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Abstract 

An optimization approach is presented for form-finding of tensegrity structures. It is shown 

that various equilibrium shapes can be easily found by solving a forced-deformation analysis 

problem formulated as a minimization problem considering the nodal coordinates as design 

variables. The objective function is defined in terms of the member lengths, and it can be 

regarded as the total strain energy corresponding to fictitious elastic material properties. The 

self-equilibrium forces can be found from the optimality conditions of the nonlinear 

programming problem. Stability of the self-equilibrium shape is investigated based on the 

local convexity of the objective function. Similarity between form-finding problem of a 

structure with zero-unstressed-length cables and the problem of minimum square-length 

network is also discussed. Furthermore, folding of a structure with small unstressed-length 

cables is approximately simulated using affine transformation of equilibrium shape. 

Keywords:  Tensegrity, Form-finding, Optimization, Stability, Affine transformation, 

Folding analysis 

1. Introduction 

Tensegrity structures consist of cables and struts that carry tensile and compressive forces, 

respectively. Although the history and definition of tensegrity structures are subject to 
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controversy (Hanaor, 2012), the structure considered here has discontinuous struts and no 

support. In a broader definition of tensegrity, the struts may contact with each other; however, 

prestress is always needed for ensuring enough stiffness against external loads. The weight of 

a tensegrity structure can be neglected if the prestress is large enough compared with the self-

weight; accordingly, the member forces due to prestress constitute a self-equilibrium state 

without external load. 

It is difficult to obtain a desired shape of a tensegrity structure, because the structure is 

generally kinematically indeterminate; i.e., it is unstable in absence of prestress, and the shape 

of the structure defined by nodal coordinates at a self-equilibrium state depends on the 

distribution of prestress. To overcome these difficulties, various analytical and numerical 

approaches have been developed for form-finding of tensegrity structures (Motro, 2003; 

Zhang and Ohsaki, 2006; Skelton and de Oliveira, 2009). Form-finding algorithms can be 

classified into kinematical method and statical method (Tibert and Pellegrino, 2003). The 

kinematical method minimizes the total cable length or the sum of squares of cable lengths 

with fixed total length of struts; alternatively, it maximizes the total strut length or the sum of 

squares of strut lengths with fixed total length of cables. The statical method directly solves 

the equilibrium equations. 

In the kinematical method, optimization approaches are effectively used for 

minimizing/maximizing the functions of cable/strut lengths. Pagitz and Tur (2009) presented a 

two-stage algorithm based on minimization of the total potential energy by adjusting the cable 

lengths. Masic et al. (2005) presented a method for minimizing the quadratic error norm of the 

nodal locations from the target locations. They also formulated the problem of minimizing the 

error of the equilibrium equations. Miki and Kawaguchi (2010) proposed an approach to 

form-finding of cable networks and tensegrity structures by solving optimization problems 

with various objective functions and constraints. Gasparini et al. (2011) carried out form-

finding using nonlinear programming (NLP) approach. They also discussed form-finding with 

constant stress elements as well as similarity between the penalty function approach and the 

constrained optimization approach. Chen et al. (2012) used an ant-colony optimization 

method. Li et al. (2010) solved a minimization problem of the total potential energy using a 

Mote Carlo method. Ohsaki et al. (2005) presented a method by minimizing the error of 

member forces from the target values. Burkhardt (2006) minimized the difference between 

squared sums of lengths of cables and struts. Zhang and Ohsaki (2007b) proposed a 

multiobjective programming approach considering the lowest positive eigenvalue of the 

tangent stiffness matrix and the compliance against specified loads, where convexity 
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properties of the objective functions are fully utilized to validate enumeration of the vertices 

of feasible region. The method has been extended to a hybrid optimization-antioptimization 

problem incorporating the errors of the member forces (Ohsaki et al., 2012). Ehara and Kanno 

(2010) developed a mixed-integer programming approach to topology design of a tensegrity 

structure consisting of discontinuous struts. 

In the process of form-finding of a tensegrity structure that is free-standing, rigid-body 

motions should be appropriately constrained. Zhang et al. (2014) proposed an approach based 

on random selection of the six displacement components to be constrained. Zhang and Ohsaki 

(2013) proposed a method utilizing singular value decomposition or a generalized inverse of 

the tangent stiffness matrix. By contrast, for a cable net that has fixed supports, the 

equilibrium shape can be found by simply minimizing the total strain energy, which is a 

convex function of the nodal coordinates, under convex constraints (Kanno et al. 2002). 

It is well known that fictitious material properties with various stress-strain relations can 

be used for form-finding for specified forces (Pagitz and Tur, 2009; Miki et al., 2013). 

Fictitious damping is also widely used for the dynamic relaxation method for form-finding. 

Schenk et al. (2007) investigated the stiffness of a tensegrity structure with zero-unstressed-

length cables, and showed that such structure has zero-stiffness if the directional vectors of 

struts lie on a projective conic, which means that the strut lengths do not change due to 

deformation; accordingly, no external force is needed in the process of an affine 

transformation or a similarity transformation (Masic et al., 2005, Zhang and Ohsaki, 2007a).  

For folding and deployment of a tensegrity structure, it is preferable to utilize a 

flexible/compliant mechanism with self-equilibrium forces (Ohsaki and Nishiwaki, 2005; 

Ohsaki et al., 2013), because such a structure is stable without additional restraint (Smaili and 

Motro, 2005, 2007). Deployment of folded tensegrity structures is very important for 

application to space structures. Infinitesimal mechanism can also be utilized for reducing 

energy required for folding (Sultan, 2014). Arsenault and Gosselin (2005, 2006) analytically 

investigated kinematic properties of tensegrity mechanisms. The folding process can be 

simulated by tracking the path of equilibrium state called equilibrium manifold (Micheletti 

and Williams, 2007; Sultan and Skelton, 2003). Deployment of ring modules is studied by 

Rhode-Barbarigos et al. (2012). 

