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Optimization of trusses

* Cross-section
stiffness

* Topology

connectivity of
nodes and
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Topology Optimization

* Ground Structure (GS) Method
Obtain an optimized sparse truss topology
from an initial highly connected truss called GS
— Nodal locations are fixed
Dense initial GS to optimize nodal locations

optimized




Geometry Optimization

* Design variables: Nodal coordinates
Add cross-sectional area as design variables
— Remove thin members to optimize topology
— Simultaneous optimization of geometry and topology

* Melting nodes exist if wide variation of nodes is allowed
— Axial stiffness of short member is very large
Sensitivity coefficients are very large and discontinuous

optimization
P : %-nelt[ng node

Simultaneous optimization of topology and
geometry is very difficult



Existine methods of simultaneous
optimization

Ohsaki (1998):
Investigate melting nodes for regular grid truss
Sigmoid function and frame element for smoothing

Guo, Liu and Li (2003):
Investigate singularity due to melting nodes for regular truss

Achtziger (2007):

Alternating approach of optimization of nodes and cross section
Constraint to prevent melting nodes

No melting nodes in numerical examples

Descamps and Coelho (2014):

Consider instability constraints using SAND formulation

Force density is used in intermediate problem but not used in the final
formulation



Existing method: Growing method

* Ohsaki and Hagishita (2005)

e Starting from simple GS, adding nodes and members
by heuristics

* Optimal solutions with sparse topology and
geometry can be obtained

e Cannot satisfy any theoretical optimality criteria

O O
optimization optimization
— —



FDM for truss optimization

* Force density:
FD = (axial force) / (member length)
Used for equilibrium analysis of tension structures
(cable net, tensegrity, membrane structure)

e Easy to avoid problems caused by melting nodes

e Constraint on member length is assigned w.r.t. force
density

* Number of variable decrease = number of members
(do not include nodal locations)

 Various optimal solutions of geometry and topology
can be obtained



Connectivity matrix

C : connectivity matrix* = *express topology of a truss

If member i connects nodesjand k(j<k) [Cj = -1

Node 1 2 3 4 R Ci=1
—1 1 0 07 | 12
-1 O 1 O 2
-1 0 0 1 3
C=lo -1 0 1|/
0 -1 1 O 2
L0 0 —1 11 L[°




Force density matrix

q; : force density = (axial force)/(member length)

Q : force density matrix

Q = C'diag(q) C

QX = P : equilibrium equation w,r,t,
nodal coordinates

X :nodal coordinates
P :nodal load vectors including reactions



Force density matrix

4

node 1 node 2
41 t 4z +q3 —q1
Q1 + 44 T (s
Sym.

node 1

node 2

—({e

node 3

q3 + q4 + ge.

node 4
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Assemblage of Qin 3-directions

Q : force density matrix decomposed

into fixed and free elements

Neee: NO. Of free coordinates

nax : No. of fixed coordinates

3n :number of all coordinates 3,

(3 X number of nodes)

Y

A

________

___________________

———————————————————————————

————————————

--------

—————————

Loaded nodes are included in fixed nodes



Nodal coordinates

Q- : Q for free components
Qi : Q for link components
X :free nodal coordinates

X fixed nodal coordinates

Equilibrium equation
afree Xfree - — alink Xfix

Solve for X

— XriS a function of force density

Equilibrium equation is almost always regular

3n

ﬂ free

»><

Neix

nfree

N fix




Structural volume

Minimize compliance under volume constraint
— Optimal solution is statically determinate

All existing members have same absolute
value of stress

g :absolute value of stress
L: :length of ith member

V: :volume of ith member ,
V, = |q;|L;

0]




Compliance

E :Young’'s modulus
A: : cross-sectional area of ith member

S :strain energy of ith member
g, = Vil _ lailLs ¢ — AiLio? _ TlqlL]
l - —

o o ’ y 2F 2F
F : Compliance (objective function)

7|12
F — ZSl — z .
i=1 E




Constraint function(V) X Objective
function(F)

= total volume can be calculated after
minimizing compliance for o
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Optimization problem

q{. qi :lower and upper bounds of force density

R; : reaction force including nodal loads

R : set of nodal load reaction components
to be specified

. _xm 5'|CIi|L%
min F (q) = X7, 2%

subject to qiL < q; = ql-U (i=1,..,m)
Ri(qQ) =R; (iER)

No. of variables = No. of members
No. of constraints = No. of load components



Smoothing approximation

|g;| : sensitivity is discontinuous

atq; =0
l Jf=,.|/fi'?+¢ y =gl
— lqil = \/qi2 +c 1l
(c > 0, small positive)

m aLZ\/ql +c

mln F(q) = 2

subjectto qf < q; < qf (i=1,..,m)
Ri(qQ) =R; (iER)




Refinement of optimal solution

Solution may include overlapped nodes and
unnecessary members

— Geometry and cross-sectional areas are refined

: _ em NL;
I}(li‘lnF(X’ A) - Zi:]_ EAl'
L U r; _
XF<x<xV (j=1,..

At <A <A (i=1,..




Numerical examples

«£=1.0,6 =1.0,c=1.0x107°

 Randomly generate 100 sets of initial values of force
density

* Range: [q; — 0q, q; + dq]
(g;: force density of regular truss with uniform cross-
sectional areas)

* SNOPT Ver.7.2 is used for solving NLP problems



3 X 2 truss

1z
I)

11 | 10.227 9.095 8.316 9.218 0.549

\

1

X

roy

o Achtziger(2007)
* optimize

re-optimize

#

F =8.316

n=48
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6 x 1 truss
-mm-m

7.850 X 10® 640.150 118.994 9.271 x 10° 7.875 x 10°

2 i i .-. ,-. ,-. [14]

- Y U Y > Achtzi =
[2 5 [7] [9] (1] [13] ger(2009) F 122.447
+1 | +1 +I +1 _—
* optimize
refine

F =118.994 F=122.411
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L-shaped truss
—raxJmedian | Joverse | s e

4015.431 54.927 54.544 125.171  435.744

V =54.098
V = 54.544 V =54.276 (Descamps and Coelho (2014))
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Conclusions

1. Difficulty in simultaneous optimization of
geometry and topology can be successfully
avoided using force density as design variable.

2. Compliance and structural volume are expressed
as functions of force density only.
— number of design variables is equal to
number of members

3. Discontinuity of the objective function and the
sensitivity coefficients w.r.t. force density can be
successfully avoided using smoothing function.

Ohsaki and Hayashi, SMO Journal, published online




