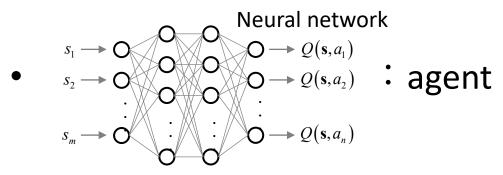
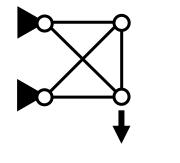
Deep-Q network for truss topology optimization with stress constraints

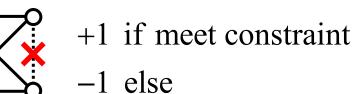
Kazuki Hayashi (Kyoto University) Makoto Ohsaki (Kyoto University)

Ingredients of RL



2. action 3. reward 4. environment 1. status

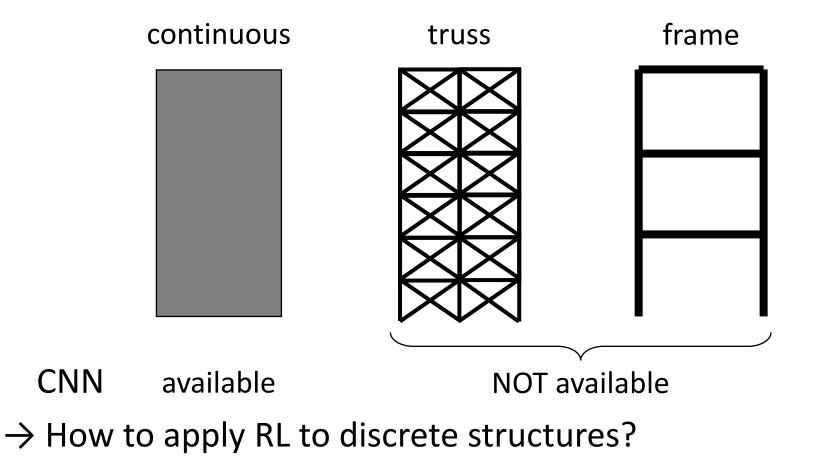




S a r $F(s,a) = \{s',r\}$

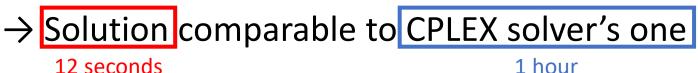
Objective is to maximize total reward

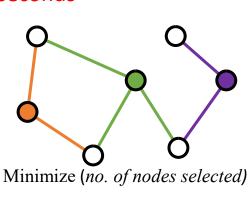
Problem is NOT always pixel-wise



Structure2Vec (Hanjun et al., 2016)

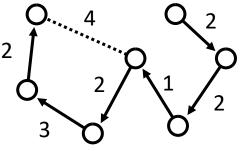
- Reinforcement learning + graph embedding
- Train for MVC and TSP with 50-100 nodes
- \rightarrow Apply the trained model to 1000-1200 nodes





Minimum vertex cover (MVC)

