Force density method for simultaneous optimization of geometry and topology of trusses

Makoto Ohsaki and Kazuki Hayashi

Kyoto University

Optimization of trusses

- Cross-section stiffness
- Topology
 connectivity of
 nodes and
 members
- Geometry nodal locations

Topology Optimization

- Ground Structure (GS) Method
 Obtain an optimized sparse truss topology
 from an initial highly connected truss called GS
- → Nodal locations are fixed
 Dense initial GS to optimize nodal locations

Geometry Optimization

- Design variables: Nodal coordinates
 Add cross-sectional area as design variables
- → Remove thin members to optimize topology
- → Simultaneous optimization of geometry and topology
- Melting nodes exist if wide variation of nodes is allowed
- → Axial stiffness of short member is very large Sensitivity coefficients are very large and discontinuous

Simultaneous optimization of topology and geometry is very difficult

Existing methods of simultaneous optimization

• Ohsaki (1998):

Investigate melting nodes for regular grid truss Sigmoid function and frame element for smoothing

Guo, Liu and Li (2003): Investigate singularity due to melting nodes for regular truss

• Achtziger (2007):

Alternating approach of optimization of nodes and cross section Constraint to prevent melting nodes No melting nodes in numerical examples

Descamps and Coelho (2014):

Consider instability constraints using SAND formulation

Force density is used in intermediate problem but not used in the final formulation

Existing method: Growing method

- Ohsaki and Hagishita (2005)
- Starting from simple GS, adding nodes and members by heuristics
- Optimal solutions with sparse topology and geometry can be obtained
- Cannot satisfy any theoretical optimality criteria

FDM for truss optimization

- Force density:
 - FD = (axial force) / (member length)
 Used for equilibrium analysis of tension structures
 (cable net, tensegrity, membrane structure)
- Easy to avoid problems caused by melting nodes
- Constraint on member length is assigned w.r.t. force density
- Number of variable decrease = number of members (do not include nodal locations)
- Various optimal solutions of geometry and topology can be obtained

Connectivity matrix

C: connectivity matrix • • express topology of a truss If member i connects nodes j and k (j < k) $C_{ij} = -1$

NI I .	4	2	2	4		$_{\rm l}C_{\rm ik}=1$
Node	1	2	3	4	Member	
<i>C</i> =	$\lceil -1 \rceil$	1	0	0 7	1	
	-1	0	1	0	2	
	-1	0	0	1	3	
	0	- 1	0	1	4	\mathcal{A}^4
	0	-1	1	0	5	
	L 0	0	-1	1	6	(4)(6)
						1 2
					20	(5) 8

Force density matrix

 q_i : force density = (axial force)/(member length)

Q: force density matrix

$$\mathbf{Q} = \mathbf{C}^{\mathrm{T}} \operatorname{diag}(\mathbf{q}) \mathbf{C}$$

QX = P: equilibrium equation w,r,t, nodal coordinates

 \boldsymbol{X} : nodal coordinates

P: nodal load vectors including reactions

Force density matrix

Assemblage of Q in 3-directions

 $\widetilde{m{Q}}$: force density matrix decomposed into fixed and free elements

n_{free}: No. of free coordinates

n_{fix}: No. of fixed coordinates

3n: number of all coordinates (3 × number of nodes)

Loaded nodes are included in fixed nodes

Nodal coordinates

 $\widetilde{m{Q}}_{\text{free}}:\widetilde{m{Q}}$ for free components

 $\widetilde{m{Q}}_{\text{link}}:\widetilde{m{Q}}$ for link components

 X_{free} : free nodal coordinates

 X_{fix} : fixed nodal coordinates

Equilibrium equation

$$\widetilde{\boldsymbol{Q}}_{\text{free}} \, \boldsymbol{X}_{\text{free}} = \, - \, \widetilde{\boldsymbol{Q}}_{\text{link}} \, \boldsymbol{X}_{\text{fix}}$$

Solve for X_{free}

 \rightarrow X_{free} is a function of force density

Equilibrium equation is almost always regular

Structural volume

Minimize compliance under volume constraint

→ Optimal solution is statically determinate All existing members have same absolute value of stress

 $\bar{\sigma}$: absolute value of stress

 L_i : length of ith member

 V_i : volume of *i*th member

$$V_i = \frac{|q_i|L_i^2}{\bar{\sigma}}$$

Compliance

E : Young's modulus

 A_i : cross-sectional area of *i*th member

 S_i : strain energy of *i*th member

$$A_i = \frac{|N_i|}{\overline{\sigma}} = \frac{|q_i|L_i}{\overline{\sigma}}$$
 , $S_i = \frac{A_iL_i\overline{\sigma}^2}{2E} = \frac{\overline{\sigma}|q_i|L_i^2}{2E}$

