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Abstract

An optimization approach is presented for a retractable structure consisting

of bistable compliant mechanism. The structure is modeled using truss and

beam elements, and snapthrough behavior is utilized to generate large de-

formation under small input displacement and recover the initial shape by

application of a small reversal force. The parameters such as nodal locations

and cross-sectional areas of members are optimized to minimize the error of

nodal displacements from the specified target values. It is shown that the

deformed shape, required input force, and stiffness against lateral loads can

be controlled independently by modifying nodal locations and stiffnesses of

different sets of members. It is also shown through an example of roof model

that the maximum load required for shape transformation can be effectively

reduced by utilizing the flexibility and self-weight of structure.
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1. Introduction

Mechanisms are used in variety of fields of engineering including robotics

and mechatronics. The direction of motion is modified and a large output

displacement is generated from a small input displacement utilizing mecha-

nisms. In order to reduce input force, it is conventional to employ an unstable

bar-joint model called link mechanism. However, when an unstable mecha-

nism is used for a retractable roof in architectural engineering, the structure

cannot have required stiffness against long-term and short-term design loads.

A constraining force should also be applied to ensure stability of structure

in the process of shape transformation, and a force in reverse direction is

needed to recover the initial shape.

Mechanisms are extensively utilized for deployable structures in architec-

tural engineering [1, 2]. The shape of a pin-jointed truss can be controlled by

placing some actuators instead of truss members. A flexible truss consisting

of bars and actuators is called variable geometry truss (VGT), which is used

for robot arms, deployable structures in space, etc. Senba and Furuya [3]

developed an approach to optimizing the geometry of a VGT considering its

vibration modes. Optimization methods for robot arms to avoid obstacles

are also presented [4]. However, many actuators are generally needed for

shape transformation of a VGT.

The mechanisms including VGT are also used for small deployable struc-

tures and shape transformation of long-span retractable roofs in civil and

architectural engineering. However, very limited types of mechanisms such

as scissors mechanism are used in this field [5, 6]. Furthermore, the param-

eters to realize the desired kinematic relations are adjusted manually using
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explicit geometrical formulas [7, 8, 9]. Vu et al. [10] carried out parametric

study on locations of cables and struts for deployable tension-strut structures.

In contrast to conventional unstable link mechanisms, a compliant mech-

anism utilizes elastic deformation of structural parts to produce large output

displacement in different direction from the input displacement [11]. It can

also store strain energy utilizing bistability and flexibility of the structure.

In the initial definition of compliant mechanism, the structure is designed as

continuum [12, 13], because it is aimed to be a single-piece product in mi-

cromechanics, and to have less frictional noise than a link mechanism. How-

ever, for large structures in civil and architectural engineering, the compliant

mechanism can be modeled as a flexible bar-joint structure incorporating de-

formation of members. A bar-joint mechanism can be easily re-modeled to

frame mechanism utilizing flexibility of joints [14, 15].

Optimization methods have been extensively developed for generating

compliant mechanisms. Ohsaki and Nishiwaki [16] presented an optimiza-

tion approach to generating multistable compliant bar-joint mechanisms that

have multiple stable self-equilibrium states at both deformed and undeformed

states utilizing snapthrough behavior and contact to an obstacle. The bar-

joint structure enables us to eliminate the difficulties due to local member

buckling in the optimization process considering geometrical nonlinearity.

Oh and Kota [17] categorized the behaviors of bistable mechanisms. Ohsaki

et al. [18] optimized clamping members of frame-supported membrane struc-

tures utilizing the flexibility of frame model. Huang and Xie [19] optimized

a bridge-type structure considering geometrical nonlinearity.

A bistable structure that has two self-equilibrium states can also be uti-
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lized to shape transformation of structures. Gantes and Konitopoulou [20]

investigated constructability of a bistable deployable arch through geomet-

rically nonlinear analysis and physical model. Kebadze et al. [21] discussed

basic properties of a bistable shell unit.

