SHAPE OPTIMIZATION OF RULED SURFACE CONSIDERING STATIC STIFFNESS

Kazuya Seki (Hiroshima University) Makoto Ohsaki (Kyoto University) Shinnosuke Fujita (Kanebako Structural Engineers)

Shape Optimization of Free-form Shell

Outline of research

♦ Objective function: strain energy

$$f = \frac{1}{2}d^{\mathrm{T}}P$$

- d : Nodal displacement vector
- P: Nodal load vector

Maximize strain energy
 → Minimize static response

Ruled Surface

Surface that has straight generation line

Parametric Definition of Ruled Surface

Definition of surface
$$S(u,v) = (1-v)f(u) + v\{h(u)\}$$

f(u), h(u): Boundary curves with same parameter

Straight lines between boundary g(u) = h(u) - f(u)

\mathcal{U},\mathcal{V}	: parameters
f(u)	: boundary curve
g(u)	: generating line
h(u)	: boundary curve

Optimization problem

Mechanical performance measure (Strain energy)

Nonlinear programming

$$f = \frac{1}{2}d^{\mathrm{T}}P$$

Minimize

Reduce surface area to improve stiffness

Prevent shrinkage

Arch-shaped boundary curves

Variables: x,y,z coordinates of control points except four corners

 $\begin{array}{ll} \text{minimize} & f(q_x,q_y,q_z) \\ \text{subject to} & S-S_0 \geqq 0 \end{array}$

Boundary condition: fix four corners

Obj. func. : f(x) = 171.7 [kNm]Surface area: $S_0 = 6597 [m^2]$ Vertical disp. : $d_z = 50.1 [mm]$

- Twisted ridge of roof.
- Strain energy is drastically reduced.
- Surface area satisfies constraint.

Variables: x, y, z coordinates of control points except six ends

minimize $f(q_x, q_y, q_z)$ subject to $S - S_0 \ge 0$

Roof becomes steeper ٠

Max. disp.: $d_z = 13.3 [mm]$

Strain energy is also reduced ٠

Max. disp.: $d_z = 3.2[mm]$

Five boundary curves

Variables: y and z coordinates of control points except ends of boundary curves.

minimize
$$f(q_y, q_z)$$

subject to $S - S_0 \ge 0$

Fix z-coordinates of curves at sides and center

Fix z-coordinats

Shape deviation

Y-dir.
$$D_y = \sqrt{\sum_{i=1}^{n=5} \sum_{j=1}^{m=11} (d_{y_{ij}} - d_{yo_{ij}})^2}$$

Z-dir.
$$D_z = \sqrt{\sum_{i=1}^{n=5} \sum_{j=1}^{m=11} (d_{z_{ij}} - d_{zo_{ij}})^2}$$

$$d_y$$
 : optimal y-coordinate
 d_{yo} : initial y-coordinate
 d_z : optimal z-coordinate
 d_{zo} : initial z-coordinate
 n : number of curves
 m : number of nodes on
a curve (11))

Model 3

Seismic load

Horizontal load of 0.2G

Conclusions

- Bézier curves for modeling ruled surface.

 → Various shapes can be easily defined by small number of parameters (coordinates of control points).
- Ruled surface has a straight line in one direction at any point on the surface.
 - \rightarrow Manufacturing cost of a free-form shell surface may be reduced.
- Optimal shape tends to have small surface area to increase static stiffness.

 \rightarrow Lower-bound constraint should be given for the surface area.

Conclusions

- Optimal shapes can be found using NLP. However, the solution strongly depends on the initial shape.
- Shell roofs with internal rib arches can be generated by connecting several ruled surfaces.
- Convergence property of optimization process can be enhanced and desired property of the surface can be retained by restricting the variables for coordinates of the control points.