In view of practical application of form-finding of a tensegrity structure, it is very 

important to ensure stability of the equilibrium state, because an unstable solution cannot be 

actually manufactured. Guest (2006) investigated stiffness of prestressed framework, and 

presented a simple approach to derivation of tangent stiffness matrix. Ohsaki and Zhang 
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(2006) and Zhang and Ohsaki (2007a) investigated the conditions for stability, prestress-

stability, and super-stability of tensegrity structures. Deng and Kwan (2005) presented an 

energy-based approach to classification of stability of pin-jointed frameworks. 

In this paper, we present a method for form-finding of tensegrity structures using a 

nonlinear programming (NLP) approach. Various equilibrium shapes are found by solving a 

forced-deformation analysis problem formulated as a minimization problem of a function of 

the nodal coordinates in terms of member lengths. The problem is regarded as a minimization 

problem of the total strain energy with fictitious elastic material properties. The self-

equilibrium forces can be found from the optimality conditions of the NLP problem. We 

apply the method to tensegrity towers with bilinear elastic stress-strain relation for some 

selected cables. Stability is guaranteed, except for the fictitious material with softening 

property, from the local convexity of the objective function; hence, stiffness matrices are not 

needed for investigation of stability. Similarity between form-finding problem of zero-

unstressed-length cables and the problem of minimum square-length network is also 

discussed. It is shown that a tensegrity structure can be folded with small external forces, if 

the unstressed lengths of cables are small. However, the convergence property of the 

optimization problem is deteriorated if the unstressed lengths of cables are very small. To 

resolve this difficulty, we present a simple form for invariance property of the equilibrium 

equations with respect to affine transformation, and approximately simulate the folding of a 

structure with small unstressed-length cables using the affine transformation of equilibrium 

shape. The proposed method is applied to folding analysis of a tensegrity tower, and it is 

confirmed that the force density matrix remains unchanged and the required force is very 

small if cables with small unstressed lengths are used. 

2. Basic properties and equations  

Consider a tensegrity structure consisting of cables and struts. Although the definition of a 

tensegrity structure is controversial, the structure considered in this paper is clearly defined as 

follows: 

1. Cables and struts transmit only tensile and compressive forces, respectively. 

2. The structure has no support; i.e., it is free-standing with three translational and three 

rotational rigid-body motions. 

3. Cables and struts are pin-jointed; therefore, the structure can be modeled using truss 

elements, and no friction or sliding occurs at the joints. 
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4. The level of prestress is large enough compared with the self-weight of structure; 

therefore, the self-weight is neglected, and there is no external nodal load at the self-

equilibrium state. 

     We define the basic vectors and matrices below, for completeness of the paper. See, e.g., 

Zhang and Ohsaki (2006, 2015), for details.  

Let n  and m  denote the numbers of nodes and members, respectively. The topology of a 

tensegrity structure is defined using the connectivity (incidence) matrix m nC  . If nodes i  

and j  ( )i j  are connected by member k , then the i th and j th elements in the k th row of 

C  are equal to 1 and 1 , respectively, while all other elements in the k th row are 0 (Skelton 

and de Oliveira, 2009; Zhang and Ohsaki, 2015). 

The coordinates of the i th node at a self-equilibrium state is denoted by ( , , )i i ix y z . The 

vectors of x -, y -, z -coordinates are given as x , y , z  ( )n , and the vector of all nodal 

coordinates is defined as 3( , , )T T T T n X x y z  . The length and axial force of the i th 

member at the self-equilibrium state is denoted by iL  and iN , respectively. Let /i i iq N L  

denote the force density of member i , and define the force density vector as 1( , , )T
mq qq  . 

Then, the force density matrix n nQ   is given as 

diag( )TQ C q C      (1) 

Alternatively, the ( , )i j -component ,i jQ  of Q  is explicitly given as 

,

, if

, if nodes and are connected by member

0, otherwise

k
k I

i j k

q i j

Q q i j k


 

 




  (2) 

where I  is the set of members connected to node i . 

The self-equilibrium equation with respect to the nodal coordinates can be written using 

Q  as 

Qx 0 ,  Qy 0 ,  Qz 0      (3) 

The coordinate difference matrices xU , yU , and zU  ( )m m  in x -, y -, and z -directions, 

respectively, of members are defined as 

diag( )x U Cx ,  diag( )y U Cy ,  diag( )z U Cz    (4) 

The i th diagonal components of xU , yU , and zU  are denoted by x
iU , y

iU , and z
iU , 
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respectively. The directional cosines x
i , x

i , and x
i  of member i  with respect to x -, y -, 

and z -axes, respectively, are obtained as 

x
x i

i
i

U

L
  ,  

y
y i

i
i

U

L
  ,  

z
z i

i
i

U

L
      (5) 

and their matrix forms xΘ , yΘ , and zΘ  ( )m m  are given as 

1diag( , , )x x x
m Θ  ,  1diag( , , )y y y

m Θ  , 1diag( , , )z z z
m Θ   (6) 

Then, the equilibrium matrix D  is written as 

T x

T y

T z

 
   
 
 

C Θ

D C Θ

C Θ

       (7) 

Since we neglect the self-weight, the self-equilibrium equation with respect to the member 

force vector 1( , , )T
mN NN   is formulated as 

DN 0       (8) 

Suppose the unstressed lengths 0
iL  ( 1, , )i m   of members are given. The members are 

connected to satisfy the specified compatibility (connectivity) conditions at nodes. The 

member lengths ( )iL X  ( 1, , )i m   satisfying the compatibility conditions are found by 

solving a geometrically nonlinear analysis problem subjected to forced deformation; hence, 

( )iL X  is regarded as a function of X . The axial forces ( )iN X  ( 1, , )i m   are also found 

by solving the analysis problem. This way, the form-finding problem is formulated as a 

forced-deformation analysis problem with variable vector X . 