In this paper, an optimization approach is presented for designing re-

tractable structures consisting of bistable compliant bar-joint mechanisms.

Each mechanism is controlled by only single input force to generate large de-

formation through snapthrough behavior. Therefore, due to geometrical non-

linearity, it is not straightforward to achieve the target deformation through

optimization of nodal locations and member stiffnesses. The parameters of

a column-type mechanism are optimized using a heuristic approach called

tabu search. It is shown that the deformed shape, required input force, and

stiffness against lateral loads can be controlled independently by modifying

nodal locations and stiffnesses of different sets of members. The character-

istics of a roof-type bistable compliant mechanism are next compared with

those of unstable link mechanism. It is shown that the maximum required

force for deformation can be effectively reduced utilizing the flexibility and

self-weight of structure.

2. Bistable compliant mechanism

In this section, we summarize, for completeness of the paper, the proper-

ties of bistable compliant mechanism modeled as a flexible bar-joint system

using truss elements. Snapthrough behavior is utilized to realize a bistability

of structure, which has a deformed stable self-equilibrium state in addition

to the initial undeformed state; see, e.g., Refs. [16] and [22] for details.

4



P 

U 

x 

1 

1 

Figure 1: A two-bar truss subjected to a vertical load; dotted line: undeformed shape,

solid line: deformed shape.

In order to explain the basic concept of bistability, consider a two-bar

shallow truss, as shown in Fig. 1, subjected to vertical load P1, where solid

and dotted lines represent deformed and undeformed shapes, respectively.

The vertical displacement of the center node is denoted by U1.

Fig. 2(a) illustrates the sequence of deformed shapes against vertical load

P1. The thick lines denoted by ‘a’ correspond to the undeformed initial shape.

We suppose that the deformation is controlled by a nodal displacement us-

ing, e.g., an actuator clamped to the node. Fig. 2(b) illustrates the relation

between the input displacement U1 and the associated input force P1. The

points ‘a’, ‘b’, . . ., ‘e’ in Fig. 2(b) correspond to the shapes ‘a’, ‘b’, . . ., ‘e’ in

Fig. 2(a), respectively. When U1 is increased from 0, the force P1 reaches the

local maximum at ‘b’, which is called limit point. By further increasing U1,

P1 reduces to 0 at ‘c’, where two bars are located horizontally between the

supports. The shape ‘c’ is a self-equilibrium shape that is retained without

external force. However, it is unstable if the vertical displacement is not re-

strained, because a slight disturbance to the node leads to a dynamic vertical

displacement. By increasing U1 beyond ‘c’, the truss reaches the shape ‘d’

corresponding to an unstressed state that is reverse (reflection symmetric) to

the initial shape with respect to x-axis. Obviously, this shape is stable and
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Figure 2: Relation between input force P1 and input displacement U1 of the two-bar truss

exhibiting snapthrough; (a) sequence of deformed shapes; thick line: undeformed shape,

thin lines: deformed shapes (b) relation between P1 and U1.
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Horizontal rigid plate

Figure 3: Termination of deformation and stabilization of the truss by contact to a hori-

zontal rigid plate; dashed line: initial shape, solid line: deformed shape.

retained without external force.

If the deformation is controlled by the force P1, it is possible to increase

P1 stably until reaching the limit point ‘b’, where the equilibrium state jumps

dynamically to ‘e’ exhibiting snapthrough. Consider the self-equilibrium

point ‘c’ in Fig. 2(b) at U1 = U c
1 satisfying P1 = 0, and suppose a hori-

zontal rigid plate is placed slightly below the line between the two supports,

as shown in Fig. 3, to terminate the deformation slightly beyond ‘c’ and

stabilize the structure by contact to the plate. A bistable mechanism with

two self-equilibrium states U1 = 0 and U1 ' U c
1 thus have been generated.

