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Ingredients of RL

• ：agent

1. status     2. action     3. reward     4. environment

• Objective is to maximize total reward
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Problem is NOT always pixel-wise

CNN
→ How to apply RL to discrete structures?

available NOT available

continuous truss frame



Structure2Vec (Hanjun et al., 2016)

• Reinforcement learning + graph embedding
• Train for MVC and TSP with 50-100 nodes
→ Apply the trained model to 1000-1200 nodes
→ Solution comparable to CPLEX solver’s one

1 hour12 seconds

Minimum vertex cover (MVC) Traveling salesman problem(TSP)
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Minimize (no. of nodes selected) Minimize (total path)



Graph embedding

• Convolutional NN  :                       :
• Graph embedding :

Whole graph Node embedding

=

Edge embedding

Image → Feature Vector
Graph → Feature Vector

We formulate a new method
for truss topology optimization

ex ) Structure2Vec
(Hanjun et al., 2016)



Edge embedding

• : feature vector of edge eeµ
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Input features x and w

• : feature vector of edge eeµ
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1) Binary feature if node is pin-supported
2) Load in x direction
3) Load in y direction
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1) Absolute value of cosine direction
2) Absolute value of sine direction
3) Member length
4) Binary feature if 
5) Axial stress over admissible stress

20


Embedded edge features



Q-value using embedded value 

• : value to remove edge e in current state s( ),Q s e
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Q-learning

• Q-learning (Watkins, 1989)

→

s(μ) : expressed by edge embedding
a : remove an edge e with
r : +1 (if satisfy constraint) or -1 (else)
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Training model
maximize
subject to 2.0 ( 1, , )
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Continue until violating constraints
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assign very small cross-section
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Choose 1 load randomly



Training result

Agent learned how to remove unnecessary members

Validation model Best scored topology

number of training episodes

validation score
= Total rewards



Applicability to another model
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3 s.t. 2.0, 16.0uσ = =

Trained agent can be used without re-training
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Applicability to another model
s.t. 4.0, 50.0uσ = =
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Conclusion 

• Graph embedding method is introduced to express 
features of truss members

• Conducted Q-learning based on the embedded 
features

• Trained agent is applicable to any topology and 
geometry of trusses

Email: hayashi.kazuki.55a@st.Kyoto-u.ac.jp
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