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SUMMARY 

Finite element analysis is carried out for a building frame supported by laminated rubber 
bearings to simultaneously investigate global displacement and local stress responses under 
seismic excitation. The frame members as well as the rubber bearings are discretized into 
hexahedral solid elements with more than 3 million degrees of freedom. The material property 
of rubber is represented by the Ogden model, and the frame is assumed to remain in elastic 
range. It is shown that the time histories of non-uniform stress distribution and rocking 
behavior of the rubber bearings under a frame subjected to seismic excitation can be 
successfully evaluated, and detailed responses of base and frame can be evaluated through 
large-scale finite element analysis. 

KEY WORDS: natural rubber bearing, finite element analysis, base isolation,  
seismic response, hyper-elasticity, parallel computing. 
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1. INTRODUCTION 

A project called Earthquake Simulator (E-Simulator) is underway at the Hyogo Earthquake 
Engineering Research Center (E-Defense), which belongs to the National Research Institute 
for Earth Science and Disaster Prevention (NIED), Japan. The E-Defense has the world’s 
largest shaking table to conduct tests of full-scale frames under seismic motions. The platform 
of the E-Simulator is a parallel finite element (FE) analysis software package called 
ADVENTURECluster (ADVC) [1, 2], which utilizes the Coarse Grid Conjugate Gradient 
(CGCG) method developed by Suzuki et al. [3] and Akiba et al. [4]. The 
ADVENTURECluster/E-Simulator has basic functions that are required for a general-purpose 
FE-analysis code.  

One of the purposes of shake-table tests at the E-Defense is to validate simulation codes 
including the E-Simulator developed in NIED. Using the E-Simulator, we can carry out large-
scale analysis of a building frame with a very fine mesh of solid elements, e.g., a super-
highrise steel building frame model with more than 70 million degrees of freedom [5, 6], after 
identification of the material properties only from a simple material test. The accuracy of the 
analysis code is verified using the full-scale shake-table test results of a four-story steel 
building frame [7] and a composite beam under cyclic loading [8]. Using the E-Simulator, 
global and local responses of building frames under seismic excitation can be simulated 
without resort to any macro model. 

Extensive research has been carried out for modeling mechanical properties and simulating 
large-deformation cyclic responses of laminated rubber bearings [9]. The simplest model 
is the one-dimensional bilinear model that has been successfully applied to investigate global 
behavior of base-isolated building frames under seismic excitation [12]. The effect of vertical 
pressure and horizontal displacement on the mechanical property is to be appropriately 
incorporated for accurate estimation of responses using a simple model. More complex one-
dimensional models have also been proposed. Abe et al. [13] combined elastoplastic and 
nonlinear elastic springs as well as friction element. Kalpakidis et al. [14] considered the 
effect of increase of temperature on the mechanical property of a lead rubber bearing. 
Yamamoto et al. [15] developed a two dimensional model for high-damping rubber bearings. 

It is known that a laminated rubber bearing under compression collapses due to buckling 
when subjected to large horizontal deformation. Takaoka et al. [16] investigated the ultimate 
behavior of a base-isolated structure by carrying out a shake-table test. Kikuchi et al. [17] 
proposed a multiple shear spring model for three-dimensional analysis. Kelly and 
Konstantinidis [18] investigated detailed behavior, including buckling and friction, using 
analytical and numerical approaches. Since the stress distribution in the rubber is not uniform 
in large deformation range, it is very important to investigate local deformation for accurate 
simulation of the ultimate behavior. It is well known that local tensile stress may exist even 
when the total reaction force of its rubber bearing indicates compression. However, only 
global behavior such as load-displacement relation can be obtained from experimental study 
or simulation using a simplified model. Dependency of horizontal stiffness on vertical stress 
has been studied in relation to buckling under vertical pressure and horizontal loads [19, 20]. 
Koh and Kelly [21] presented a two-degree-of-freedom model taking into account the flexural 
deformation as well as shear deformation to evaluate lateral stiffness under vertical pressure. 
However, the variation of horizontal stiffness of a base attached to frame has not been fully 
investigated using time-history analysis. 