The square of member length is expressed in terms of coordinate differences as  

2 2 2 2( ) ( ) ( ) ( )x y z
i i i iL U U U  X X X X     (9) 

Differentiation of Eq. (9) with respect to X  leads to 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

x y z
x y zi i i

i i i i
i i i

U U U
L U U U

L L L
      

X X X
X X X X

X X X
  (10) 

which can be written using the directional cosines as 

( ) ( ) ( ) ( ) ( ) ( ) ( )x x y y z z
i i i i i i iL U U U        X X X X X X X   (11) 

From Eqs. (4) and (11), the following relation holds: 

1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T x T x

m
T y T y

i i
i T z T z

N L


   
        
   
   


C Θ X N X C Θ X

X X C Θ X N X C Θ X N X

C Θ X N X C Θ X

  (12) 
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which is equivalent to Eq.(8). Hence, the self-equilibrium equation can be written as 

1

( ) ( )
m

i i
i

N L


  X X 0       (13) 

 

3. Nonlinear programming approach to form finding using fictitious materials 

3.1 Optimization problem and equilibrium conditions 

We formulate the form-finding problem as a minimization problem of a function with respect 

to the nodal coordinates. Although the properties of a tensegrity structure are defined based on 

the materials of the cables and struts, we can use a fictitious material in the process of form-

finding for generating nodal coordinates and axial forces of various self-equilibrium shapes. 

The structure is actually realized using the true material, and the unstressed lengths are found 

so that the nodal coordinates and axial forces do not change after assigning the true material 

properties. Folding of a tensegrity structure with small unstressed-length cables can also be 

simulated using a fictitious cable material that has zero-unstressed length. 

A continuously differentiable function of X  in terms of the member lengths ( )iL X  is 

defined as 

1

( ) ( ( ))
m

i i
i

F F L


 X X       (14) 

An unconstrained optimization problem is formulated as 

Minimize   
1

( ) ( ( ))
m

i i
i

F F L


 X X     (15) 

Note that X  should be in the feasible region satisfying the sign requirements of axial forces in 

cables and struts. The stationary condition of ( )F X  is written as 

1

( ( ))
( ) ( )

( )

m
i i

i
i i

F L
F L

L


   

 X
X X 0

X
    (16) 

If ( )F X  is a locally convex function in the neighborhood of the solution sX X  satisfying 

Eq. (16), then sX  is a local optimal solution, and the hessian 2 ( )F X  of ( )F X  is positive 

definite at sX X . 

     We consider a fictitious material satisfying 

( ( ))
( )

( )
i i

i
i

F L
N

L





X

X
X

     (17) 

Then, Eq.(16) is equivalent to the equilibrium equation (13). This way, a self-equilibrium 
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shape can be found by minimizing a function of member lengths.  

 

3.2 Stability of the self-equilibrium state 

Although minimization of a function of member lengths is not new for form-finding of 

tensegrity structures, stability of the obtained self-equilibrium state has not been fully 

investigated. We present an approach to stability investigation without resort to stiffness 

matrices.  

There are several definitions of stability used in the field of structural mechanics. The 

most common definition is the positive definiteness of the tangent stiffness matrix, which is 

derived from the definition of asymptotic stability based on Liapunov’s direct method (La 

Salle and Lefscetz, 1961) assuming existence of appropriate damping. 

If we can regard ( )F X  as a Liapunov function, then the equilibrium state obtained by 

solving Problem (15) is stable, if ( )F X  is a strictly quasi-convex function in the 

neighborhood of the equilibrium state and ( )F X  corresponds to the restoring force of the 

structure (Ohsaki, 2003). On the other hand, the continuous function ( )F X  is strictly quasi-

convex in the neighborhood of a local minimum, if it is found by an NLP algorithm. 

Therefore, the equilibrium state found by minimizing ( )F X  using the fictitious material is 

always stable. By contrast, if the objective function is not convex, then stability of the 

equilibrium state obtained by optimization is not guaranteed. 

Further differentiation of ( )F X  in Eq. (16) with respect to X  leads to the Hessian of 

( )F X  as 

2
2 2

2
1 1

( ( )) ( ( ))
( ) ( ) ( ) ( )

( ) ( )

m m
Ti i i i

i i i
i ii i

F L F L
F L L L

L L 

          X X
X X X X

X X
  (18) 

The Hessian 2 ( )F X  is positive definite, when the optimization algorithm reaches an isolated 

local minimum of ( )F X . 

 

3.3 Minimization of strain energy using fictitious material 

The total strain energy may be a natural choice for the objective function. For the given 

unstressed member length, the strain energy of member i  is regarded as a function of ( )iL X , 

which is denoted by ( ( ))i iS L X .  
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Let iA , iE , and 0
iL  denote the cross-sectional area, Young’s modulus and the unstressed 

length of member i . The strain energy of member i  is defined as 

0 2
0

( ( )) ( ( ) )
2

i i
i i i i

i

E A
S L L L

L
 X X          (19) 

Then, the total strain energy ( )S X  is obtained as 

1

( ) ( ( ))
m

i i
i

S S L


X X       (20) 

The self-equilibrium shape is found by solving an optimization problem of minimizing ( )S X . 

When no constraint is given, the stationary condition of ( )S X  is written as 

1

( ( ))
( ) ( )

( )

m
i i

i
i i

S L
S L

L


   

 X
X X 0

X
    (21) 

At the optimal solution satisfying Eq. (21), the equilibrium equation (13) is satisfied, because 

( ( )) / ( )i i iS L L X X  is the axial force ( )iN X  of member i  as 

0
0

( ( ))
( ) ( ( ) )

( )
i i i i

i i i
i i

S L E A
N L L

L L


  


X

X X
X

   (22) 

When the objective function is the total strain energy, the optimization problem to be 

solved for form-finding is a standard analysis problem with forced deformation to satisfy the 

compatibility at nodes for specified unstressed member lengths. Therefore, the principle of 

minimum total potential energy ensures stability of the equilibrium shape obtained by 

minimizing the strain energy of the structure without external loads.  

