Optimization of flexible supports for seismic response reduction of arches and frames

Makoto Ohsaki (Kyoto Univ., Japan) Seita Tsuda (Okayama Pref. Univ.) Yuji Miyazu (Hiroshima Univ.)

Background

- Complex dynamic property of long-span structure.
- Interaction between upper and supporting structure.
- Interaction of multiple modes.
- Dependence on flexibility of support.

1st mode

2nd mode

3rd mode

Seismic response

Purpose

- 1. Optimization of supporting structure of arch subjected to seismic excitation.
- 2. Reduction of acceleration and deformation of upper structure.
- 3. Utilization of flexibility of support.

Three-step optimization of supporting structure

Step 1: Maximization of vertical/horizontal displacement ratio against static horizontal load.
Step 2: Minimization of structural volume.
Step 3: Dynamic response reduction of upper structure.

Previous study (geometrically linear model)

Direction of displacement

Ground structure for topology optimization

- Pin-jointed truss
- Variable: cross-sectional area
- Remove unnecessary members.

Previous study (geometrically linear model)

Direction of displacement

Previous study (geometrically nonlinear model)

- Symmetric truss model considering geometrical nonlinearity.
- Optimization of cross-section and nodal location.

Deformation like reverse pendulum

Previous study (geometrically nonlinear model)

Maximize upward displacements for both right and left deformations.

Geometrically linear model

Direction of displacement

- Pin-jointed truss
- Young's modulus: 2.05×10^5 N/mm²
- Mass at node A: 1800kg
- Mass at nodes 3~10: 600kg
- Variable: cross-sectional area
- Standard ground structure approach

Optimization problem (Step 1)

Maximize upward/horizontal disp. ratio due to horizontal forced disp.

Maximize
$$R(A) = \frac{d_{hv}(A)}{d_{hh}(A)} \leftarrow \text{Disp. Ratio}$$

subject to $d_{gh}(A) \ge d_{gh}^L \leftarrow \text{Stiffness for self-weight}$
 $d_{gv}(A) \ge d_{gv}^L \leftarrow \text{Stiffness for self-weight}$
 $d_{hh}(A) \le d_{hh}^U \leftarrow \text{Stiffness for horizontal}$
 $load$
 $A_i^L \le A_i \le A_i^U$

Penalization of intermediate cross-sectional area

Underestimate stiffness \rightarrow Error in structural response

Penalization of intermediate cross-sectional area

Overestimate volume \rightarrow No error in structural response

Optimization problem (Step 2)

Minimize volume under constraint on vertical/horizontal disp. ratio due to horizontal forced disp.

Maximize $V(\tilde{A}(A))$ \leftarrow Structural volumesubject to $R(A) \ge CR_{opt}$ \leftarrow Disp. Ratio $d_{gh}(A) \ge d_{gh}^L$ \leftarrow Stiffness for self-weight $d_{gv}(A) \ge d_{gv}^L$ \leftarrow Stiffness for self-weight $d_{hh}(A) \le d_{hh}^U$ \leftarrow Stiffness for horizontal $A_i^L \le A_i \le A_i^U$ \leftarrow Stiffness for horizontal

Optimal solution

Optimal solution

Solution for larger upper-bound area

Simplified solution

Attach arch to opt 1, and carry out further optimization

Optimization problem (Step 3)

 D_A^{ν} : Vertical disp. at node A against self-weight D_A^{h} : Horizontal disp. at node A against self-weight

Objective function:

Square norm of acceleration in normal direction. Modal analysis: CQC method Rayleigh damping with h=0.02 for 1st and 2nd modes.

CQC method (complete quadratic combination)

Max. acceleration of node \boldsymbol{i} : $|\alpha_i^N|$

$$\left|\alpha_{i}^{N}\right| = \sqrt{\sum_{s=1}^{N}\sum_{r=1}^{N}\left(\beta_{s}^{N}\phi_{s}^{i}S_{s}\left(T_{s},h_{s}\right)\right)\rho_{sr}\left(\beta_{r}^{N}\phi_{r}^{i}S_{r}\left(T_{r},h_{r}\right)\right)}$$

 β_s : participation factor T_s : natural period h_s : damping factor S_s : acceleration response spectrum ω_s : natural circular frequency $^N \phi_s^i$: normal displacement component at node i