By contrast, the local behavior such as stress distribution can be precisely investigated 
using an FE-analysis. Analysis of a structural component composed of elastomeric material is 
very difficult because of its hyper-elastic property. Several material models have been 
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presented for elastomers [22]. In this study, the hyper-elastic constitutive relation of 
natural rubber is modeled using the Ogden model [26], which is more general than the 
MooneyRyvlin model and NeoHookean model. Matsuda et al. [27] investigated vertical 
and lateral stiffnesses of a rubber bearing using FE-analysis with the NeoHookean model. 
Gracia et al. [28] developed an overlay model for simulating hyper-elastic and viscoelastic 
behavior. Lejeunes et al. [29] presented a numerical reduction model to reduce the 
computational cost for a thin rubber sheet.  Ali and Abdel-Ghaffar [30] used the Hart-Smith 
model [31] of elastic material with a logarithmic penalty function for incorporating 
incompressibility. They carried out FE-analysis to develop a simplified model for seismic 
response analysis of a base-isolated bridge. Matsuda [32] developed a mixed 
displacement/pressure FE-model for analysis of natural rubber bearing under vertical pressure 
and shear. Cardone et al. [33] carried out three-dimensional FE-analysis to show that the air 
temperature has substantial effect on the stiffness of rubber bearing. 

Properties of elastomers are also investigated extensively for application to fiber reinforced 
elastomeric isolators (FREIs) [34]. Toopchi-Nezhad et al. [35] used the Neo-Hookean model 
for FE-analysis of FREI. Osgooei et al. [36] investigated horizontal load-displacement 
relation and vertical stress distribution of unbonded square FREI under monotonic loading in 
different directions. They used three dimensional solid elements with NeoHookeam model, 
and showed that the loading in the diagonal direction leads to the maximum stiffness. Warn et 
al. [37] presented an overlapping area method for estimation of the critical load of laminated 
rubber bearing. The FE-model was verified by 3D analysis using the Ogden model, and a 2D 
FE-analysis with the NeoHookean model and plane strain elements was carried out for 
parametric evaluation of responses. Osgooei et al. [38] investigated vertical response 
properties of FREIs using parametric 3D FE-analysis. They demonstrated good agreement of 
stress distributions between those obtained by FE-analysis and analytical formula, and carried 
out seismic response analysis of a liquid storage tank. Mordini and Stauss [39] investigated 
properties of an FREI consisting of high-damping rubber and glass fiber layers. The Ogden 
model is used for static analysis and the NeoHookean model is used for dynamic analysis. 
Good agreement is observed between 2D and 3D analysis results, and a simple one-
dimensional model is presented using linear spring and linear damper. Das et al. [40] carried 
out 3D FE-analysis of FREIs to investigate effect of loading directions on responses under 
cyclic hrizontal loads. The rubber material is represented by the Ogden model for hyper-
elasticity and the Prony seris for viscoelasticity.  

In contrast to FE-analysis of elastomeric isolators, seismic response of a base-isolated 
building frame is usually investigated using a simplified model of isolator. Cardone et al. [41] 
investigated elastoplastic responses of an RC frame using empirical hysteresis models for lead 
rubber bearing and high-damping rubber bearing. Gur et al. [42] compared seismic responses 
of buildings isolated using shape-memory alloy rubber bearing and lead rubber bearing, where 
one-dimensional models are used for modeling isolators. Salomón [43] carried out seismic 
response analysis of a six-story plane frame using plane stress elements for the rubber bearing. 

In this study, we carry out FE-analysis of a base-isolated frame to investigate deformation 
and stress distribution of rubber bearings under a severe earthquake ground motion. Natural 
rubber bearings are attached at the base of a 10-story RC frame. The rubber sheets and steel 
plates are discretized into linear hexahedral solid elements, and the ADVENTURECluster/E-
Simulator is used for simulation with a PC that has multiple CPUs and cores. Horizontal 
seismic motions are applied to the base-isolated frame, and the time histories of interaction 
between the base and the rubber bearing as well as the complex local response of the isolator 
is investigated.  
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2. LAMINATED RUBBER BEARING MODEL 

Consider a laminated rubber bearing model as shown in Figure 1. The radius of rubber is 
350 mm, and there exists a hole with the radius 7.5 mm at the center. Therefore, the area of 
rubber is 3.8467×105 mm2. The covering rubber on the circumferential surface is neglected. 

The rubber bearing has 30 sheets of rubber separated by 29 steel plates. The thickness of 
each rubber sheet is 4.0 mm, while the thickness of each steel plate is 3.1 mm. The total 
heights of rubber sheets and steel plates are 89.9 mm and 41.0 mm, respectively, which lead 
to the total height 230.9 mm combining the rubber and steel. The steel plates, called flange, 
with radius 500 mm and thickness 28 mm are attached at the top and bottom of the rubber 
bearing. 

 

        

(a)                                                                (b) 

    
(c)                                                                          (d) 

Figure 1.  FE-mesh of a rubber bearing model; (a) side view, (b) close view of upper left, (c) 
diagonal view, (d) section in the xz-plane. 

