Design of deployable structures using limit analysis of partially rigid frames with quadratic yield functions

Makoto OHSAKI (Kyoto University)
Yuji MIYAZU (Hiroshima University)
Seiji TOMODA (Hiroshima University)
Seita TSUDA (Okayama Prefectural University)
Planar mechanism (deployable structure) with partially rigid joints

Generate mechanism with partially rigid joints using optimization method

- ●: rotational hinge
- -- --: removed member

Input disp. ↔ Output disp.
Mechanism with partially rigid joints

• Optimization approaches for generating link mechanisms
 – Truss elements for planar mechanism
 – Ideal (three-axis) pin joints are needed for 3D mechanism

• Ideal pin joints are difficult to manufacture
 → partially rigid connections are preferred

• No systematic approach to design of 3D link mechanism with partially rigid connections
Definition of local coordinates and member-end force

Local coordinates

<table>
<thead>
<tr>
<th>Release moment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Torsion around x-axis</td>
</tr>
<tr>
<td>My</td>
<td>Bending around y-axis</td>
</tr>
<tr>
<td>Mz</td>
<td>Bending around z-axis</td>
</tr>
</tbody>
</table>

Rotational hinge around y-axis
Definition of local coordinates and member-end force

6 x 2 member-end forces
Six equilibrium equations
→ Six independent components

\[f^k = (N^k, T^k, M^k_{yi}, M^k_{zi}, M^k_{yj}, M^k_{zj})^T \]
Limit analysis problem with two loading conditions

\[
\begin{align*}
\text{max. } & \quad \lambda_{\text{in}} \\
\text{s. t. } & \quad \sum_{i=1}^{n} f_i h_i = \lambda_{\text{in}} p_{\text{in}} + p_{\text{out}} \\
& \quad \alpha w_i \geq |f_i|, \quad (i = 1, \ldots, n)
\end{align*}
\]

\(\lambda_{\text{in}}\) : load factor \\
\(h_i\) : \(i\)th row of equilibrium matrix \\
\(p_{\text{in}}\) : load vector at input node \\
\(p_{\text{out}}\) : load vector at output node \\
\(\alpha w_i\) : yield moment or yield member force
Procedure for generating infinitesimal mechanism

• **Step 1**: Define equilibrium matrix of rigidly jointed frame.

• **Step 2**: Find release conditions solving limit analysis problem.

\[\alpha w_i = |f_i| \quad \text{for bending moment} \rightarrow \text{rotational hinge} \]
\[\alpha w_i = |f_i| \quad \text{for torsional moment} \rightarrow \text{torsional hinge} \]
\[\alpha w_i = |f_i| \quad \text{for axial force} \rightarrow \text{remove member} \]

• **Step 3**: Output nodal displacements (mechanism) given as dual variables.
Procedure for generating finite mechanism

• **Step 1**: Find release conditions solving limit analysis problem.

• **Step 2**: Geometrical non-linear analysis.
 – If there exist internal forces, release the corresponding member-end force and continue this process.

• **Step 3**: Output the release conditions and nodal displacements of mechanism.
Planar model 1

unit size: 1×1

$\bar{u}_{in} = 0.3$

$w_i = 1.0$ for member extension

$w_i = 0.0001$ for hinge rotation
Planar model 1

Global mechanism

Local mechanism

\[0.42 \leq \alpha \leq 0.63 \]

\(\alpha \geq 0.64 \)

(\(\alpha \leq 0.41 \rightarrow \) objective function is not bounded below)

● : rotational hinge

--- : removed member
Planar model 2

unit size: 1×1

$\bar{u}_{in} = 0.3$

$w_i = 1.0$ for member extension

$w_i = 0.0001$ for hinge rotation
Planar model 2

Local mechanism

Global mechanism

\[\alpha \geq 0.42 \]

\[\alpha \geq 0.42, \quad w_i = 10000.0 \text{ for extension of member A} \]

\[\alpha \leq 0.41 \rightarrow \text{objective function is not bounded below} \]

● : rotational hinge

- - - - : removed member
3D mechanism of grid model

Symmetric w.r.t. XZ- and YZ-planes
Node 1: fix rotations around X- and Y-axes
Nodes 2 and 4: Fix displacements in Y- and Z-directions
Nodes 3 and 5: Fix displacements in X- and Z-directions
3D mechanism of grid model

- : rotational hinge around local y-axis (bending)
● : rotational hinge around local z-axis (bending)
X : rotational hinge around local x-axis (torsion)
3D mechanism of grid model

Deformation of 3D mechanism without external load
Boundary condition
- fixed in Z-direction
- fixed in X-direction
- fixed in Y-direction

node 1, 2 and 3: fixed around Y-direction
node 4, 11 and 18: fixed around X-direction
3D model 1

Pull node 1 downward
\[\rightarrow \]
Node 10 moves upward

unit size: 1×1

$\beta = 1.0$

$w_i = 1.0$ for member extension

$w_i = 0.1$ for bending and torsion
3D model 2
Partially rigid frame with diagonal hinges