Although the stiffness matrices are not necessary in the process of finding a stable self-

equilibrium state, the tangent stiffness matrix is used in the numerical examples for 

confirmation of stability of the equilibrium state. By incorporating ( )S X  into ( )F X  in Eq. 

(18), the first and second terms in the right-hand side turns out to be the linear stiffness matrix 

3 3
L

n nK   and geometrical stiffness matrix 3 3
G

n nK  , respectively, which are given 

without derivation and omitting the variable X  as  

E
TK DKD ,  G

 
   
 
 

Q

K Q

Q

   (23) 

where  
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1 1 1diag( / , , / )m m mE A L E A LK      (24) 

See, e.g., Zhang and Ohsaki (2007a) for details. Note that the member lengths at self-

equilibrium state is usually used in Eq. (24). Then, the tangent stiffness matrix 

3 3
T

n nK   is given as 

T E G K K K      (25) 

4. Fictitious materials of cables 

Fictitious materials are used for cables in the process of form finding. The true material and a 

large cross-sectional area are used for struts so that they have sufficiently larger stiffness than 

cables. 

 
4.1 Bilinear material 

A bilinear elastic stress-strain relation is given for a cable as shown in Fig. 1. The materials in 

Cases 1 and 2 are linear elastic and stiffening bilinear, respectively. Case 3 has a softening 

bilinear property with a positive stiffness in the second part to ensure local minimum of ( )S X  

at the equilibrium state.  

 

Strain

St
re

ss

Case 1Case 2

Case 3

ε̂
 

Figure 1.  Linear and bilinear elastic stress-strain relations for cables. 

 

The value of strain   at the transition point of the bilinear elastic property is denoted by 

̂ ; i.e., the length U
iL  at the transition point is U 0ˆ(1 )i iL L  . The elastic modulus for 

U( )i iL LX  of cable i  is denoted by ˆ
iE . Then, the strain energy for U( )i iL LX  of cable i  is 

formulated as 

U 0 2 U U U 2
0 0 0

ˆ
( ( )) ( ) ( ( ) ) ( ( ) )

2 2
i i i i i i

i i j i j i j i i
i i i

E A E A E A
S L L L L L L L L

L L L
     X X X   (26) 
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Differentiation of ( ( ))i iS L X  with respect to X  leads to 

U U
0 0

ˆ( ( ))
( ) ( ( ) ) ( )i i i i i i

i i i i i
i i

S L E A E A
L L L L L

L L


    


X

X X X
X

   (27) 

From Eqs. (13) and (27), the axial force at equilibrium is obtained as follows at the solution 

sX  that minimizes ( )S X : 

s U s U
0 0

ˆ
( ) ( ( ) )i i i i

i i i i
i i

E A E A
N L L L

L L
  X X     (28) 

Let iA  and iE  denote the cross-sectional area and Young’s modulus of the true linear elastic 

material. The unstressed length 0
iL  of the cable with the true material is found to satisfy the 

following relation so that its axial force is equal to s( )iN X : 

s 0 U s U
0 0 0

ˆ
( ( ) ) ( ( ) )i i i i i i

i i i i i
i i i

E A E A E A
L L L L L

L L L
   X X

 
    (29) 

When an equilibrium state is found using an optimization algorithm, it corresponds to a 

local minimum of ( )S X  using the fictitious material, which means ( )S X  is locally convex at 

sX X  and the equilibrium state is stable. The strain energy function using the true material 

is also convex, if the following relation is satisfied: 

0 0

ˆ
i i i i

i i

E A E A

L L



       (30) 

In this case, the structure with true material is also stable. Note that the condition in Eq. (30) 

is a sufficient but not a necessary condition for stability. 

Member numbers are assigned, for simplicity, such that members c1, ,m  are cables and 

members c 1, ,m m   are struts. For Case 2, we can formulate a constrained optimization 

problem with upper bound U
iL  for cable i  as  

1

U
c

Minimize ( ) ( ( ))

Subject to   ( ) 0, ( 1, , )

m

i i
i

i i

S S L

L L i m





  

X X

X 
    (31) 

Let i  denote the Lagrange multiplier for the i th constraint in Eq. (31). The optimality 

conditions (KKT conditions) for the constrained minimization problem (31) is written as 

c

1 1

( ( ))
( ) ( )

( )

mm
i i

i i i
i ii

S L
L L

L


 


   

 X
X X 0

X
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0i  ,   U( ( ) ) 0i i iL L  X ,   U( ) 0i iL L X ,   c( 1, , )i m    (32) 

Hence, the equilibrium equation (13) is satisfied by regarding 

( ) ( ( )) / ( )i i i i iN S L L    X X X  for cables and ( ) ( ( )) / ( )i i i iN S L L  X X X  for struts.  

A similar formulation is derived by Miki and Kawaguchi (2010); however, their purpose is 

to find an equilibrium shape by minimizing a function of cable lengths under constraints on 

the strut lengths. Note that the sufficient condition (30) for stability of the structure with true 

material is not ensured for Case 2. This is observed from the KKT condition (32) that 

additional tensile force corresponding to the Lagrange multiplier i  ( 0)  should be applied 

to cable i to restrict the deformation of the cable. 

