Combinatorial Optimization of Latticed Blocks for Seismic Retrofit of Building Frames

> Makoto OHSAKI (Kyoto Univ.) Kotaro FUKUSHIMA (Hiroshima Univ.) Tomohiro MIKAMI (Obayashi Co.) Yuji MIYAZU (Hiroshima Univ.)

Seismic retrofit of building frames

- Add braces, viscous dampers, friction dampers
- Base-isolation
- Remove upper stories
- Add shear wall

Conventional latticed blocks

- Improve stiffness and strength by connecting FRP blocks
- Efficiency in ventilation and transparency
- Shapes of members and openings are fixed.
- Effect to existing frame is not considered

Previous study

Optimization using nonlinear programming Continuous variables: width of member

- Complex optimal solution
- Difficult to manufacture

Purpose of study

Combinatorial optimization using simulated annealing

List of unit blocks

Deformed shape of optimal solution

Purpose of study

Shape optimization of blocks under various objective function and constraints

- Minimize total structural volume.
- Maximize story shear force.
- Minimize shear force of existing beam.

Model of existing frame

	Width B (mm)	Depth D (mm)	Area A (mm²)	Second moment of area I (mm ⁴)	Young's moduls E (N/mm ²)
Column	700	700	490000	2.00×10 ¹⁰	20000
Beam	400	700	280000	1.14×10 ¹⁰	20000

Models of latticed blocks

	Width B (mm)	Depth D (mm)	Area A (mm²)	Second moment of area I (mm ⁴)	Young's moduls E (N/mm ²)
Boundary	80	10	800	6.67×10^{3}	20000
Lattice	80	0.1 or 100	8 or 8000	6.67 ⁻³ or 6.67 $\times 10^6$	20000

Static response analysis

Horizontal reaction force at supports.

Displacement control Incremental analysis Software: OpenSees

Design variables

Type of unit block at 1, 2, 3, and 4

Connection using epoxy glue

Material property

	Tensite strength σ _t (N/mm ²)	Compressive strength σ _B (N/mm ²)	Shear strength σ _s (N/mm ²)	
Concrete	2.7	24	4	
Ероху	27	—	10	
FRP	335	319	—	

Unit block types

Select types of unit blocks at four regions of wall.

Reference model (maximum thickness)

V₀ (m³):

Total volume of boundary and lattice members.

R₀ (kN):

Horizontal support reaction force.

*Q*₀ (kN):

Maximum shear force of upper beam.

 \rightarrow Effect on existing frame.

Reference model

V ₀ (m ³)	R ₀ (kN)	Q ₀ (kN)	σ ₀ (N/mm²)	N _o (kN)
2.16	2267	615	123	180

Axial force

Reference model

Effect of reinforcement

Increase horizontal load to 171%

Simulated annealing

- Step 1: Set parameters T others, and generate initial solution
- Step 2: Randomly generate a neighborhood solution by
- Step 3:
 Objective function improved
 Accept new solution
 Not improved
 Metropolis criteria
- Step 4: Repeat (2)-(3) until criteria satisfied.

Increase of objective function

Test functions

- 1. Rastringin function
- 2. Griewank function
- 3. Rosenbrock function
- 4. Sphere function
- 5. Ackley's function
- 6. Schwefel function 1

- 7. Schwefel function 1.2
- 8. Step function
- 9. Schwefel function
- 10. Levy function
- 11. Circle function
- 12. Test2N function

Number of variables = 5 Parameters Cooling ratio Ratio of shrinking search region

Effect of parameter values

Normalize variables between -1 and 1 Initial temperature = 1

	Temperature reduction ratio	Search region reduction ratio
Case 1	0.925	0.925
Case 2	0.900	0.950
Case 3	0.950	0.900
Random	[0.900, 0.950]	[0.900, 0.950]

Best values among 10 trials

Objective values

	Case 1	Case 2	Case 3	Random
F1	6.964934	3.017175	7.959675	1.989932
F2	0.102599	0.199663	6.35E-02	5.89E-02
F3	1.018332	2.451342	1.491235	0.730874
F3	2.34E-06	1.59E-04	2.73E-09	2.12E-08
F5	1.17E-02	0.209504	7.45E-04	1.38E-03
F6	4.15E-03	3.58E-02	4.27E-04	4.65E-04
F7	1.15E-03	0.23173	1.19E-06	1.40E-05
F8	0.00E+00	0.00E+00	0.00E+00	0.00E+00
F9	-1738.08	-1758.82	-1738.08	-1858.04
F10	-21.3828	-21.446	-21.2876	-21.4665
F11	8.87E-02	0.313558	8.69E-02	8.72E-02
F12	-78.3323	-78.3268	-72.6776	-78.3323