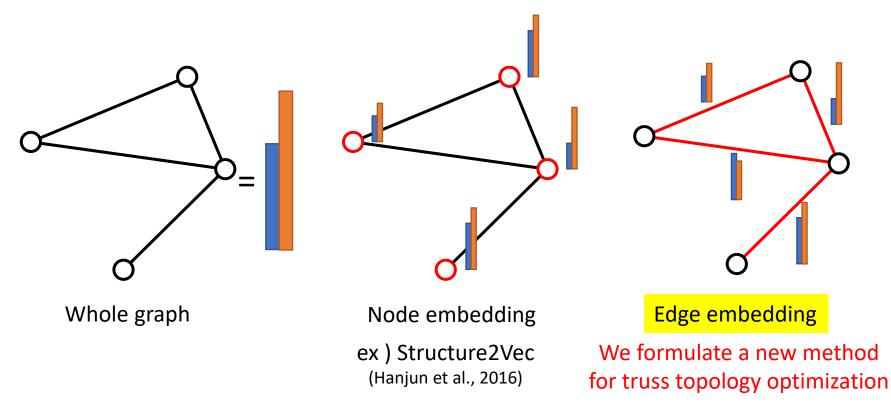
1 hour



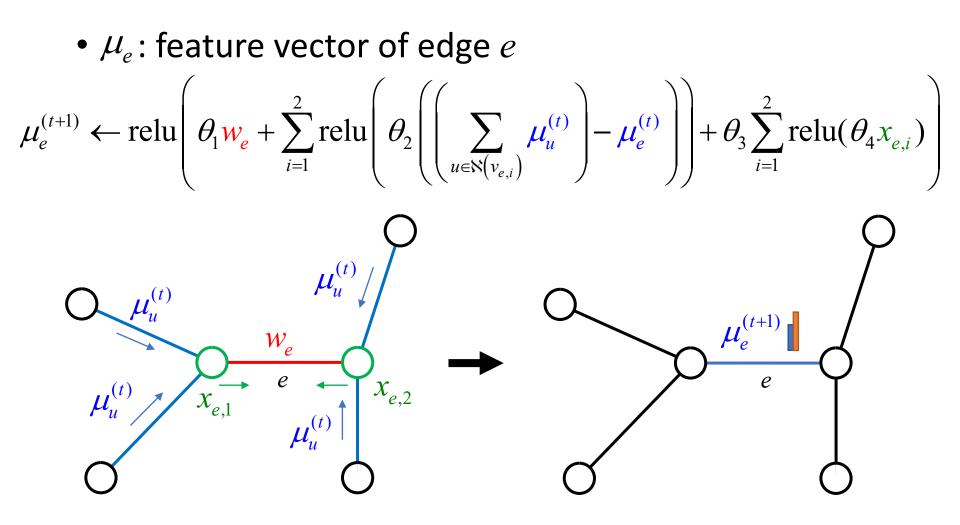
Minimize (total path) Traveling salesman problem(TSP)

Graph embedding

- Convolutional NN : Image \rightarrow Feature Vector
- Graph embedding : Graph \rightarrow Feature Vector



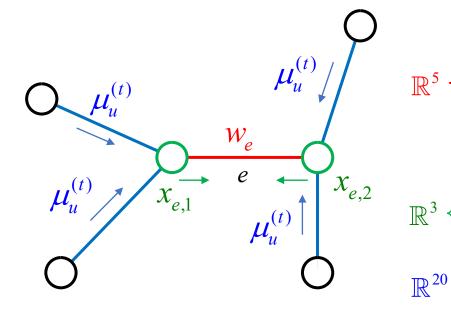
Edge embedding



Input features x and w

• μ_e : feature vector of edge e

$$\boldsymbol{\mu}_{e}^{(t+1)} \leftarrow \operatorname{relu}\left(\theta_{1}\boldsymbol{w}_{e} + \sum_{i=1}^{2}\operatorname{relu}\left(\theta_{2}\left(\left(\sum_{u\in\aleph(v_{e,i})}\boldsymbol{\mu}_{u}^{(t)}\right) - \boldsymbol{\mu}_{e}^{(t)}\right)\right) + \theta_{3}\sum_{i=1}^{2}\operatorname{relu}(\theta_{4}\boldsymbol{x}_{e,i})\right)$$



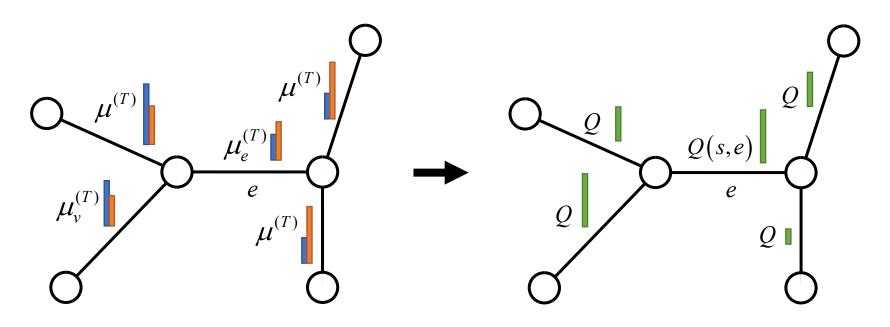
- Absolute value of cosine direction
 Absolute value of sine direction
 Member length
 Binary feature if
- - 5) Axial stress over admissible stress
- 1) Binary feature if node is pin-supported
 2) Load in x direction
 3) Load in y direction