 

4.2 Zero-unstressed-length cable 

Schenk et al. (2007) investigated the properties of tensegrity structures, where each cable has 

zero unstressed length, and demonstrated that such cables can be manufactured using 

conventional springs attached alongside bars. A cable with small unstressed length can be 

modeled using a flexible spring or rubber. By assuming 0( )i iL LX   in Eq. (19), the strain 

energy of member i  is formulated as 

* 2
0

( ( )) ( ( ))
2

i i
i i i

i

E A
S L L

L
X X      (33) 

Note that the coefficient 0/ (2 )iEA L  diverges to infinity in the limit 0 0iL  . 

This formulation is closely related to form-finding analysis based on minimum square-

length network that has the smallest total square length of cables for the given strut lengths. 

Since 0/i i iE A L  is the extensional stiffness of the cable, we can rewrite Eq. (33) as follows 

using 0/i i i ik E A L : 

* 2( ( )) ( ( ))
2

i
i i i

k
S L LX X      (34) 

From Eqs. (22) and (34), we obtain 

 

*( ( ))
( ) ( )

( )
i i

i i i
i

S L
N k L

L


 


X

X X
X

    (35) 

Therefore, the force density iq  of a cable at the equilibrium state sX X  should be equal to 

the specified stiffness as  
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s

s

( )

( )
i

i i
i

N
q k

L
 

X

X
     (36) 

Note that the matrix Q  in Eq. (3), which is a linear function of the force density vector 

1( , , )T
mq qq   as in Eq. (1), should have four zero eigenvalues in order to realize an 

equilibrium shape in 3-dimensional space (Zhang and Ohsaki, 2006). It is easily observed 

from the definition in Eq. (2) that the vector (1, , 1)T  is one of the eigenvector 

corresponding to a zero eigenvalue irrespective of the values of iq . Therefore, q  should 

satisfy three nonlinear equations to ensure a 3-dimensional tensegrity structure, which means 

that force densities of cables generally cannot have specified values as Eq. (36), and 

minimization of the sum of *( ( ))i iS L X  leads to a shape in a smaller dimension; i.e., plane, line, 

or point. This fact is consistent with the observation by Miki and Kawaguchi (2010) noting 

that minimizing the sum of *( ( ))i iS L X  does not easily lead to a stable 3-dimensional 

configuration. 

By contrast, if the unstressed length is moderately large, and ( ( ))i iS L X  in Eq. (19) is 

used, a wide range of force densities can be covered, and there exists more possibility of 

generating a shape in 3-dimensional space. Figure 2 shows variation of 0( ) /i i i i iq k L L L   

with respect to iL  (0.5 1)iL   for 1ik   and various values of 0
iL . As seen from the figure, 

iq  has the constant value 1 for the case of zero unstressed length with 0 0iL  . If 0
iL  has a 

moderate value, then iq  can vary in a wide range; e.g., 0.2 0.6iq   for 0 0.4iL  . 
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Fig 2.  Variation of force density with respect to member length. 
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4.3 Summary of optimization process 

The process of form-finding using optimization approach is summarized as follows: 

Step 1. Assign material properties for cables and struts including fictitious material 

properties for some cables. 

Step 2. Define a function of member lengths as an objective function to be minimized. 

Step 3. Solve the optimization problem using any optimization algorithm. 

Step 4. Assign the true material properties, and compute unstressed lengths so that the 

axial forces do not change from those determined in Step 3. 

Step 5. Check stability of the self-equilibrium state using the true material properties. 

In the numerical examples, optimization is carried out using SNOPT Ver.7 (Gill et al., 2002) 

that utilizes sequential quadratic programming (SQP). The sensitivity coefficients are 

computed analytically, e.g., as Eqs. (22) and (27) for ( ) ( )F SX X . Let ( ) 3 3k n nH   denote 

the approximate Hessian of ( )F X  at the kth step of SQP. The increment of X  is denoted as 

( ) 3k n  d X X  , which is the variable vector of the QP sub-problem at the kth step. Then, 

the sub-problem for the unconstrained problem is formulated as 

( 1) ( ) ( ) ( )1
Minimize ( ) ( ) ( )

2
k k k T T kF F F   d X X d d H d    (37) 

When the approximate Hessian is singular at a step of SQP, a small diagonal term, which 

leads to a penalty term of the quadratic norm of the increment of variables, is added to ( )kH . 

Therefore, for the analysis problem of a free-standing tensegrity structure, the rigid-body 

motions are automatically suppressed, and the nearest solution from the initial solution is 

obtained. 

5. Constrained optimization and affine transformation for folding analysis 

5.1 Constrained optimization for folding analysis 

We consider a process of folding a tensegrity tower that consists of struts, vertical cables, 

saddle cables, diagonal cables, and horizontal cables (Zhang and Ohsaki, 2008; Micheletti and 

Williams, 2007; Sultan, 2014). The folding process is slow enough so that dynamic effect 

need not be considered, assuming existence of appropriate damping; therefore, we consider a 

quasistatic process of folding. 
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An example of three-layer tower is shown in Fig. 3. Folding analysis is carried out by 

assigning constraints on the difference between z -coordinate U
jz  of the j th node in the top 

ring and z -coordinate L
kz  of the k th node in the bottom ring as 

U L
j kz z h  ,  R R( 1, , ; 1, , )j n k n       (38) 

where Rn  is the number of nodes in each ring, and h is the specified total height. 

 

Horizontal

Horizontal

Diagonal Ve
rti

ca
l

Saddle

 

Figure 3.  A 3-layer tensegrity tower model. 

 

Folding is carried out by suppressing the top ring to the bottom. The parametric 

optimization problem for obtaining the equilibrium states in the folding process is formulated 

as 

1

U L R R

Minimize ( ) ( ( ))

Subject to   ( ) ( ) , ( 1, , ; 1, , )

m

i i
i

j k

S S L

z z h j n k n





   

X X

X X  
   (39) 

where h  is conceived as a parameter to be decreased from the initial value to 0. 

