2Vec
(Hanjun et al., 2016)

DeepWalk
(Perozzi et al., 2014)

Edge2Vec
(Wang et al., 2020)

edge input → edge feature

Propose a new method for
node and edge input → edge feature



Graph embedding

: input of member im

: input of j-th end of member im

: extracted feature of member im
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Repeat until obtaining  μ(4)

Trainable parameters
to be adjusted
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Expression of action value Q using μ

• : value to change design of member a at state s( ),Q s a
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( ),Q s a

Sum of member features
Feature of member a

concatenation
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Trainable parameters
to be adjusted



• Q-Learning (Watkins, 1989)

• Deep-Q Network (Mnih, 2015)

• The parameters Θ are updated to minimize the loss 
using RMSprop (Tieleman and Hinton, 2012)

Training of Θ = {θ1,･･･,θ9}

6Tieleman, T. and Hinton, G.: Lecture 6.5—RmsProp: Divide the gradient by a running average of its 
recent magnitude. COURSERA: Neural Networks for Machine Learning, Vol. 4, pp. 26-30, 2012. 
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Q at the current
state-action pair

Max. Q at the
next state

Observed reward + γ



Cross-section optimization of steel frames
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minimize ( )
subject to ( ) ( all members)

( ) 1 200 ( columns)

( ) 1 300 ( beams)
( ) 1.5 ( middle-layer nodes)
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Total structural volume

Member stress

Deformation of columns

Deformation of beams

Column-to-beam
overstrength factor

17 types of square pipes from 200 to 
1000 mm at the interval of 50 mm

17 types of I-beams from 200 to 
1000 mm at the interval of 50 mm

Consider both long-term and short-term loads



Two training cases
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Reduce the size                       Increase the size

Parameters to     ① state s ② action a ③ reward r
be determined:



① state s
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iw
kv

index Node input vk

1 1 if supported; 0 else
2 1 if at the top, 0 else
3 1 if at the side ends, 0 else
4 COF ratio

index Member input wi

1 1 if column, else 0
2 1 if beam, else 0
3 (member length)/12.0
4 size index (200,250, …, 1000)
5 stress ratio
6 displacement ratio

{w1,･･･,wm, v1,･･･,vn}                        {μ1,･･･, μm}
graph embedding

≃ s



Action a : Reduce size index Ja by one level
(Automatically adjust above columns’ size if lower column 
becomes more slender)

② Action a (reducing size ver.)

10

a

Ji H×B×t H×B×t1×t2

200 200×200×12 194×150×6×9

250 250×250×12 244×175×7×11

… …

900 900×900×36 900×300×16×28

950 950×950×36 950×300×16×28

1000 1000×1000×36 1000×300×16×28



Reward r ∈ [-1,1] : depends on the change of stress, 
displacement and COF

③ Reward r (reducing size ver.)

11

𝑟𝑟 =
1
3

𝐶𝐶
max
𝑖𝑖

�𝜎𝜎𝑖𝑖′

max
𝑖𝑖

�𝜎𝜎𝑖𝑖
+ 𝐶𝐶

min
𝑖𝑖
𝛽𝛽𝑖𝑖

min
𝑖𝑖
𝛽𝛽𝑖𝑖′

+ 𝐶𝐶
max
𝑖𝑖
�̃�𝑑𝑖𝑖′

max
𝑖𝑖
�̃�𝑑𝑖𝑖

𝐶𝐶(𝑥𝑥) =

min{𝑥𝑥, 1.0} if (solution is feasible)
0 else if (𝑥𝑥 satisfies constraint)

𝑛𝑛𝑒𝑒
√𝑛𝑛𝑠𝑠

max{− 1
𝑥𝑥

,−1.0} else

one-step previous valuesstress ratio

COF

displacement ratioNumber of
size-changed
members

Number of stories



Training result 
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Frame model
for validation

CPU: 47.1[h]
Intel(R) Core(TM) i9-7900X
CPU+GPU: 20.7[h]
Intel(R) Core(TM) i9-7900X
GeForce(R) GTX 1080 Ti



Applicability to different frames
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Trained agents can be applied without re-training



① state s
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iw
kv

index Node input vk

1 1 if supported; 0 else
2 1 if at the top, 0 else
3 1 if at the side ends, 0 else
4 COF ratio

index Member input wi

1 1 if column, else 0
2 1 if beam, else 0
3 (member length)/12.0
4 size index (200,250, …, 1000)
5 stress ratio
6 displacement ratio

{w1,･･･,wm, v1,･･･,vn}                        {μ1,･･･, μm}
graph embedding

≃ s



Action a : Increase size index Ja by one level
(Automatically adjust lower columns’ size if upper column 
becomes thicker)

② Action a (increasing size ver.)
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Ji H×B×t H×B×t1×t2

200 200×200×12 194×150×6×9

250 250×250×12 244×175×7×11

… …

900 900×900×36 900×300×16×28

950 950×950×36 950×300×16×28

1000 1000×1000×36 1000×300×16×28

a



Reward r ∈ [-1,1] : depends on the change of stress, 
displacement and COF

𝑟𝑟 =

1.0 if (feasible)
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𝐶𝐶(𝑥𝑥) = max 𝑥𝑥,−1.0

③ Reward r (increasing size ver.)
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one-step previous valuesstress ratio

COF

displacement ratio

Number of size-
changed members

Number of stories



Training result 
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Frame model
for validation

CPU: 43.4[h]
Intel(R) Core(TM) i9-7900X
CPU+GPU: 18.7[h]
Intel(R) Core(TM) i9-7900X
GeForce(R) GTX 1080 Ti



Applicability to different frames
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Trained agents can be applied without re-training



VS particle swarm optimization (PSO)

19

problem RL+GE(-) RL+GE(+) PSO

t = 2.6 t = 2.3 t = 6.2
V = 6.778 V = 6.418 V = 6.642

t = 1.7 t = 2.4 t = 8.0
V = 7.995 V = 8.207 V = 6.220

t = 3.9 t = 3.9 t = 18.3
V = 12.940 V = 13.554 V = 12.999

Smaller t
→ RL+GE is faster 
than PSO

Similar V
→ RL+GE can obtain
solutions comparable 
to PSO

t  : elapsed CPU time
V : structural volume



Conclusion

• A hybrid method of reinforcement learning and 
graph embedding is proposed for minimum-volume 
design of steel frames 

• Trained agents are able to apply design change to 
members considering constraints and objectives of 
the structural design problem

• The trained agent can be applied to various 
structures at a low computational cost regardless of 
the number of nodes and members and shape

20contact: hayashi.kazuki.55a@st.kyoto-u.ac.jp
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