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Generate mechanism with partially
rigid joints using optimization method

Input disp.
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e Optimization approaches for generating link
mechanisms

— Truss elements for planar mechanism

— |deal (three-axis) pin joints are needed for 3D
mechanism

* |deal pin joints are difficult to manufacture
— partially rigid connections are preferred

* No systematic approach to design of 3D link
mechanism with partially rigid connections
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My | Bending around y-axis Rotational hin_ge
Mz | Bending around z-axis around y-axis




6 X 2 member-end forces K mk Tk nak K nak KT
Six equilibrium equations P =N TE My, My, My, M)
— Six independent components
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S. t. Z fih; = 4,Pi + Pou equilibrium

aw. 2| f.|, (1=1,...,n) yield condition

A : load factor

h. : ith row of equilibrium matrix
p.. : load vector at input node
P.. : load vector at output node

aW, : yield moment or yield member force



* Step 1: Define equilibrium matrix of rigidly
jointed frame.

* Step 2: Find release conditions solving limit
analysis problem.

aWw, =| f. | for bending moment — rotational hinge

aWw, =| f. | for torsional moment — torsional hinge

aW. =| f | for axial force — remove member

e Step 3: Output nodal displacements (mechanism)
given as dual variables.



* Step 1: Find release conditions solving limit
analysis problem.

e Step 2: Geometrical non-linear analysis.

— If there exist internal forces, release the

corresponding member-end force and continue
this process.

e Step 3: Output the release conditions and
nodal displacements of mechanism.
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unit size:1x1
u, =03
w, = 1.0 for member extension

W, =0.0001 for hinge rotation



Local
mechanism

Global
mechanism

0.42<0<0.63 o= 0.64
(a0 = 0.41 — objective function is not bounded below)

@ : rotational hinge
- - - removed member
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unit size:1x1
a u =0.3

W, =1.0 for member extension

w, = 0.0001 for hinge rotation



Local
mechanism

mechanism

k “J,”
a=>0.42,
w, =10000.0 for extension of member A

a>0.42

(a0 = 0.41 — objective function is not bounded below)

@ : rotational hinge
- - . removed member



Global coordinate
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Y A Global coordinate
8 iar 9
Boundary condition Specified deformation

Symmetric w.r.t. XZ- and YZ-planes

Node 1: fix rotations around X- and Y-axes

Nodes 2 and 4: Fix displacements in Y- and Z-directions
Nodes 3 and 5: Fix displacements in X- and Z-directions
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Infinitesimal mechanism
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Finite mechanism

. rotational hinge around local y-axis (bending)
rotational hinge around local z-axis (bending)

rotational hinge around local x-axis (torsion)

Local axis
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Deformation of 3D mechanism
without external load
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Y Boundary condition
! % ¢ fixed in Z-direction
Z I> fixed in X-direction

Global inat i I '
obal coordinate A fixed in Y-direction

node 1, 2 and 3: fixed around Y-direction
node 4, 11 and 18: fixed around X-direction






Pull node 1 downward

9
Node 10 moves upward

unit size:1x1

p=1.0
w, =1.0 for member extension

w, = 0.1 for bending and torsion
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Diagonal hinge (arbitrary direction)
— More diverse deformation
Reduce number of hinges




maximize A_ load factor

6m
subjectto D fih, =p,, +4,p, equilibrium
i=1

yield condition for moment

T ()’ +(M5(£)* + (M ()’ <aw’,
k=1,...,m; j=12)

yield condition for axial force

(N“(F))> <aw*, (k=1,...,m)



Normalization of u

I-p, u=0 J : member-end
Bending moment p: axis
k .
T k K C. : rotation of
h; u+2M; (f)c; =0, )

(k=1...,m; j=1,2; p=2,3) member-end |

M }‘p . bending moment at

Torsional moment
h."u+ 2T (f)(c' +c5)=0,
(k=1,....m; ] =1,2)

member-end |

around axix

k o
T" : torsional moment



J : member-end

Axial force
h"u+2N*(f)ck =0, p: axis

k . -
(k=1,...,m) C, : extension

K. oo
Complemenrarity condition N" . axial force

[(TY(£))> +(M ;.‘2(f))2 + (M ;;(f))2 —aw’] ¢; =0,

ckao, (k=1,....,m; ] =1,2)
[(N ‘ (f))2 —aw'] Cg =0, Rotation or extension is
k . e non-zero only when yield
Co = 0, (k =L...m; J=12) condition is satisfied

with equality



Bending moment

=2M K ¢k

pje

k
‘91'10

(k=1,....m; j=1,2; p=1,2)

. k . . .
Rotation 6;, around axis p is proportional to

- k
bending moment M

(norm of rotation C'; does not depend on axis)

Torsional moment

6 =0 -0, =2T*(c/ +¢;), (k=1....m; j=

R =

= Cyy

T
M 1k2
M 1k3

R

o Ck2




maximize u load factor

6m
subject to Z fh, =up,, equilibrium
=1

yield condition for moment
(TE(E)* +(M(0)” +(M5()” <w’,
(k=1,....m; ] =1,2)
yield condition for axial force

(N ()* <w*, (k=1,...,m)

‘ lower bound of o =1/ u
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Vertical members 1-3 and 1-5 h

Horizontal members 1-2 and 1-4






Global coordinate
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Y A Global coordinate
8 iar 9
Boundary condition Specified deformation

Symmetric w.r.t. XZ- and YZ-planes

Node 1: fix rotations around X- and Y-axes

Nodes 2 and 4: Fix displacements in Y- and Z-directions
Nodes 3 and 5: Fix displacements in X- and Z-directions
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New method for generating a deployable structure by
solving a quadratic programming problem.

Limit analysis problem with a quadratic yield function
of the member-end moments.

Mechanism with diagonal hinges.

By allowing a diagonal hinge, the number of hinges can
be reduced compared with the previous study, where
only the hinges around the local axes are allowed.

Additional hinges may be needed to generate a finite
mechanism.