Let jk  denote the Lagrange multiplier corresponding to the constraint U L
j kz z h  . The 

reaction forces U
jR  and L

kR  for the j th node in the upper ring and the k th node in the lower 

ring, respectively, are computed from 
R

U

1

n

j jk
k

R 


  ,  
R

L

1

n

k jk
j

R 


       (40) 

In the process of folding, cables should remain in tensile state. Therefore, it is desirable 

that the unstressed length of each cable is small enough compared with the length at 

equilibrium. However, as discussed in Sec. 2, it is very difficult to obtain an equilibrium 
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shape if unstressed cable lengths are too small. In this case, we can utilize affine 

transformation as shown below. 

 

5.2 Folding of a tensegrity structure with zero-unstressed-length cables using affine 

transformation 

Masic et al. (2005) proved that self-equilibrium equation of a tensegrity structure is invariant 

with respect to an affine transformation. This property can be easily observed using the 

equilibrium equations with respect to the nodal coordinates. 

The self-equilibrium equation can be written using the force density matrix Q  and the 

nodal coordinate vectors x , y , and z  as Eq. (3). Obviously, these equations are satisfied 

with fixed Q  and the coordinates after affine transformation as 

11 12 13 1

21 22 23 2

31 32 33 3

a a a b

a a a b

a a a b

   
   
   

x x y z I

y x y z I

z x y z I

     (41) 

where nI   is the vector that has 1 in all components. Using the affine transformation, 

various equilibrium shapes can be found after finding a single equilibrium shape. 

Suppose we found an equilibrium shape using the zero-unstressed-length cables, and a 

forced deformation is applied to the structure. For a zero-unstressed-length cable, the axial 

force ( )iN X  is proportional to the length at equilibrium ( )iL X  as ( ) ( )i i iN k LX X , where ik  

is the axial stiffness; i.e., ik  turns out to be the force density, as shown in Eq. (36), which 

does not depend on ( )iL X  in the process of forced deformation. Therefore, it is easily seen 

that the force density matrix does not change, and the structure can be deformed without 

external force, if there exists an affine transformation that does not change the strut lengths so 

that the force densities of all members are unchanged. This property has been discussed based 

on the theory of structural rigidity by Schenk et al. (2007). 

Consider, for example, a tensegrity structure that is axisymmetric with respect to z-axis, 

and suppose there is only one class of struts; i.e., a strut can be moved to any other strut 

through a rotation around z-axis. In this case, there always exists an affine transformation 

, ,d d c  x x y y z z      (42) 

that preserves the strut lengths by appropriately assigning the coefficients c and d. This way, 

folding process is simulated without carrying out form-finding analysis; i.e, it can be 

simulated by successively decreasing c to 0 and finding d in Eq. (42) that does not change 

strut lengths. 
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6. Examples of tensegrity tower 

6.1 Form-finding of 20-layer tower using bilinear fictitious material 

To demonstrate the effectiveness of using fictitious bilinear elastic materials, the optimization 

approach is applied to form-finding of a 20-layer tensegrity tower as shown in Fig. 4(a). The 

units are omitted, in the following, for simple presentation of the results. The tower has three 

struts in each layer, and the radius and height of each layer are 20.0 and 22.5, respectively, at 

the initial state for solving optimization problem for minimization of the total strain energy.  

Let ie  denote the ratio of unstressed length to the initial length. The values of ie  for 

cables and struts are assumed to be 0.8 and 1.0, respectively; i.e., the unstressed length of a 

cable is 80% of the length in the initial shape in Fig. 4(a), while the unstressed length of a 

strut is the same as the length in the initial shape. The value of i iA E  for struts is 100000. As 

we demonstrated in Fig. 2, the values of ie  for cables should be sufficiently small to obtain 

various stable equilibrium shapes without slackening of cables. 

            

(a)                           (b)                                (c)                                (d)  

Figure 4.  Initial and self-equilibrium shapes of a 20-layer tensegrity tower; (a) initial shape, 

(b) equilibrium shape using a linear elastic material (Case 1), (c) equilibrium shape using a 

stiffening material (Case 2), (b) equilibrium shape using a softening material (Case 3). 
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Case 1: 

We find the equilibrium shape using cables with linear elastic material denoted by Case 1 in 

Fig. 1, where 1000i iA E  , which is denoted by 0
i iAE , for all cables. In this case, the stiffness 

of the true material is the same as that used in the form-finding process. The equilibrium 

shape obtained by solving the unconstrained optimization problem is shown in Fig. 4(b). The 

maximum axial force among all cables is 362.9. Eigenvalue analysis is carried out for the 

tangent stiffness matrix TK  to find the 6th and 7th smallest eigenvalues as listed in the first 

row of Table 1. Since the 7th eigenvalue is sufficiently larger than the 6th eigenvalue that is 

approximately equal to 0, the equilibrium state is stable with six zero eigenvalues 

corresponding to rigid-body motions. 

 

Table 1.  Eigenvalues of tangent stiffness matrix using true material. 

Case 6th 7th 

1 6.140×10-6 0.1303 

2 ×10-7 0.1253 

3 4.540×10-7 0.1107 

 

Case 2: 

We next consider a fictitious material with bilinear stress-strain relation. The 60 vertical 

cables are classified into six groups connecting the nodes with the same xy-coordinates in the 

horizontal plane of the initial shape in Fig. 4(a). Ten cables in one of the six groups are 

selected to have the stiffening bilinear stress-strain relation as indicated as Case 2 in Fig. 1. 

The strain ̂  at the stiffness transition point is 0.1, and the value of i iAE  in the first and 

second parts are 0 ( 1000)i iAE   and 0100 ( 100000)i iAE  , respectively. The equilibrium shape 

obtained by optimization is shown in Fig. 4(c). The minimum and maximum values of strains 

among the members with bilinear stress-strain relation are 0.1028 and 0.1030, which are close 

to ˆ ( 0.1)  . This way, a curved shape can be generated by assigning large stiffness for the 

cables that are vertically aligned at the initial shape. 