Each rubber sheet as well as steel plate is discretized into two layers of fully integrated 
eight-node linear hexahedral elements with eight integration points. The number of nodes is 
502,981 including a control node, which is defined in Figure 1 and explained in Section 4.1. 
The number of elements is 486,240 including the rigid beams. The total number of degrees of 
freedom is 1,525,002. Geometrical nonlinearity is incorporated using the updated Lagrangian 
formulation. 

The Ogden model [26], which is categorized as hyper-elastic material, is used for the 
natural rubber. The strain energy density function is defined as 

2
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          (1) 

where the bulk modulus K  is 1000 MPa, and other model parameters are 1 1.6  , 2 6.2  , 

1 0.41   MPa, 2 0.0012   MPa, and 1 / 3  , which have been identified in Ref. [44] 

from the shear stress–strain relations of the experiments of a rubber bearing with various 

pressure levels. The variables 1 , 2 , and 3  are the deviatoric stretches (principal values of 

right stretch tensor), and J  is the elastic volume ratio. Hence, the initial shear modulus is 

Control node 
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calculated as 1 1 2 2 0.66344G        MPa, and Poisson’s ratio is 

(3 / 2) / (6 / 2) 0.49989K G K G   . The mass density of rubber is 2.00×103 kg/m3. The 
steel is assumed to be elastoplastic with Young’s modulus 205.0 GPa, Poisson’s ratio 0.3, 
yield stress 235.0 MPa, linear kinematic hardening coefficient 205.0 MPa, and mass density 
7.86×103 kg/m3. 

3. BASE-ISOLATED FRAME MODEL 

Consider a 10-story frame as shown in Figure 2. The frame is supported by two rubber 
bearings that have the geometry and material properties described in Section 2. The distance 
between the centers of two rubber bearings is 7000 mm, and the story height is 3500 mm. The 
global coordinates are defined as shown in Figure 2(a), where the y-axis is perpendicular to 
the xz-plane, which is located in the center of the frame. The upper frame consists of RC 
columns and beams, which are assumed to remain in elastic range, where Young’s modulus is 
24.0 GPa, Poisson’s ratio is 0.2, and mass density is 2.3×103 kg/m3.  

 

           
(a)                                                       (b) 

Figure 2.  A 10-story base-isolated frame model:  (a) elevation, (b) details at column base. 

The member sections are listed in Table 1. The size of each footing at the intersection of 
the base beam and the 1st-story column is 1300 mm in x- and y-directions with the height 
1500 mm. A 1100×1100 mm square steel plate with thickness 30 mm is placed between the 
footing and the upper flange of the rubber bearing. In the FE-model, the square plate is 
connected with the upper surface of the upper flange and the lower surface of the footing 
using multi-point constraints (MPCs). Note that all members of the frame have three-
dimensional property although we investigate in-plane (xz-plane) response. Thus, the out-of-
plane (y-directional) displacements of nodes on the xz-plane of symmetry are constrained. The 
members of upper frame are also discretized into solid elements. Although beam elements are 
implemented in the recent version of the E-Simulator, the post-processing software for beam 
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elements is under development. Therefore, we use solid elements for the frame members. The 
total numbers of nodes, elements, and DOFs are 1,047,157, 999,680, and 3,141,471, 
respectively. Note that the number of elements for the frame members is 27,212, which is 
about 2.7% of the total number of elements including the rubber bearings. Hence the total 
number of elements will be reduced only slightly even if beam elements are used. 

Table 1.  List of member sections. 

Column  Beam 
Story Size (mm)  Floor Size (mm) 
7  10 750×750  7  Roof 450×750 
4  6 800×800  4  6 450×800 
1  3 850×850  2  3 450×850 

   Base 700×1300 
 
The weight of RC frame including the footing and the base beam is 1741 kN, and the total 

weight including the two rubber bearings is 1755 kN. In order to incorporate the loads due to 
the weights of slabs and walls as well as the live load, the mass density of beams and columns 
are scaled by a factor 6.0, which leads to the total weight 10460 kN and the mean vertical 
pressure 13.41 MPa on the rubber bearing. 

