SHAPE OPTIMIZATION OF SHEAR PANEL DAMPER CONSIDERING PLASTIC ENERGY DISSIPATION

Makoto Ohsaki (Hiroshima Univ.) Junki Nozoe

Background

- Main difficulty in optimization of building structures:
 - Structures are not mass products
 - \Rightarrow cannot spend much cost on optimization
- Shape optimization of special structures (long-span truss, free-form shell, etc.)
- Structural parts are mass products
 ⇒ optimization of parts of building frame

Objective of Study

- Optimization of steel panel dampers for seismic response reduction of building frames.
- Shape optimization of opening of perforated panel using conventional steel material.
- Parametric representation of hole shape using radial basis function.
- Combine heuristic optimization algorithm and FE-analysis.

Shear panel damper with opening

Use normal steel Reduce stiffness and strength with opening

Gaussian function and Bezier function

Boundary representation using level set function

Level set function Add Gaussian function and **Bezier surface** $\Phi(x, y) = \sum_{k=1}^{m} g_k(x, y) + P(x, y)$ **FE-model of structures mesh** $\chi(\Phi) = 1$ $\chi\left(\varPhi\right)=0$ $\chi(\Phi) = \begin{cases} 1 & \text{if } \Phi(x, y) < \alpha \\ 0 & \text{if } \Phi(x, y) \ge \alpha \end{cases}$ $\alpha = 0.5 \cdot \Phi_{\max}(x, y)$ Maximum value of $40 \times 48 \times 2$ level set function

Index of ductile fracture

Simple measure using equivalent plastic strain

FE-model of structures mesh

Non-smooth boundary shape

Unrealistic strain at boundary

Exclude boundary elements for checking fracture

Analysis of steel panel damper

Design variables

Parameters of Gaussian function

Variables: std. dev. and x,y-coordinates; three for each point

Optimization problem 1

Larger reaction \rightarrow larger plastic energy dissipation

Specify lower-bound of reaction

Maximize $F(\mathbf{J}) = \frac{\hat{E}_{p}(\mathbf{J})}{R_{max}(\mathbf{J})}$ Subject to $g(\mathbf{J}) = \frac{R_{max}^{0}(\mathbf{J})}{R_{max}(\mathbf{J})} \leq 1$ $J_{i} \in \{1, 2, \dots, d_{i}\}$ $(i = 1, 2, \dots, m)$

Discretize variables into integer values

Tabu search (TS)

- Randomly generate initial seed solution
 Initialize tabu list *T* as empty list
- 2. Generate neighborhood solutions $N = \{ J_j^N | j = 1, ..., q \}$
- Evaluate objective functions and constraints (penalty function for constraints)
- 4. Best solution in *N* that is not included in tabu list *T* ⇒ Next seed solution
- 5. Add the seed solution to T
- 6. Go to step 2 if termination conditions are not satisfied; otherwise, output the best solution satisfying constraints.

Parameters of TS

- 1. Number of variables: 12
- 2. Number of neighborhood solutions: 12
- 3. Number of steps: 20
- 4. Length of tabu list: indefinite
- 5. Carry out TS three times from different random seeds.
- 6. Total number of analyses: $12 \times 20 \times 3 = 720$

Optimization using ADVCluster

Optimization result

Panel A

_		n an	

	Dissipated energy	Maximum plastic strain	Maximum reaction	Cycles
Initial	15.10	0.539	354.24	1.00
Optimum	53.21	0.539	476.50	3.43

Panel B

	Dissipated energy	Maximum plastic strain	Maximum reaction	Cycles
Initial	19.33	0.306	402.08	1.00
Optimum	43.94	0.306	455.94	2.59

Optimization result

Equivalent plastic strain

Optimization problem 2

Number of cycles may be large before dissipated energy reaches specified value

Carry out analysis only for 1st cycle

Optimization result

40 x 48 x 3 = 5760 elements

	Objective function	Energy (kN m)	Strain	Reaction (kN)
Initial	137.0	79.7	0.569	1021
Opt 1	310.2	125.7	0.269	1507
Opt 2	297.1	124.5	0.283	1483
Opt 3	264.8	81.0	0.307	995

FE-analysis with fine mesh

80 x 96 x 6 = 46080 elements

|--|--|

Initial

Opt 1

Opt 2

Opt 3

	Objective function	Energy (kN m)	Strain	Reaction (kN)
Initial	131.2	84.14	0.5994	1070
Opt 1	233.4	126.4	0.3573	1516
Opt 2	214.6	124.1	0.3893	1485
Opt 3	167.2	82.63	0.4817	1026

FE-analysis with fine mesh

1 cycle

	Objective function	Energy (kN m)	Strain	Reaction (kN)
Initial	131.2	84.14	0.5994	1070
Opt 1	233.4	126.4	0.3573	1516
Opt 2	214.6	124.1	0.3893	1485
Opt 3	167.2	82.63	0.4817	1026

3 cycles

	Objective function	Energy (kN m)	Strain	Reaction (kN)
Initial	128.2	215.7	1.572	1070
Opt 1	229.5	326.5	0.938	1517
Opt 2	211.7	319.9	1.018	1485
Opt 3	165.3	212.4	1.252	1026

Analysis after Re-meshing

Initial model

Number of nodes = 45,792 Number of elements = 29,752

Optimal model

Number of nodes = 46,806 Number of elements = 30,460

Conclusions

- Energy dissipation properties of passive dampers can be drastically improved through optimization using local search of discretized variables.
- Cost and time for physical tests for development of devices can be reduced using EF analysis and optimization.
- Appropriate choice of optimization algorithm.