 P_{sr} : modal correlation coefficient

$$\rho_{sr} = \frac{8\sqrt{h_{s}h_{r}} \left[h_{r} + \chi^{3}h_{s} + 4\chi h_{s}h_{r} \left(h_{r} + \chi h_{s}\right)\right]\sqrt{\chi}}{\sqrt{\left(1 + 4h_{s}^{2}\right)\left(1 + 4h_{r}^{2}\right)\alpha}}$$
$$\alpha = \left(1 - \chi^{2}\right)^{2} + 4\chi h_{s}h_{r} \left(1 + \chi^{2}\right) + 4\left(h_{s}^{2} + h_{r}^{2}\right)\chi^{2} \qquad \chi = \omega_{r}/\omega_{s}$$

Response spectrum

$$S_a(T_s, h_s) = \frac{1.5}{1+10h_s} \begin{cases} 0.96 + 9.0T_s & \text{for } T_s \le 0.16\\ 2.4 & \text{for } 0.16 \le T_s \le 0.864\\ 2.074 / T_s & \text{for } 0.864 \le T_s \end{cases}$$

Optimization result

Vibration properties of optimal solution

Mode	Period T _s [s]	Damping factor h _s	Effective mass ratio in X-dir \overline{M}_{S}^{X} [%]	Effective mass ratio in Y-dir \overline{M}_{S}^{Y} [%]
1	0.4488	0.0200	49.194	0.000
2	0.3593	0.0200	1.235	0.000
3	0.2878	0.0210	0.000	50.771
4	0.1637	0.0284	0.000	2.395

Vibration modes of optimal solution

Attachment of viscous damper

O: Flexible-model with dampers
× : Flexible-model without dampers
∆:Stiff-model

Extension to single-layer grid

Minimize interaction force between roof and supporting structure

Geometry of supporting structure

Diagonal location of top node of support

Optimal objective function value: about 78 % of stiff-model.

Attachment of viscous damper

Red: with damper Blue: without damper

Conclusions

- Flexibility of supports can be effectively utilized for reduction of seismic responses of structures.
- Three-step procedure:
 - 1st step: static optimization maximization of vertical displacement
 - 2nd step: static optimization minimization of structural volume:
 - 3rd step: dynamic optimization seismic response reduction

Optimization of flexible base for reduction of seismic response of buildings

Rocking mechanism

Dissipate seismic energy using rocking of frame and plastic dissipation at column base

Purpose

Optimize flexible base to control mode shape and reduce response displacement of building frame

Rotate opposite direction against horizontal input

Details of flexible base

Truss members (cm ²)			
Α	(members 1-4,3-5)	200.0	
В	(members 2-4,2-5)	50.0	
С	(members 1-2,2-3)	1.0	

Material: steel

Manufacture member C using a spring

Optimization problem

Design variables: nodal coordinate X cross-sectional area A Objective function: roof displacement $|y|_{max}$ minimize

Response spectrum approach (SRSS rule)

$$|y|_{\max} = \sqrt{\sum_{i=1}^{3} |\beta_i \cdot u_i \cdot S_{D_i}|^2}$$

Constraint : lowest natural period $T_1 \leq 1.0$

Optimization result

- Damping factor 2%
- Young's modulus: 200kN/mm²
- Story mass: 8000kg

	Beam section (SN400B)
2~R	$H - 400 \times 200 \times 8 \times 13$
	Column section (BCR295)
1~4	\Box - 350 × 350 × 16

-Base beam (points 4,5) 45000kg

Optimization result

Maximum responses

Maximum responses

Interstory drift angle (rad)

Story shear (kN)

Column axial force (kN)

Rocking response is enhanced

Trajectory of drift angle and rotation of base

Eigenvalue analysis

Optimal model

	Doriod	Participation	Effective
	Periou	factor	mass ratio
	T(s)	β	X-dir. (%)
1st	0.712	16.53	0.22
2nd	0.379	287.77	67.88
3rd	0.155	13.75	0.15

Stiff model

	Deried	Participati	Effective
	Period	on factor	mass ratio
	T(s)	β	X-dir. (%)
1st	0.556	157.30	20.28
2nd	0.160	90.66	6.74
3rd	0.107	186.00	28.36

2nd

Frequency response

42

Base with viscous damper

Red: with damper, Blue: without damper

Conclusions

- Flexibility of supports can be effectively utilized for reduction of seismic responses of structures.
- Two-stage procedure:
 - 1st stage: static optimization maximization of vertical displacement: minimization of structural volume:
- 2nd stage: dynamic optimization seismic response reduction variable: cross-sectional area