Furthermore, the initial state can be recovered by simply adding a small up-

ward force or disturbance at the final state. The stable unstressed state ‘d’

in Fig. 2(a) is not utilized here to generate a bistable structure, because we

assign the requirement such that the initial state can be recovered by a small

reverse force at the final state.

Fig. 4 illustrates a bistable compliant mechanism generating specified

displacement at output node ‘B’ as a result of input displacement at node

‘A’. The properties of bistable compliant mechanism used in this paper are

summarized as follows:
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Figure 4: A bistable compliant mechanism generating specified displacement at output

node B as a result of input displacement at node A; dashed line: initial shape, solid line:

deformed shape.

1. A large displacement is generated at the output node in the specified

direction as a result of forced displacement at the input node of the

structure.

2. The deformed shape can be retained without applying external force,

i.e., the structure has two self-equilibrium states including the unde-

formed initial state.

3. The undeformed shape can be recovered by reversely applying a small

force as a disturbance to the deformed shape.

In the following examples, all members are modeled as bars (truss ele-

ments), which are pin-jointed, except the rigid parts modeled using beam

elements with sufficiently large stiffness. The steel material is used for all

members, where Young’s modulus is 210.0 GPa and the weight density is

77.0 kN/m3. Note that the thin members are supposed to be manufactured

as appropriate parts including coil springs and leaf springs.
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3. Column-type model

3.1. Definition of model

The parameters of a column-type model as shown in Fig. 5(a) is to be op-

timized. This model can be used for shape transformation of non-structural

walls of building and long-span structures. The size of each story (square

unit) is 1 m × 1 m. Each member is identified by the node numbers at its

two ends; e.g., the member connecting nodes 1 and 2 is denoted by member

1-2. The blank and filled circles in Fig. 5(a) indicate pin and rigid joints,

respectively. Note that the pin joints at nodes 13–16, respectively, actually

overlap the rigid joints.

The members are classified into six groups as shown in Table 1. Groups

1 and 2 are vertical and horizontal members modeled by beam elements

consisting of a box section with 50×50 (mm) exterior square and 2.3 mm plate

thickness; accordingly, the cross-sectional area is 4.388× 10−4 m2. The pairs

of members (12-13,13-7), (13-14,14-8), (14-15,15-9), (15-16,16-10), and (16-

17,17-11) are connected rigidly at nodes 13, 14, 15, 16, and 17, respectively,

whereas members 13-14, 14-15, 15-16, and 16-17 are pin-jointed to nodes 13,

14, 15, and 16, respectively.

All other members are modeled by truss elements; accordingly, nodes

1, . . . , 12 and 18, . . . , 22 are pin joints. The vertical truss members 6-18, 18-

7, . . ., 22-11 in the right side of the column and member 12-6 between the

supports are classified into group 3, and have the same cross-sectional area

4.388 × 10−4 m2 as the beam members in groups 1 and 2. The remaining

truss members have very small cross-sectional areas; hence, these members

are actually manufactured as springs with the same extensional stiffnesses as
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Figure 5: A column-type model; (a) geometry and node numbers; blank circle: pin joint,

filled circle: rigid joint, (b) illustration of deformed shape in real scale.

Table 1: Member sections of column model; ¤: box section.

Group Members Section

1 12-13, 13-14, 14-15, 15-16, 16-17 beam: ¤ − 50 × 50 × 2.3

2 13-7, 14-8, 15-9, 16-2, 17-11 beam: ¤ − 50 × 50 × 2.3

3 6-18, 18-7, 7-19, 19-8, 8-20, 20-9 truss: A = 4.388 × 10−4 m2

9-21, 21-10, 10-22, 22-11, 12-6

4 1-2, 2-3, 3-4, 4-5 truss: A = variables

5 12-1, 1-6, 13-2, 2-7, 14-3 truss: A = 1.0 × 10−6 m2

3-8, 15-4, 4-9, 16-5, 5-10

6 1-18, 2-19, 3-20, 4-21, 5-22 truss: A = 1.0 × 10−6 m2
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the truss members. Note that the weights of thin truss members do not have

much effect on the total weight.