 \mathbb{R}^{20} Embedded edge features

Q-value using embedded value

• Q(s,e) : value to remove edge e in current state s

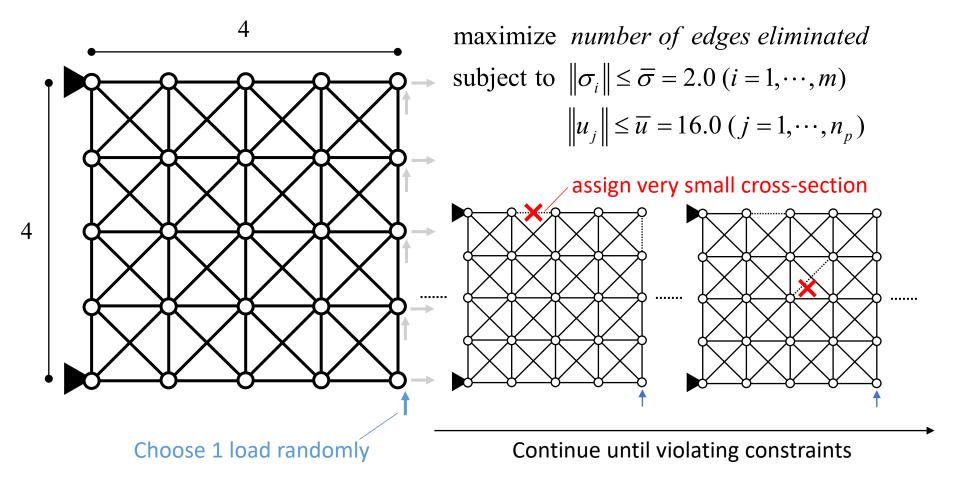
$$Q(s(\mu), e) = \theta_5^{\mathrm{T}} \operatorname{relu}[\theta_6 \sum_{u \in V} \mu_u^{(T)}, \theta_7 \mu_e^{(T)}]$$



<u>Q-learning</u>

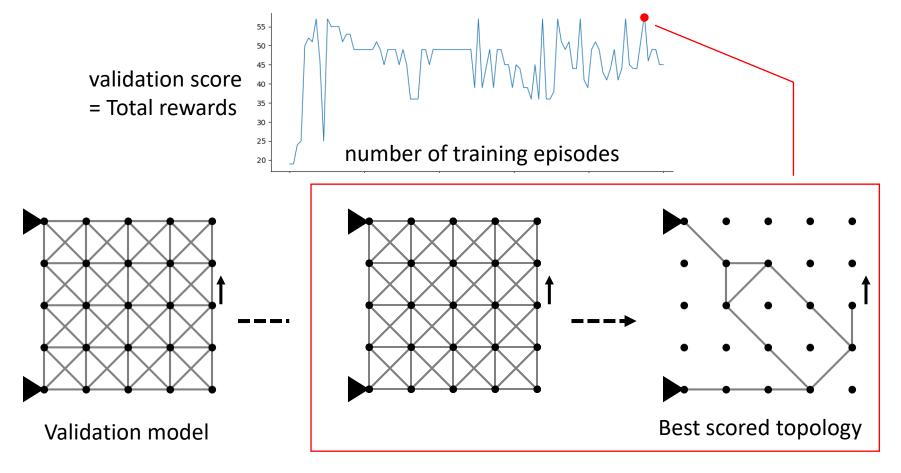
- Q-learning (Watkins, 1989) $Q(\mathbf{s}, a) \leftarrow Q(\mathbf{s}, a) + \alpha \left(r(\mathbf{s}') + \gamma \max_{a} Q(\mathbf{s}', a) - Q(\mathbf{s}, a) \right)$ $\left[\begin{array}{c} \text{observed reward + estimated total reward} \\ \text{at next state} \end{array} \right] \left[\begin{array}{c} \text{estimated total reward} \\ \text{at current state} \end{array} \right]$ $\rightarrow \min E \left\{ \left\{ \theta_{1}, \dots, \theta_{7} \right\} \right\} = \left(r(\mathbf{s}') + \gamma \max_{a} Q(\mathbf{s}', a) - Q(\mathbf{s}, a) \right)^{2}$
- $\mathbf{s}(\mu)$: expressed by edge embedding
- *a* : remove an edge *e* with $\max_{a} Q(\mathbf{s}, a = e)$
- *r* : +1 (if satisfy constraint) or -1 (else)