4. STATIC ANALYSIS OF RUBBER BEARING 

We first carry out a series of static analyses for a layered plate as shown in Figure 3 to 
investigate dependency of shear responses on aspect ratios of elements, where steel and 
rubber materials are indicated by green and blue, respectively, which have the total heights 8 
mm and 4 mm, respectively. A loading node is added at the center of top surface, and it is 
connected to all nodes on the top surface using MPCs. All nodes in the bottom surface is fixed 
in three directions. A forced horizontal displacement of 24 mm is given at the loading node 
with fixed rotational components after application of vertical pressure of 14.0 MPa. The 
parameter   in Eq.(1) is 1.0 for comparison with ABAQUS [45]. The load-displacement 
relation is shown in Table 2 for models with various number of horizontal divisions and 
aspect ratios, where the number of vertical division is six for all models. Note that the 
maximum aspect ratio of the elements of the rubber bearing model in Figure 1 is 14.4. 

As seen from Table 2, the load-displacement relation is insensitive to the aspect ratios of 
elements. The same analysis processes are carried out using ABAQUS with the same material 
model and parameters. The horizontal reaction forces at the final step are shown in the last 
row of Table 2. As seen from the table, results of ABAQUS are close to those of 
ADVENTURECluster, and are also insensitive to the number of mesh division. 

 

 
Figure 3.  Layered plate for verification of mesh dependency. 
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Table 2.  Shear responses of layered plate subjected to vertical pressure and shear deformation. 

No. of division 30 15 8 6 4 
Aspect ratio 2 4 7.5 10 15 

 0 0 0 0 0 0 
 2.4 2825  2826  2826  2826  2826  
 4.8 5523  5523  5524  5524  5524  
 7.2 8376  8377  8378  8378  8379  

Displacement 9.6 12253  12255  12256  12257  12258  
 12 18760  18761  18763  18764  18765  
 14.4 30480  30481  30483  30484  30486  
 16.8 51261  51263  51266  51266  51269  
 19.2 86510  86513  86517  86518  86522  
 21.6 143452  143457  143463  143466  143471  
 24 231318  231327  231337  231341  231348  

ABAQUS 24 234370  234380  234390  234410  234390  
 
We next carry out cyclic static analysis of a single rubber bearing in Figure 1 to investigate 

its mechanical properties. The lower surface of the bottom flange is fixed, and the control 
node is placed at the center of the upper surface of the upper flange. The control node is 
connected to the nodes on the flange by rigid beams are represented by MPCs as shown in 
Figure 1. Rotations along three axes of the control node are fixed. The self-weight is first 
applied, and vertical pressure of 14.0 MPa corresponding to the nominal compressive force is 
next applied. 

 

 

Figure 4.  Relation between horizontal force and displacement under pressure of 14.0 MPa; 
 solid line: numerical result, dashed line: experimental result [45]. 

Finally, a forced cyclic horizontal displacement is assigned at the control node in x-
direction defined in Figure 1. The history of displacement (mm) is given as 0 → 450 → 0 → 
450 → 0, which is divided into 25 incremental steps. Since the total height of rubber is 141 
mm, the maximum displacement 450 mm corresponds to the mean shear strain of 319%. 
Relation between the horizontal force and displacement is plotted in solid line in Figure 4. 
The maximum force at 450 mm is 517.47 kN. The curve is close to the experimental result in 
Ref. [45], which is plotted in dashed line. Note that the experimental result has a loop due to 
the Mullins effect. Viscosity can be neglected, because the experiment is carried out quasi-
statically with very small loading velocity. The relation between horizontal and vertical 
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displacements is plotted in Figure 5, which exhibits a nonlinear relation. The total 
computational time using 16 cores of dual Intel Xeon E5-2687W 3.10 GHz processors is 
13,487 sec. (3.75 hours); i.e., the average time for a single step is 539 sec. (8.99 minutes). 

 

 

Figure 5.  Relation between horizontal and vertical displacements under pressure of 14.0 MPa. 

We also carried out the same analysis using a more precise model with four layers of 
hexahedral elements for each rubber sheet and steel plate. Although the aspect ratios of 
elements of four-layer model is worse than those of the two-layer models, the maximum force 
at 450 mm of the four-layer model is 517.45 kN, and there is no visible difference between 
the load-displacement relations of the models with two and four layers. Therefore, the two-
layer model is assumed to simulate the responses with good accuracy, and it is used in next 
section for seismic response analysis of a base-isolated frame. 

The vertical stresses evaluated at nodes at the maximum deformation are shown in Figure 
6(a) in the xz-plane of symmetry. The nodal stress is evaluated as the average stress at each 
node among the elements connected to the node. Note that the elements with the same 
material, steel or rubber, are considered in this process of computing the average value. The 
non-uniform distribution of vertical stress can be clearly seen in Figure 6, where the values 50 
and 50 MPa are the maximum and minimum values, respectively, of the color-bar. 

 

 

Figure 6.  Average vertical stresses at nodes in the xz-plane of symmetry at maximum 
displacement. 