The vertical displacement applied at node 1 is transmitted to nodes 2,

3, 4, and 5 by the vertical members in group 4. Note that the members in

group 4 are not connected to the horizontal members in group 2. The sym-

metrically located diagonal thin members, which are classified into group 5,

are compressed to generate snapthrough behavior, and the vertical displace-

ments of nodes 1, 2, 3, 4, and 5 are transformed by the diagonal members in

the right-hand-side, which are classified into group 6, to lateral displacements

of nodes 18, 19, 20, 21, and 22. Consequently, the deformation as shown in

Fig. 5(b) is generated.

3.2. Optimization problem

A general purpose frame analysis software OpenSees Ver. 2.3.2 [23] is used

for geometrically nonlinear analysis against vertical forced displacement at

node 1. The absolute value of reaction force first increases and reaches a

limit point, and decreases to 0 to generate the deformed shape in Fig. 5(b).

The final shape is defined such that the reaction force first reaches 0 after

undergoing snapthrough behavior as illustrated as point ‘c’ in Fig. 2(b).

The geometry and stiffness of the mechanism is optimized to minimize the

deviation of the final shape from the specified target shape. In this process,

we ignore deformation against self-weight and additional lateral loads to be

considered in real-world design, and confirm the behavior of the optimized

mechanism under practical design loads in the following section.

Although the structure remains in elastic range, the displacements at

the final state cannot be obtained within an accuracy required to apply a
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gradient-based nonlinear programming approach, because the deformation is

geometrically nonlinear and the final state is to be approximated by inter-

polation between consecutive two steps of incremental analysis. Therefore,

we use a heuristic approach called tabu search for optimization, which is

summarized in Appendix.

Let x1, . . . , xm denote the m real design variables that are discretized into

integer variables Ji ∈ {1, ..., si} (i = 1, . . . ,m), which means that Ji can take

an integer value between 1 and si. The upper and lower bounds of xi are

denoted by xU
i and xL

i , respectively. Then, the relation between xi and Ji is

given as

xi = xL
i +

Ji − 1

si − 1
(xU

i − xL
i ), (i = 1, . . . ,m) (1)

Therefore, all properties of the mechanism are functions of the integer vari-

able vector J = (J1, . . . , Jm).

We minimize the mean deviation E(J) between the specified displace-

ment components at the final state from the target values. Let U and U∗

denote the vector of specified q displacement components and their target

values, respectively. The optimization problem is formulated, as follows, as

an unconstrained problem:

Minimize E(J) =

(
1

q
‖U(J) − U∗‖

) 1
2

(2a)

subject to Ji ∈ {1, . . . , si}, (i = 1, 2, ...,m) (2b)

The design variables in the following examples are the cross-sectional areas

A1−2, A2−3, A3−4, A4−5 of four members in group 4 and the y-coordinates

Y1, . . . , Y5 of nodes 1, . . . , 5; i.e., we have nine design variables.
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Table 2: Target and optimal values of lateral displacements (m) of nodes 8–11.

Node 8 9 10 11

Opt-1 Target value 0.120 0.260 0.420 0.500

Optimal value 0.1411 0.2588 0.3851 0.5189

Opt-2 Target value 0.150 0.325 0.525 0.625

Optimal value 0.1742 0.3240 0.4842 0.6515

Opt-3 Target value 0.18 0.39 0.63 0.750

Optimal value 0.2280 0.3878 0.5640 0.7525

Table 3: Lower and upper bounds of variables for Opt-1, Opt-2, and Opt-3.