Best values among 10 trials

Order among 4 cases

	Case 1	Case 2	Case 3	Random
F1	3	2	4	1
F2	3	4	2	1
F3	2	4	3	1
F3	3	4	1	2
F5	3	4	1	2
F6	3	4	2	1
F7	3	4	1	2
F8	1	1	1	1
F9	3	2	3	1
F10	3	2	4	1
F11	1	4	3	2
F12	1	3	4	1

Optimization problem 1

Volume minimization

Minimize F(x) = V(x)subject to $R(x) \ge R_L$ $\sigma(x) \le \sigma_t$

V(x): Volume of block members

- R_L: Lower bound for horizontal force R(x)
- σ_t : Strength of FRP (319N/mm²)

Optimization problem 2

 $\begin{array}{ll} \underline{\text{Maximization of horizontal force}}\\ & \text{Minimize} \quad F(x) = R(x)\\ & \text{subject to} \quad V(x) \leq V_{\text{U}}\\ & \sigma(x) \leq \sigma_t \end{array}$

R(x): Horizontal force

- V_{U} : Upper bound for volume
- σ_t : Strength of FRP (319N/mm²)

Optimization problem 3

Q(x): Shear force of left end of upper beam

 R_L' : Lower bound of horizontal force

 V_{U}' : Upper bound of volume

Result of problem 1 (Group 1)

Result of problem 1 (Group 1)

Reference: $R_0=2267 \text{ kN} \rightarrow R_L=2030 \text{ kN}$

Optimal topology

Axial force

	V(m ³)	R(kN)	Q(kN)	$\sigma(N/mm^2)$	N(kN)
Optimal	0.508 (23.5%)	2036 (<mark>89.8%</mark>)	411	112	228 (126%)
Reference	2.16(V ₀)	2267(R ₀)	615(Q ₀)	123(σ ₀)	180(N ₀)

Result of problem 2 (Group 1)

Problem 1: V=0.508 m³ \rightarrow 0.55 m³

Optimal topology

Axial force

	V(m ³)	R(kN)	Q(kN)	$\sigma(N/mm^2)$	N(kN)
Optimal	0.531 (<mark>25%</mark>)	2091 (<mark>92.2%</mark>)	453	132	228 (127%)
Reference	2.16(V ₀)	2267(R ₀)	615(Q ₀)	123(σ ₀)	180(N ₀)

Result of problem 3 (Group 1)

Results of Problem 1, 2 \rightarrow R_L[']=1950 kN, V_U[']=0.6 m³

	V(m ³)	R(kN)	Q(kN)	$\sigma(N/mm^2)$	N(kN)
Ontimal	0.599	2038	378	133	234
optimar	(27.7%)	(89.9%)	(61.4%)	100	(130%)
Reference	2.16(V ₀)	2267(R ₀)	615(Q₀)	123(σ ₀)	$180(N_0)$

Result of problem 1 (Group 2)

Same lower bound values as Group 1: R_L =2030 kN

	V(m³)	R(kN)	Q(kN)	σ(N/m m²)	N(kN)
Optimal (Group 2)	0.382 (17.7%)	2035 (<mark>89.7%</mark>)	386	136	258 (143%)
Optimal (Group 1)	0.508 (25.9%)	2036 (<mark>89.8%</mark>)	411	112	228 (126%)

Result of problem 2 (Group 2)

Same lower bound values as Group 1: $V_U = 0.55 \text{ m}^3$

	V(m³)	R(kN)	Q(kN)	σ(N/m m²)	N(kN)
Optimal (Group	0.55	2131	419	144	243
2)	(25.5%)	(94%)	120		(135%)
Optimal (Group	0.531	2091	150	127	228
1)	(25%)	(92.2%)	455	132	(127%)

Result of problem 3 (Group 2)

Same lower bound values as Group 1: $R_{L}^{'}=1950 \text{ kN}$, $V_{U}^{'}=0.6 \text{ m}^{3}$

	V(m³)	R(kN)	Q(kN)	σ(N/m m²)	N(kN)
Optimal (Group	0.563	2011	333	170	233
2)	(27.3%)	(86.3%)	(55.7%)	120	(129%)
Optimal (Group	0.599	2038	378	100	234
1)	(27.7%)	(89.9%)	(61.4%)	122	(130%)

Conclusions

- 1. Topologies of shear walls consisting of latticed blocks can be found by assembling the various pre-defined unit types.
- 2. SA can be effectively used for optimization of combinations of latticed blocks.
- 3. Various optimal solutions can be found depending on the design conditions.
- 4. Parameters of SA may be randomly given.