Vertical stresses of rubber and steel in the xz-plane of symmetry are plotted in Figures 7(a) 
and (b), respectively. The stresses are evaluated along Line A, defined in Figure 1, at the 
bottom of the lowest rubber layer, and the line above Line A in the steel plate. It should be 
noted that the average stress among the integration points of each element, indicated by ‘×’, 
has rather smooth distribution than the average stress at node, indicated by ‘+’. Furthermore, 
the absolute value of stress at node is very large at the perimeter of rubber. The stresses of 
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rubber and steel have similar distributions and the values except the center and perimeter are a 
little smaller than the mean pressure 57.85 MPa computed using the overlapping area defined 
in Sec. 6 under deformation. 

 

           

(a)                                                                      (b) 

Figure 7.  Distribution of vertical stress in the plane of symmetry; ‘+’: stress evaluated at node, 
‘×’: average stress at integration points of each element; (a) stress of rubber along Line A, 

defined in Figure 1, at the bottom of the lowest rubber sheet in the xz-plane of symmetry, (b) 
stress of steel along the line above Line A. 

Figure 8 shows the distribution of vertical stress, at maximum deformation, on the upper 
surface of the top rubber sheet. It is confirmed from Figure 8 and also from Figure 6(a) that 
the vertical load is supported in a limited area that is the intersection of the upper and lower 
circle projected to the horizontal plane. 

 

 

Figure 8.  Vertical stress on the upper surface of the top rubber sheet at maximum 
deformation. 

5. SEISMIC RESPONSE ANALYSIS OF BASE-ISOLATED FRAME 

Before carrying out seismic response analysis, horizontal stiffness of the base is evaluated 
by applying the horizontal static load incrementally as a body force that is equal to the mass 
density multiplied by incremental x-directional acceleration. The horizontal secant stiffness, 
computed from the base shear force divided by the displacements at each incremental step, is 
plotted in Figure 8 with respect to the mean value of horizontal displacement at the upper 
surfaces of the flanges of two rubber bearings. As seen from the figure, the stiffness increases, 
due to material nonlinearity, as displacement is increased.  
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Figure 9.  Relation between horizontal displacement and horizontal secant stiffness of the 

base. 

A viscous damper is attached between the center of a base beam and the ground. We use 
the secant stiffness 1.77 kN/mm at displacement 350 mm in Figure 9 to compute the damping 
factor of the viscous damper. If we assume that the upper frame is a rigid body, then the first 
natural period is 4.784 s, and the damping coefficient corresponding to the damping factor of 
0.15 for the first mode is 412.1 N·s/mm. The stiffness proportional damping is used for the 
upper frame, although the deformation of upper frame is very small and its damping is 
negligible. The tangent stiffness matrix under the assumption that all materials are elastic is 
used for the calculation of the damping matrix. The coefficient for the matrix is computed so 
that the damping factor for the first mode is 0.03. 

After application of the self-weight of the frame, and dynamic time-history analysis is 
carried out to simulate seismic responses of the base-isolated frame. The frame is subjected to 
two Level-2 design ground motions called BCJ-L2 and AW-Kobe as shown in Figures 10(a) 
and (b), respectively. BCJ-L2 is distributed by the Building Center Japan. AW-Kobe is an 
artificial ground motion that is compatible to the design acceleration response spectrum 
specified according to the Notification 1461 of Ministry of Land, Infrastructure, Transport, 
and Tourism (MLIT), Japan, corresponding to the performance level of safety limit for the 
design based on Response and Limit Capacity Calculation. The phase of each frequency 
component is equal to that of the north–south component of the JMA Kobe record observed 
during the 1995 Kobe earthquake. We use the first 20 seconds of the waves. 

 

         

(a)                                                                            (b) 

Figure 10.  Seismic ground accelerations; (a) BCJ-L2, (b) AW-Kobe. 
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(a)                                                              (b) 

Figure 11.  Displacement responses; solid line: upper surface of rubber bearing, dashed line: 
roof; (a) BCJ-L2, (b) AW-Kobe. 

The initial time step for integration is 0.01 s, which is automatically reduced, if necessary. 
The total computational time using 16 cores of dual Intel Xeon E5-2687W 3.10 GHz 
processors is 1.5811×106 sec. (18 days and 7.19 hours) for 2,020 time steps including the 
initial static analysis for application of self-weight; therefore, the average time for a single 
step is 783 sec. (about 13.0 minutes). Figures 11(a) and (b) show the time histories of 
horizontal displacements under BCJ-L2 and AW-Kobe, respectively. The solid and dashed 
lines are the displacements at the upper surface of the rubber bearing and the roof of the frame, 
respectively. As observed in these figures, the deformation of the frame is small, and the 
frame moves like a rigid body with small rocking behavior. Since the response properties 
against these two seismic motions are very similar except the number of peaks of deformation, 
the detailed investigations of local responses are shown only for the BCJ-L2 wave.  

