An optimization method for generating self-equilibrium shape of curved surface from developable surface

Jinglan CUI Kyoto University

Makoto OHSAKI Kyoto University

③ Representation of the developable surface by Bézier curve

$$\mathbf{P}^{n}(u) = \sum_{i=0}^{n} \mathbf{Q}_{i} \mathbf{B}_{i}^{n}(u)$$

 $\mathbf{Q}_i = (q_x^i, q_y^i, q_z^i)^{\mathrm{T}}$: Fixed point of Bezier curve $\mathbf{B}_i^n(u)$: Basis function

$$\mathbf{s}(u,v) = (1-v)\sum_{i=0}^{n} \mathbf{Q}_{i}^{f} \mathbf{B}_{i}^{n}(u) + v\sum_{i=0}^{n} \mathbf{Q}_{i}^{h} \mathbf{B}_{i}^{n}(u)$$

Jinglan CUI, Makoto OHSAKI and Keigo NAKAMURA, Shape Optimization of Free-Form Surface Shells Consisting of developable Surfaces, Journal of Structural and Construction Engineering, Vol. 82, No. 737, pp. 1137-1143, 2017.

Plan view of initial shape

Oblique projection of initial shape

Developable surface

Plane projection Expansion of the developable surface to the plane

$$\min_{Q} F(P) = \sum_{i=1}^{n} \sum_{j=1}^{3} \omega_{ij} \cdot (l_{ij} - l_{ij}^{0})^{2}$$

s.t. $x_{k}^{L} \le x_{k} \le x_{k}^{U}$
 $y_{k}^{L} \le y_{k} \le y_{k}^{U}$ $(k = 1, 2, \cdots m)$

P(x,y): Nodes on the plane ω_{ij} : Weight coefficient (x_k^L, y_k^L) : Lower bounds (x_k^U, y_k^U) : Upper bounds

 l_{ij}^{0} : Edge lengths on the developable surface l_{ij} : Edge lengths on the cutting pattern

✓ Cutting pattern

✓ Equilibrium surface (1) An optimization problem $\begin{cases} \min_{Q} E(H) = \frac{1}{2} \int_{v} (\varepsilon^{T} D\varepsilon) dV \\ s.t. \quad X_{k}^{L} \leq X_{k} \leq X_{k}^{U} \\ Y_{k}^{L} \leq Y_{k} \leq Y_{k}^{U} \\ Z_{k}^{L} \leq Z_{k} \leq Z_{k}^{U} \quad (k = 1, 2, \dots m) \end{cases}$

H(X,Y,Z) : Node coordinates of equilibrium surface

 $\left(\mathbf{X}_{k}^{L},\mathbf{Y}_{k}^{L},\mathbf{Z}_{k}^{L}\right): \mathbf{Lower \ bounds}$

 $(\mathbf{X}_{k}^{U}, \mathbf{Y}_{k}^{U}, \mathbf{Z}_{k}^{U})$: **Upper bounds**

Material constants of membrane

Elastic coefficient	E _x =243KN/m	E _y =227KN/m
Poisson's ratio	V _{xy} =0.55	V _{yx} =0.51
Shear rigidity	G _{xy} =76.84KN/m	G _{yx} =76.84KN/m

librium surface

Target tensile stress of 3.0 kN/m

Stress (kN/m) of the equilibrium surface

	Minimum	Maximum	Average
$\sigma_{_{x}}$	1.012	9.621	4.387
σ_{y}	0.127	8.724	2.892

Comparison of developable surface and equilibrium surface

Plan view of developable surface

Diagonal view of developable surface

Cutting pattern of four parts

Stress (kN/m) of the equilibrium surface

about **0.7** % of the span length.

	Minimum	Maximum	Average
σ_{x}	1.106	8.065	3.206
$\sigma_{_y}$	0.599	7.400	2.589

Target tensile stress of 3.0 kN/m

Comparison of developable surface and equilibrium surface

5.Conclusion

- Focusing on the geometric characteristics and mechanical rationality of the developable surface, a reasonable surface shape of the developable surface was obtained through optimization.
- A method was proposed that for generating framework structure morphology to convert to equilibrium surface.
- The generation of reasonable developable surface and the projection from developable surface to plane were realized.
- Stabilized equilibrium membrane structure was generated through operations such as minimizing strain energy.