F : Compliance (objective function)

$$F = 2S_i = \sum_{i=1}^{m} \frac{\overline{\sigma}|q_i|L_i^2}{E}$$

Constraint function(V) \times Objective function(F)

$$VF = \sum_{i=1}^{m} \frac{q_i^2 L_i^4}{E} = \sum_{i=1}^{m} \frac{N_i^2 L_i^2}{E} = const.$$

$$VF = \sum_{i=1}^{m} \frac{q_i^2 L_i^4}{E} = \sum_{i=1}^{m} \frac{N_i^2 L_i^2}{E} = const.$$

$$VF = \sum_{i=1}^{m} \frac{q_i^2 L_i^4}{E} = \sum_{i=1}^{m} \frac{N_i^2 L_i^2}{E} = const.$$

 \Rightarrow total volume can be calculated after minimizing compliance for $\bar{\sigma}$

Optimization problem

 q_i^U , q_i^L : lower and upper bounds of force density

 R_i : reaction force including nodal loads

 ${\mathcal R}$: set of nodal load reaction components to be specified

$$\min_{\boldsymbol{q}} F(\boldsymbol{q}) = \sum_{i=1}^{m} \frac{\overline{\sigma}|q_i|L_i^2}{E}$$
subject to $q_i^L \le q_i \le q_i^U$ $(i = 1, ..., m)$

$$R_i(\boldsymbol{q}) = \overline{R}_i \ (i \in \mathcal{R})$$

No. of variables = No. of members

No. of constraints = No. of load components

Smoothing approximation

 $|q_i|$: sensitivity is discontinuous at $q_i = 0$

$$\rightarrow |q_i| = \sqrt{q_i^2 + c}$$

$$(c > 0 \text{ , small positive})$$

$$\min_{\boldsymbol{q}} F(\boldsymbol{q}) = \sum_{i=1}^{m} \frac{\bar{\sigma}L_{i}^{2} \sqrt{q_{i}^{2} + c}}{E}$$

$$\text{subject to } q_{i}^{L} \leq q_{i} \leq q_{i}^{U} \ (i = 1, ..., m)$$

$$R_{i}(\boldsymbol{q}) = \bar{R}_{i} \ (i \in \mathcal{R})$$

Refinement of optimal solution

Solution may include overlapped nodes and unnecessary members

→ Geometry and cross-sectional areas are refined

$$\min_{X,A} F(X,A) = \sum_{i=1}^{m} \frac{N_i^2 L_i}{EA_i}$$
s.t.
$$\sum_{i=1}^{m} A_i L_i \leq \overline{V}$$

$$X_j^L \leq X_j \leq X_j^U \quad (j=1,\ldots,n_{free})$$

$$A_i^L \leq A_i \leq A_i^U \quad (i=1,\ldots,m)$$

Numerical examples

- E = 1.0, $\bar{\sigma} = 1.0$, $c = 1.0 \times 10^{-6}$
- Randomly generate 100 sets of initial values of force density
- Range: $[\bar{q}_i \delta q, \ \bar{q}_i + \delta q]$ (\bar{q}_i : force density of regular truss with uniform cross-sectional areas)
- SNOPT Ver.7.2 is used for solving NLP problems

3 x 2 truss

	Max	median	min	Ave.	std. dev.
F	10.227	9.095	8.316	9.218	0.549

$$F = 8.316$$

F = 8.312

F = 8.307

n = 8

n = 7

n = 12

6 x 1 truss

	max	median	min	average	std. dev.
F	7.850×10^{6}	640.150	118.994	9.271×10^{6}	7.875×10^6

L-shaped truss

	max	median	min	average	std. dev.
V	4015.431	54.927	54.544	125.171	435.744

V = 54.544

V = 54.276

V = 54.098 (Descamps and Coelho (2014))

Conclusions

- 1. Difficulty in simultaneous optimization of geometry and topology can be successfully avoided using force density as design variable.
- 2. Compliance and structural volume are expressed as functions of force density only.
 - → number of design variables is equal to number of members
- 3. Discontinuity of the objective function and the sensitivity coefficients w.r.t. force density can be successfully avoided using smoothing function.

Ohsaki and Hayashi, SMO Journal, published online