The horizontal reaction force RH and vertical reaction force RV, which are computed as the 
sum of nodal reaction forces at the lower surfaces of the rubber bearings, are plotted in 
Figures 12 and 13, respectively. In Figure 12, the dotted line is the total horizontal force, and 
the solid and dashed lines are the values of RH of left and right supports, respectively. 

We can see from Figures 12 and 13 that the absolute value of RH at the right support is 
larger than that of the left support, when the right support has smaller vertical reaction force 
RV than the left support. For example, the total value of RH at t = 12.30 s (UH = 406.22) is 
805.86 kN. This total value is shared by 366.11 kN at left and 439.74 kN at right, which are 
different. This is because the values of RV at the left and right supports are 7548.7 kN and 
2885.2 kN, respectively, which correspond to the mean pressure 7548.7/ 0.38467×103 = 
19.624 MPa and 2885.2 / 0.38467×103 = 7.5005 MPa with respect to the area of rubber. Note 
that the vertical pressure is 14.0 MPa in Figure 3, and the value of RH, computed by linear 
interpolation at UH = 406.22 mm, is 412.86 kN. The similar result is observed when the right 
support has a larger value of RV than the left support. This result confirms that the horizontal 
force–displacement relation depends on the pressure [46‒48], and the difference in vertical 
pressure leads to the difference in RH value. It is seen from Figure 13 that the vertical reaction 
force is always positive; i.e., the rubber bearing does not exhibit tensile deformation, although 
local vertical stress may have positive value as presented below. 
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Figure 12.  Horizontal reaction forces at fixed supports; solid line: left support, dashed line: 

right support, dotted line: total force. 
 

 

Figure 13.  Vertical reaction forces at fixed supports; solid line: left support, dashed line: 
right support. 

 
Although the phase difference between the displacements at the roof and the top surface of 

base is small as observed in Figure 11, the roof displacement is smoother and larger than the 
base displacement. Therefore, we investigate the rocking deformation of the frame. Let DL 
and DR denote the vertical displacements (mm) of the center of top surfaces of the upper 
flanges of left and right bearings, respectively. The time history of rocking angle of the base 
beam, defined by (DLDR) / 7000, is plotted in Figure 14. Although the angle is small, the 
maximum absolute value is 6.5329×10−4 rad, which corresponds to the difference 4.5730 mm 
of the vertical displacements of the left and right bearings. Note that the angle of 6.5329×10−4 
rad is more than 10 % of 1/200 that is the allowable interstory drift angle against level-1 
seismic motions. Furthermore, the displacement of the top surface of bearing due to the self-
weight is 2.7693 mm. Since 2.7693 > 4.5730/2, we can assume no tensile overall 
deformation occurs due to rocking of the frame. 
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Figure 14.  Time history of rocking angle of base beam. 
 

      

(a)                                                            (b) 

Figure 15.  Time history of interstory drift angle; (a) drift angle including rocking angle, (b) 
net drift angle extracting rocking angle; solid line: 1st story, dashed line: 10th story. 

The interstory drift angles of the 1st and 10th stories are plotted in solid and dashed lines, 
respectively, in Figure 15(a). Although the time histories of the phase are almost the same, 
more effect of higher modes are observed in the 10th story. Note that this property is different 
from that of the displacement response in Figure 11, where lower floor has more complex 
time history than upper floors. The net interstory drift angles after extracting the rockling 
angle are plotted in Figure 15(b). The effect of rocking is small; however, it is not negligibly 
small. 

The maximum and minimum values of displacements and reaction forces are listed in 
Table 3, which shows that the maximum horizontal reaction force is about 6.66% of the total 
weight of the structure. Note that the maximum displacement of the roof relative to the top of 
the isolator is 149.72 mm, which corresponds to a 0.406% drift angle. 
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Table 3.  Maximum and minimum values of displacements and reaction forces. 