Diagonal hinge (arbitrary direction)
→ More diverse deformation
Reduce number of hinges
Optimization problem for mechanism with diagonal hinges

maximize λ_{in}

subject to $\sum_{i=1}^{6m} f_i h_i = p_{out} + \lambda_{in} p_{in}$

yield condition for moment

$$(T^k(f))^2 + (M_{j2}^k(f))^2 + (M_{j3}^k(f))^2 \leq \alpha w^b, \quad (k = 1, \ldots, m; j = 1, 2)$$

yield condition for axial force

$$(N^k(f))^2 \leq \alpha w^a, \quad (k = 1, \ldots, m)$$

load factor

equilibrium

quadratic yield condition conditions
Optimality conditions

Normalization of u
\[
1 - p_{in}^T u = 0
\]

Bending moment
\[
h_i^T u + 2M_{jp}^k (f) c_j^k = 0,
\]
\[
(k = 1, \ldots, m; \ j = 1, 2; \ p = 2, 3)
\]

Torsional moment
\[
h_i^T u + 2T^k (f)(c_1^k + c_2^k) = 0,
\]
\[
(k = 1, \ldots, m; \ j = 1, 2)
\]

j : member-end
p : axis
c_j^k : rotation of member-end j
M_{jp}^k : bending moment at member-end j around axis p
T^k : torsional moment
Optimality conditions

Axial force
\[h_i^T u + 2N^k(f)c_0^k = 0, \]
\[(k = 1, \ldots, m) \]

Complementarity condition

\[[(T^k(f))^2 + (M^k_{j2}(f))^2 + (M^k_{j3}(f))^2 - \alpha w^b] c_{kj} = 0, \]
\[c_{kj} \geq 0, \quad (k = 1, \ldots, m; j = 1, 2) \]

\[[(N^k(f))^2 - \alpha w^a] c_0^k = 0, \]
\[c_0^k \geq 0, \quad (k = 1, \ldots, m; j = 1, 2) \]

Rotation or extension is non-zero only when yield condition is satisfied with equality.
Optimality condition

Bending moment

\[\theta_{jp}^k = 2M_{jp}^k c_j^k, \quad (k = 1, \ldots, m; \quad j = 1, 2; \quad p = 1, 2) \]

Rotation \(\theta_{jp}^k \) around axis \(p \) is proportional to bending moment \(M_{jp}^k \)

(norm of rotation \(c_j^k \) does not depend on axis)

Torsional moment

\[\theta_1^k = \theta_{j1}^k - \theta_{i1}^k = 2T^k (c_1^k + c_2^k), \quad (k = 1, \ldots, m; \quad j = 1, 2) \]

\[
\begin{align*}
\mathbf{R}_1^k = \begin{pmatrix}
-\theta_1^k \\
\theta_{12}^k \\
\theta_{13}^k
\end{pmatrix} &= c_{k1} \begin{pmatrix}
-T^k \\
M_{12}^k \\
M_{13}^k
\end{pmatrix} \\
\mathbf{R}_2^k = \begin{pmatrix}
\theta_1^k \\
\theta_{21}^k \\
\theta_{23}^k
\end{pmatrix} &= c_{k2} \begin{pmatrix}
T^k \\
M_{21}^k \\
M_{23}^k
\end{pmatrix}
\end{align*}
\]
Auxiliary problem for determination of parameter alpha

maximize \(\mu \) \hspace{1cm} \text{load factor} \\
subject to \(\sum_{i=1}^{6m} f_i h_i = \mu p_{\text{out}} \) \hspace{1cm} \text{equilibrium} \\
\text{yield condition for moment} \\
((T^k(f))^2 + (M^k_{j2}(f))^2 + (M^k_{j3}(f))^2 \leq w^b, \\
(k = 1, \ldots, m; j = 1, 2) \\
\text{yield condition for axial force} \\
(N^k(f))^2 \leq w^a, \hspace{0.5cm} (k = 1, \ldots, m) \\
\text{lower bound of } \alpha = 1 / \mu
Example 1
Example 1

Vertical members 1-3 and 1-5

Horizontal members 1-2 and 1-4
Example of 3D-mechanism with partially rigid joints

Symmetric w.r.t. XZ- and YZ-planes
Node 1: fix rotations around X- and Y-axes
Nodes 2 and 4: Fix displacements in Y- and Z-directions
Nodes 3 and 5: Fix displacements in X- and Z-directions

Boundary condition

Specified deformation
Example 2
Conclusions

• New method for generating a deployable structure by solving a quadratic programming problem.
• Limit analysis problem with a quadratic yield function of the member-end moments.
• Mechanism with diagonal hinges.
• By allowing a diagonal hinge, the number of hinges can be reduced compared with the previous study, where only the hinges around the local axes are allowed.
• Additional hinges may be needed to generate a finite mechanism.