We compute the unstressed member lengths, and carry out eigenvalue analysis of the 

tangent stiffness matrix using the true material with constant value 1000i iA E   for all cables. 

The 6th and 7th eigenvalues are listed in the second row of Table 1, which shows that the 
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structure is stable, although the true material has smaller stiffness than the fictitious material 

and the sufficient condition (30) for stability is not satisfied. If we set the maximum member 

length U 01.1i iL L  in Eq. (31), which is consistent with ˆ 0.1  , and solve the constrained 

optimization problem, almost the same equilibrium shape as shown in Fig. 4(c) is obtained. 

The axial forces and the Lagrange multipliers of the constrained members in layers 1, 3, and 5 

are listed in Table 2. The axial forces obtained using the bilinear material are also listed in the 

first column of Table 2. It can be confirmed from these results that the cable forces at 

equilibrium can be obtained approximately as the sum of the differential coefficient /i iS L   

and the Lagrange multiplier i . 

 

Table 2.  Cable forces at equilibrium of constrained members in layers 1, 3, and 5. 

Layer 
Bilinear 

model 

Constrained optimization 

(A) Differential 

coefficient of strain 

energy 

(B) Lagrange 

multiplier 

(A) + (B) 

1 397.6 100.0 300.1 400.1 

3 380.2 100.0 282.6 382.6 

5 380.8 100.0 283.2 383.2 

 

Case 3: 

Fictitious material property is given in the same vertical cables as Case 2, where ˆ 0.1   also 

for this case. We decrease the value of i iAE  in the second part of the stress-strain relation of 

the ten vertical cables to 0 /100 ( 10)i iA E   as indicated by Case 3 in Fig. 1. The equilibrium 

shape obtained by solving the unconstrained optimization problem is shown in Fig. 4(d). As 

seen from Figs. 4(c) and (d), the tower can be bent to opposite directions by increasing and 

decreasing the value of i iAE  of the vertical cables in the specified group. The axial forces of 

the vertical cables with bilinear stress-strain relation are between 103.0 and 104.0, which are 

close to the specified value 0.1 100i iAE  . We compute the unstressed member lengths, and 

carry out eigenvalue analysis of tangent stiffness matrix. The 6th and 7th lowest eigenvalues 

are listed in the third row in Table 1, which confirms the stability of structure. Since the 

stiffness of the fictitious material is smaller than that of the true material, the equilibrium 

shape with the true material is always stable, if the shape with fictitious material is stable. 
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6.2 Folding analysis of 2-layer tower 

Folding analysis is carried out for a 2-layer tensegrity tower with three struts in each layer. 

Optimization problem is successively solved by varying the height h  to be constrained in Eq. 

(38). The value of i iAE  for the struts is 100000, which is sufficiently large, and a linear elastic 

material is used for cables. The unstressed lengths of cables should be sufficiently small to 

prevent slackening, while those of struts are the same as those in the initial shape.  

We first consider the case 0.2ie  ; i.e., the unstressed length of each cable is 20% of the 

initial length. The value of i iAE  for cables is 1000. The height of each layer of the initial 

shape is 40.0, i.e., the total height h  is 80, whereas its radius r is taken as a parameter to 

solve the minimization problem of the total strain energy and obtain various self-equilibrium 

shapes. If r is small, the equilibrium shape approaches a straight line as shown in Fig. 5(a). If 

r is large, a planar shape is obtained as shown in Fig. 5(c). 

 

           

(a)                              (b)                                                (c) 

Figure 5.  Equilibrium shapes for various initial radius for 0.2ie  ; (a) 10r  , (b) 30r  , 

(c) 80r  . 

 

      We assign 30r   for folding analysis for various values of ie . The equilibrium 

configuration without constrains is shown in Fig. 5(b), where the total height is 56.63. To 

prevent too large axial force at equilibrium, the value of i iAE  is adjusted depending on the 

unstressed length of cable as 

2000i i iAE e       (43) 
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which leads to 1000i iAE   for 0.5ie  . It should be noted that the numerical results below 

depends on the value of i iAE . 

      The total reaction force at the top nodes during the folding analysis is plotted in Fig. 6 for 

each case of ie  with respect to the height h  that is decreased to 0. For the range 0.18ie  , the 

maximum reaction force increases as the unstressed length becomes smaller, and accordingly, 

the initial strain becomes larger. No reaction force exists at 50h   for 0.16ie  , because the 

height of equilibrium shape is less than 50 without constraint (38) on the height. The reaction 

forces are small for ie  = 0.12 and 0.1, and the equilibrium shape degenerates into a plane as 

ie  approaches 0, which agrees with the fact that a tensegrity structure with zero-unstressed-

length cables cannot be obtained by energy minimization. 
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(a)                                                                            (b) 

Figure 6.  Variation of reaction forces with respect to the specified height;  

(a) ie = 0.5, 0.4, 0.3, 0.2, (b) ie = 0.18, 0.16, 0.14, 0.12, 0.1. 

 

The force densities of struts are plotted with respect to the height in Fig. 7. The force 

densities for the cases 0.18ie   are normalized by the values at 50h  , whereas those for the 

cases are normalized by the value at the maximum height with non-zero reaction force. We 
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can see from Fig. 7(a) that the normalized force densities are close to 1, and are between 1 

and 1.022 even for 0.5ie  ; therefore, the variation force density in the folding process is 

very small. Since a shape variation with constant force density matrix corresponds to an affine 

transformation, it is expected that the folding process can be approximately simulated using 

affine transformation without sucessively solving the constrained optimization problem. 
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Figure 7.  Variation of normalized force density of struts;  

(a) ie = 0.5, 0.4, 0.3, 0.2, (b) ie = 0.18, 0.16, 0.14, 0.12, 0.1. 

