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o Stability of tensegrity structures
— Global buckling: Super-stability
— Local buckling: Euler buckling of bars

e Design of flexible support of vehicle or structure
— Utilize buckling of bars (struts)
— Reduce maximum reaction under impact force
— Reduce tangent stiffness at large deformation

* Properties of tensegrity lattice

— Stiffness/flexibility
— Wave propagation



Present optimization method for a tensegrity
lattice

— Eight truncated octahedral units with threefold
symmetry

Maximize strain energy under specified forced
vertical displacement

Obtain stiff structure with degrading tangent
stiffness for vertical deformation

Add horizontal bars to stabilize the structure for
horizontal deformation.
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Stable for any level of prestresses
Return back from large deformation

Super-stable structure:
Only ratios of forces should be considered for shape design
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Plan/side view Diagonal view

- Connect mirror images of units
- Remove one of the duplicate edge cables at the connection
- 96 nodes, 336 members



e Equilibrium shape depends on g, only (g, = 1).

Cutting cables become shorter when g, is reduced.



e Steel material for cables and bars

e Bilinear elastic model for buckling of bars
Strain energy:

before buckling S = ?(I —1,)?
0

2
after buckling S = folo + f 1 =1, _M
/14 2EA EA
_______ E . Young's modulus
To A . Cross-sectional area
/ l, : Initial length
| : Length after deformation

Al=1-1, f.: Buckling force



Maximize total strain energy S™ at specified vertical
displacement

Design variables: Cross-sectional areas of bars A, and
cables A_; prestress level 5

Constraints: Material volume

Maximize S™(A,,A.,5)

A, A.: Cross-sectional areas of bars

sunjectto AL, + A.L. =V, and cables
AbL <A < AbU [ Prestress level
. U L,, L. : Total lengths of bars and cables
A: < A: = A: V, : Specified material volume

,BL <B< ,BU ()Y, ()-: Upper and lower bounds



Young’s modulus: E = 2.05x10°> N/mm?

Volume of surrounding rectangular parallelepiped:
8x0.004 = 0.032 m3 (unit size =0.2x 0.2 x 0.1)

Radius of gyration of rectangular bar section:
1.2 mm (slenderness ratio is about 140)
Width of rectangular bar is proportional
to cross-sectional area

Forced vertical displacement: 80 mm
(Height is about 200 mm)

V, = material volume of initial solution




Boundary condition:

Bottom and top planes can expand horizontally constraining
rigid-body displacements

Displacement increment method with Newton iteration at

each step

Small axial stiffness EA,/100 after
buckling to stabilize computation

Optimize for g, between —0.3 and —0.7

Check yielding and slackening of
cable after optimization




0 A, (mm?) | A, (mm?) p S” (Nm)
0.3 0.9179 | 0000 | 1.6536 9601
0.4 0.9806 | 0.000 | 1.7617 10130
05 1.0456 | 0.1000 | 1.9449 14185
—0.6 1.1106 0.1000 1.9451 23137
0.7 11742 | 01000 | 1.8395 | 37734

- Cable cross-sectional area A, is equal to lower-bound for all cases
- Bar cross-sectional area A, and strain energy S” increase as g, is decreased

- Stress level f mostly increases as b, is decreased
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- Vertical stiffness decreases as the downward displacement is increased
- Maximum reaction force increases as g, is decreased
- Structure has a limit point instability for g, = -0.7
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Vertical disp.

- Axial force has positive value in tensile state
- Buckling of bars

-> Forces of linear elastic cable have non-smooth distributions
- Number of buckled members increases as vertical displacement is increased
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- Vertical stiffness has been reduced successfully

- Horizontal stiffness may be lost due to shear deformation

of upper and lower units
- Add bars to prevent instability in horizontal direction

Additional bar
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Layers for adding

e G | A (mm?) | A, (mm?) p S* (Nm)
= -0.7 1.1294 0.1000 1.8137 38338
0
g -0.8 1.1825 0.1000 1.8103 38549
_ -0.7 1.0879 0.1000 1.5261 44891
Top and middle
-0.8 1.1322 0.1000 1.5060 72591
-0.7 1.0879 0.1000 1.7596 37265
Top and bottom
-0.8 1.1322 0.1000 1.6076 63305
g, [risille; 20| 1.0493 0.1000 1.3264 62863
bottom
Middle -0.7 1.1294 0.1000 1.8230 38653

Almost similar property as the case without additional bars




q, =—0.7, bars on top and middle layers
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q, =—0.7, bars on top and middle layers
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Optimization method for tensegrity lattices composed of eight
truncated octahedral units.

Maximize stored strain energy under specified forced vertical
displacement and constraints on structural volume.

A flexible structure with degrading vertical stiffness is
obtained as a result of optimization.

Although structures generally retain compression stiffness
even after large deformations, shear stiffness may be lost.
-> Add four bars in some of the layers of the lattice.

Tensegrity lattice with flexibility in vertical direction and
adequate shear stiffness for isolation for vertical motion.
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