 Disp. of 
upper surface 

of bearing 
(mm) 

Roof disp. 
(mm) 

Horizontal 
reaction (kN) 

Vertical 
reaction 

(left) (kN) 

Vertical 
reaction 

(right) (kN) 

Maximum value 397.82 526.78 806.16 7658.4 7568.5 
(Time (sec)) (14.96) (19.78) (12.29) (5.75) (19.74) 

Minimum value −406.22 −549.13 −773.84 2871.8 2799.9 
(Time (sec) (12.30) (12.37) (14.95) (19.69) (12.45) 

 
 

      
(a)                                                                       (b) 

Figure 16.  Vertical stress of left rubber bearing due to contact between upper flange and 
rubber; (a) maximum reaction at t = 5.75 s, (b) minimum reaction at t = 19.69 s. 

 

     
(a)                                                                       (b) 

Figure 17.  Vertical stress of right rubber bearing due to contact between upper flange and 
rubber; (a) maximum reaction at t = 19.74 s, (b) minimum reaction at t = 12.45 s. 

 
Distributions of vertical stress due to contact between the upper flange and the rubber of 

the left bearing at t = 5.75 s and 19.69 s, when the reaction takes the maximum and minimum 
values, respectively, are shown in Figure 16. We can confirm that the vertical stress is non-
uniformly distributed on the contact surface. The maximum absolute value of vertical stress at 
t = 5.75 s is 559.64 MPa, which is very large; however, it is located at point B on the edge, 
and the maximum absolute values of vertical stresses at the second and third nodes from the 
edge are 188.34 and 80.238 MPa, respectively, which are less than the yield stress of steel. 
Similar figures for the right rubber bearing are shown in Figure 17. 

Time history of the vertical stress at node C of the left rubber bearing, which is located at 
39.72 mm from the perimeter as indicated in Figure 16(b), is plotted in Figure 18. As 
confirmed from the figure, vertical stress may have a positive (tensile) value, although the 
total vertical force of the rubber bearing is always compressive. Tensile stress is necessary to 
exist to equilibrate the unbalanced bending moment as noted by Konstantinidis et al. [47]. 
Furthermore, the peak tensile stress may be smaller if we consider the fact that the tensile 
stiffness of the natural rubber is smaller than the compressive stiffness [48]. Accordingly, 
tensile stress may be more widely distributed than the plots in Figures 16 and 17. 
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Figure 18.  Time history of vertical stress at node C of left rubber bearing. 

 

6. FORCED-DISPLACEMENT ANALYSIS OF RUBBER BEARING 

Static monotonic analysis is carried out for detailed investigation of responses of a rubber 
bearing. After application of self-weight of the frame, forced horizontal displacements are 
assigned at the top of the flange linearly to the values at time t = 12.30 s of the seismic 
response analysis, when the base has the maximum horizontal deformation. Since the 
horizontal displacement at t = 12.30 s has a negative value, the left rubber bearing is analyzed 
under additional compressive deformation due to rocking of the upper frame. The forced 
horizontal (leftward) displacement UH, vertical (downward) displacement UV, and clockwise 
rotation UR are given as listed in Table 4. All displacement components, including rotation, 
are applied simultaneously. Let  denote a parameter denoting the pseudo-time. The forced 
displacement is defined parametrically using as UH, UV, and UR, and  is increased from 
0 to 1. 
 
Table 4.  Forced horizontal displacement UH, vertical displacement UV, and rotation UR at the 

top of flange. 
 Horizontal disp. UH 

(mm) 
Vertical disp. UV 

(mm) 
Rotation UR 

(rad) 
Self weight 0.23422 2.8049 0.00022574 
Seismic load 406.25 7.9573 0.0017196 
 

 
Figure 19.  Relation between horizontal reaction force RH and horizontal displacement 

obtained by forced-displacement static analysis of a rubber bearing; solid line: with rotation, 
dashed line: without rotation. 
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The horizontal reaction force RH is plotted with respect to UH in Figure 19. The value of RH at 
UH = 406.25 mm is 361.42 kN. Note that RH of the left support at UH = 406.25 mm in seismic 
response analysis is 366.11 kN. 

 

 
Figure 20.  Relation between vertical reaction force RV and horizontal displacement obtained 
by forced-displacement static analysis of a rubber bearing; solid line: with rotation, dashed 

line: without rotation. 
 

Relation between the vertical reaction force RV and UH is shown in solid line in Figure 20. 
Note that RV has the maximum value before reaching the maximum horizontal displacement. 
This fact corresponds to the nonlinearity of the relation between UH and UV in Figure 5 under 
constant pressure. Therefore, the maximum value of RV may be overestimated if it is 
evaluated by a forced-displacement analysis with constant ratio between UH and UV. 