Training model



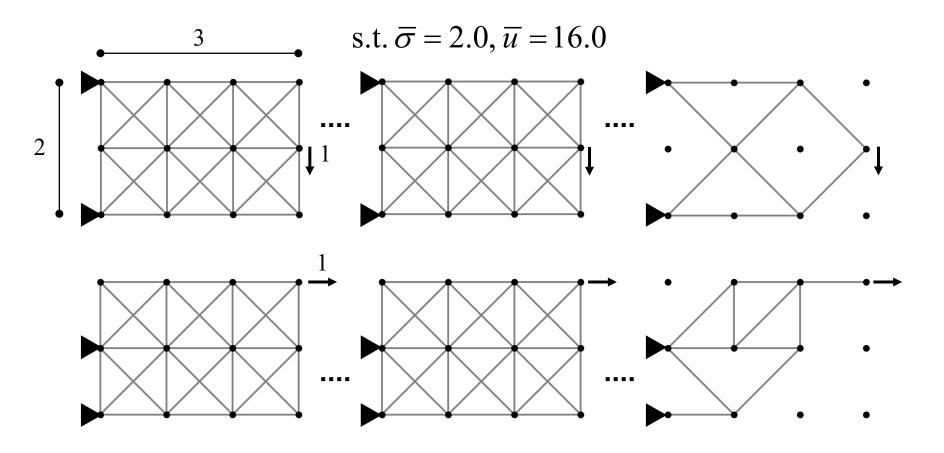
Training result

Agent learned how to remove unnecessary members

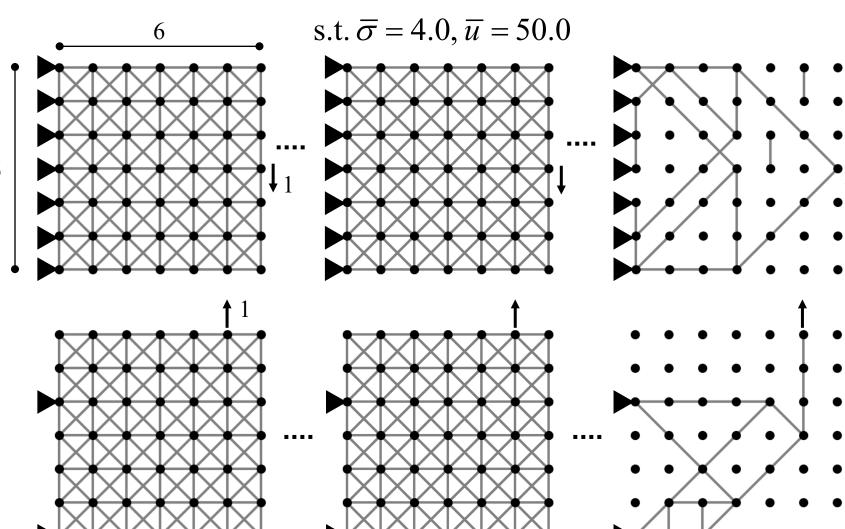


Applicability to another model

Trained agent can be used without re-training



Applicability to another model



6

Conclusion

- Graph embedding method is introduced to express features of truss members
- Conducted Q-learning based on the embedded features
- Trained agent is applicable to any topology and geometry of trusses

