Optimization of flexible structure for vertical base isolation

Makoto Ohsaki (Kyoto Univ., Japan) Yakuya Kinoshita (Kyoto Univ., Japan currently Takenaka Corp.)

Problem formulation

Minimize error from specified path

minimize
$$e(X, A) = \sum_{i=1}^{m} \left(f(U_A^{(i)}) - \overline{f}_i \right)^2$$

subject to $f(U_A^{(i)}) \le f(U_A^{(i+1)})$
 $(i = l, ..., u - 1)$
 $V(A, X) \le V^{\max}$
 $A^L \le A \le A^U$
 $X^L \le X \le X^U$

Specified path

Truss model

- Models 1 and 2
 - Ground structure with truss elements
 - Add rigid element at right supports to represent upper structure
 - Optimize from several random initial solutions

Optimization results

Upper structure

Base isolation model

Deformed

Specification

Initial

- Width 1.0 (m)
- Young's modulus $2.0 \times 10^4 \, (\text{N/mm}^2)$
- Cross-sectional area: multiply 3.21 × 10² so that the selfweight is supported at the center of Region II

Response against recorded ground motions

- Bar-spring model
 - -Max. deformation of spring: 0.402 m
 - -Scale of isolation device: $(2 \times 0.402)/0.18 = 4.46$
 - -Size of device: width = 4.46 m, height = 2.68 m

Response against recorded ground motions

Response to El Centro level 2: Time [see] Blue: isolated, Black: pin-support

											Response	
		A	rch	Arch + Spring				Arch + Device			ratio	
地震波	Acc_{g}^{max}	$Acc_{\rm D}^{\rm max}$	$Acc_{\rm C}^{\rm max}$	Δ^{max}	$Acc_{\rm D}^{\rm max}$	$Acc_{\rm C}^{\rm max}$	応答比	Δ^{max}	$Acc_{\rm D}^{\rm max}$	$Acc_{\rm C}^{\rm max}$	Tatio	_
(i)2	3.084	6.004	5.109	0.236	0.580	0.594	0.116	0.290	0.613	0.627	0.123	
(ii) ₂	1.627	12.557	6.223	0.135	0.336	0.347	0.056	0.394	1.732	1.803	0.290	
(iii) ₂	2.906	12.186	9.524	0.402	0.989	1.010	0.106	0.327	1.039	1.132	0.119	
(i)3	4.626	8.989	7.651	0.285	0.708	0.706	0.092	0.489	2.977	3.139	0.410	
(ii) ₃	2.440	18.860	9.405	0.203	0.505	0.521	0.055	0.408	1.674	1.748	0.186	
(iii) ₃	4.359	18.222	14.213	0.473	1.217	1.234	0.087	0.387	1.417	1.464	0.103	
(iv)	2.793	9.403	7.123	0.102	0.263	0.269	0.038	0.133	0.108	0.110	0.015	