The vertical contact stress between the lower face of the upper flange and the rubber sheet 
has a similar distribution as that of the seismic response in Figure 16. Figure 21(a) shows the 
variation of vertical stress at node B indicated in Figure 16(a), which has the maximum value 
among the nodes except those on the perimeter. We define the overlapping area [37], as 
shown in Figure 22, as the area of the compression core [35], which is the intersection of the 
circles of upper face of the top rubber sheet and the lower face of the bottom rubber sheet at 
each deformed state. The ratio of vertical stress at node B to the average vertical stress is 
called peak stress ratio. The peak stress ratio in which the average stress is defined with 
respect to the overlapping area is plotted in solid line in Figure 21(b). Note that if the peak 
stress ratio is larger than 1.0, the stress at node B is larger than the averaged stress. As seen 
from the figure, the peak stress ratio varies between 0.7 and 2.1, while it has larger value, as 
shown in solid line in Figure 21(c), if the average stress with respect to the total area of a 
rubber sheet is used. Note that the peak stress ratio with respect to the overlapping area 
approaches 1.0, which means that the almost all vertical force in a large deformation range is 
supported by the rubber in the overlapping area. Figure 23 shows distribution of vertical stress 
in the sections with different y-coordinates. 
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(a) 

        
  (b) (c) 

Figure 21.  Variations of vertical stress and peak stress ratio evaluated at point B in Figure 
15(a); (a) vertical stress, (b) peak stress ratio with respect to overlapping area, (c) peak stress 

ratio with respect to total area; solid line: with rotation, dashed line: without rotation. 
 

 

 
Figure 22.  Definition of overlapping area. 

 
We next carry out forced-displacement static analysis without rotation; i.e., the rotation UR 

in Table 4 is fixed at 0 throughout the analysis steps. The results are shown in dashed lines in 
Figures 19, 20, and 21. By fixing the rotation at 0, the maximum vertical stress at node B 
increases 1.8% from 184.86 MPa to 188.25 MPa; the maximum peak stress ratio with respect 
to the overlapping area increases 2.7% from 4.287 to 4.403. 

The maximum vertical displacement obtained by analysis with rotation is 7.9573 mm, and 
the total height of rubber sheets is 141.0 mm. Therefore, the average vertical strain is 7.9573 / 
141.0 = 0.056435. Since the maximum rotation for the analysis with rotation is 0.0017196 rad, 
as shown in table 4, the contribution of rotation to the vertical strain, e.g., at the point with the 
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distance 141.0 mm from the center is 0.0017196×141.0 / 7.6460 = 0.030471, which is very 
small. 

 

      
 (a) (b) 
 

      
 (c) (d) 

Figure 23.  Distribution of vertical stress in the sections with different y-coordinates;  
(a) y = 0, (b) y  = 100 mm, (c) y  = 200 mm, (d) y  = 300 mm. 

 

7. CONCLUSIONS 

Detailed FE-analyses have been carried out for investigating static and dynamic properties 
of rubber bearings attached to a 10-story frame. The conclusions drawn from this study are 
summarized as follows: 
1. Large-scale FE-analysis enables us to investigate simultaneously the time histories of 

global and local responses of a base-isolated building frame subjected to seismic motions. 
The responses of frame members and laminated rubber bearings can be simulated precisely 
using an FE-model as an assemblage of about 3 million hexahedral solid elements. The 
computational time for time-history analysis of FE-model of a frame with more than 3 
million DOFs remains in a practically admissible range using a single PC with 16 cores. 

2. Time histories of interaction between the frame and base isolators should be incorporated 
to accurately evaluate the seismic response of the base-isolated frame. The interaction 
through rocking of the rubber bearing leads to non-uniform and possibly tensile vertical 
stress at the upper surface. Difference between the tensile and compressive stiffnesses of 
rubber material should be incorporated for more accurate estimation of distribution of 
tensile stress. 

3. Since the horizontal reaction force strongly depends on the vertical pressure, which varies 
during seismic excitation, the horizontal forces of rubber bearings of base-isolated 
structures have different values even under the same horizontal displacement, if the 
variation of vertical force due to rocking of the frame is considered. 

4. The vertical stress may be overestimated if the rocking of upper flange is not appropriately 
incorporated in the static analysis. Furthermore, the vertical stress nonlinearly depends on 
the horizontal displacement; therefore, it may be overestimated if the ratio between vertical 
and horizontal displacements is not accurately assigned during the forced-displacement 
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static analysis. 

It should be noted here that it is difficult to measure the local internal responses of a 
rubber bearing in a shake-table test. Therefore, FE-analysis will be an indispensable tool for 
analysis and design of laminated rubber bearings. Incorporation of damping, softening 
property, and effect of temperature change for lead and high-damping rubber bearings 
remains to be investigated in future research. 
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