 

Although the value of ie  should be close to 0 to simulate the behavior of zero-unstressed-

cable, we use 0.1ie   to prevent numerical difficulty in the optimization process. 

Furthermore, the initial radius r should be very large to prevent convergence to a thin shape as 

Fig. 7(a) when ie  has a small value; thus we set 100r  . The total height of the initial 

equilibrium shape without constraint is 0 133.9h  , which is larger than the initial height 80, 

because the height becomes larger due to shrinkage of cables. Let c denote the ratio of the 

total height h to 0h . The radii of the circles, where the top/bottom nodes and middle nodes are 

located, at the equilibrium state are denoted by 1r  and 2r , respectively. Affine transformation 

in Eq. (42) is carried out to find the horizontal scale d so that the lengths of struts do not 
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change. The values of 1R , 2R , and the horizontal scale d are listed with respect to the height 

ratio c in Table 3. 

 

 

 

Table 3.  Variations of horizontal scale d, radii 1r  and 2r , and 7th and 8th eigenvalues of 

tangent stiffness matrix with respect to height ratio c of a tensegrity structure with zero-

unstressed-length cables. 

c d 
1r  2r  7  8  *

1r  *
2r  

1.0 1.0 65.84 70.42 0.0107 2014.8 65.84 70.42 

0.95 1.023 67.35 72.04 0.0110 2201.1 67.20 72.04 

0.9 1.044 68.74 73.52 0.0111 2391.9 68.47 73.56 

0.8 1.082 71.24 76.19 0.0112 2778.9 70.73 76.31 

0.7 1.114 73.35 78.45 0.0120 2760.9 72.66 78.71 

0.5 1.164 76.64 81.97 0.0090 1980.1 75.62 82.84 

0.3 1.196 78.74 84.22 0.0050 1014.6 77.51 85.18 

0.0 1.213 79.86 85.42    86.77 

 

We can see from Table 3 that the horizontal scale and radii increase as the height is decreased. 

The values of radii obtained by solving constrained optimization problem (39) with 0.1ie   

are listed as *
1R  and *

2R  in Table 3. Note that these values are slightly different from 1R  and 

2R , because 0.1ie   indicates that the unstressed cable lengths do not vanish completely. 

It has been confirmed that each configuration obtained using affine transformation has the 

self-equilibrium forces that are almost the same as the forces at equilibrium obtained by 

optimization with 0.1ie  . According to Eq. (34), the axial stiffness ik  of zero-unstressed-

length cable is equal to the force density. Since the equilibrium shape does not change when 

the stiffnesses of all members are scaled proportionally, we multiply 1.0×107 to the force 

density of each cable to obtain its stiffness. A large value 1.0×1010 is multiplied to the 

absolute value of the force densities of struts so that they can be assumed to be rigid compared 

with cables. The 7th and 8th eigenvalues 7  and 8  of the tangent stiffness matrix are listed 

in Table 3. It has been confirmed that the six lowest eigenvalues can be regarded as 0. 

Therfore, this result indicates that the structure in the folding process is stable; however, a 
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flexible deformation exists in the direction of the 7th eigenmode. Stability can also be 

confirmed for the equilibrium shape obtained by optimization with 0.1ie  , because the 

equilibrium shape is found by energy minimization, and the reaction forces at the top and 

bottom have small positive values (compressive forces); e.g., for 0.5c  , the reaction force is 

836.7, while the forces of struts are 13136. 

 

7. Conclusions 

An optimization approach has been presented for form-finding and folding analysis of 

tensegrity structures using fictitious material properties. The following conclusions have been 

obtained from this study: 

1. Stability of the equilibrium shape obtained by optimization can be ensured without resort 

to tangent stiffness matrices. The stability is always guaranteed from local convexity of 

the objective function, if the gradient of objective function corresponds to the restoring 

force of a structure with fictitious material properties. Furthermore, the self-equilibrium 

state using the true material property is stable if the fictitious material used for form-

finding has smaller stiffness than the true material. 

2. Various equilibrium shapes can be obtained using fictitious material properties with 

bilinear elastic stress-strain relations. A curved tensegrity tower can be generated by 

assigning stiffening/softening materials for a group of vertically aligned vertical cables. A 

softening material can be used for finding a self-equilibrium state with the specified cable 

forces. It has been confirmed that the optimization problem with stiffening bilinear stress-

strain relation is equivalent to a constrained optimization problem with upper bound for 

the member lengths.  

3. When the unstressed cable lengths are reduced to zero, the axial force is assumed to be 

proportional to the length at equilibrium, and the axial stiffness should be proportional to 

the force density. In this case, there is generally no set of force densities that satisfies the 

rank defficiency condition of a tensegrity structure in 3-dimensional space; therefore, the 

equilibrium shape degenerates to a space of lower dimension; i.e., plane, line, or point. 

This property can be easily explained through similarity between form-finding problem 

of zero-unstressed-length cables and the problem of minimum square-length network.  

4. Quasi-static folding of a tensegrity structure can be simulated by solving constrained 

optimization problems successively reducing the total height of the structure to be 
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specified. The reaction forces, which are computed from the Lagrange multipliers for the 

height constraints, first increases and then decreas as the height is reduced to 0. The force 

densities of members are almost constant for cables with small unstressed length 

compared with the length at equilibrium; however, the convergence property of 

optimization deteriorates when the unstressed cable lengths are very small. 

5. Invariance of the equilibrium equations with respect to affine transformation can be 

simply explained using the invariance of force density matrix. Folding process of a 

structure with small unstressed-length cables can be approximately simulated using affine 

transformation. 

6. The rigid-body motions need not be constrained when solving the optimization problem 

using an SQP method, because the quadratic programming sub-problem is automatically 

stabilized by assigning small positive values in the diagonals of the approximate Hessian 

of the Larangian. 
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