Opt-1 Opt-2, 3

Lower Upper Lower Upper

A1−2 (m2) 5.0 × 10−7 5.0 × 10−6 2.0 × 10−6 7.0 × 10−6

A2−3 (m2) 5.0 × 10−7 5.0 × 10−6 2.0 × 10−6 7.0 × 10−6

A3−4 (m2) 5.0 × 10−7 5.0 × 10−6 2.0 × 10−6 7.0 × 10−6

A4−5 (m2) 5.0 × 10−7 5.0 × 10−6 5.0 × 10−6 1.5 × 10−5

Y1 (m) 0.05 0.15 0.10 0.20

Y2 (m) 1.05 1.15 1.10 1.20

Y3 (m) 2.00 2.10 1.95 2.05

Y4 (m) 3.00 3.10 2.95 3.05

Y5 (m) 4.00 4.10 3.95 4.05
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Table 4: Optimal solutions of column-type model.

Opt-1 Opt-2 Opt-3

A1−2 (×10−6m2) 5.00 7.00 3.00

A2−3 (×10−6m2) 0.95 6.00 5.50

A3−4 (×10−6m2) 0.50 2.50 3.00

A4−5 (×10−6m2) 1.00 5.00 6.00

Y1 (m) 0.14 0.13 0.16

Y2 (m) 1.08 1.10 1.11

Y3 (m) 2.02 2.03 2.03

Y4 (m) 3.10 2.95 2.95

Y5 (m) 4.10 3.95 3.95

Objective function (m) 0.02249 0.02951 0.03147

Uy
1 (m) −0.147 −0.1521 −0.168

3.3. Optimization results

Optimization is carried out for three cases designated as Opt-1, Opt-2,

and Opt-3, for which the target x-directional displacements of nodes 8, 9, 10,

and 11 are given in Table 2. The bounds of variables for Opt-1, Opt-2, and

Opt-3 are listed in Table 3.

Tabu search is carried out from five different random seeds, and the best

solution among the five trials is selected as the optimal solution. The number

si of discrete values is 11 for all variables. For example, for the variable Y1 of

Opt-1, integer values 1, 2, . . . , 11 correspond to real values 0.05, 0.06, . . . , 0.15

(m), respectively. We assume, from the manufacturing point of view, the
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Figure 6: Initial and final shapes of optimal solutions; (a) Opt-1, (b) Opt-3.
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increment 0.01 m is sufficiently small. For TS, the number of neighborhood

solutions is 18, the number of steps is 200, and the length of tabu list is

2000. The optimal solutions are listed in Table 4. The lateral displacements

are also listed in Table 2. Although the displacements of nodes 8 and 10 do

not have good agreement with the target values, those of nodes 9 and 11 are

close to their target values, and the optimal objective values in Table 4 are

sufficiently small. The maximum relative errors for Opt-1, Opt-2, and Opt-3

are 17.6%, 16.1%, and 26.7%, respectively. We confirmed through a random

search of the optimal solutions using real values that the errors are not due

to discretization and we cannot adjust the displacements completely to the

target value by modifying a limited number of variables. The configurations

of Opt-1 and Opt-3 are shown in Fig. 6(a) and (b), respectively, where the

left figures are initial shapes, and the right figures are final shapes. The

objective value and the vertical displacement Uy
1 of node 1 at the final state

are also listed in Table 4 for each optimal solution. The optimal solution

Opt-1, which has the smallest objective value among the three solutions, is

hereafter called ‘standard model’, and its properties are investigated under

practical design loads.

Note again that the thin members are actually manufactured as springs.

For example, for member 1-12 of the standard model, the cross-sectional area

modeled as a truss member is A = 1.0 × 10−6 m2, Young’s modulus is 210

GPa, and the initial and final lengths are 0.519 m and 0.5 m, respectively.

Therefore, the extensional stiffness is 404 N/mm, if it is modeled as a spring.

It has been confirmed that the deformation and stiffness of the spring are

within practically admissible ranges.
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Quasi-static analysis is carried out for the optimized mechanism using

a finite element analysis software package ABAQUS Ver. 6.10 [24]. Let G

denote the acceleration of gravity. The analysis consists of the following three

steps with respect to time t:

Step 1: 0 ≤ t ≤ 1: Application of vertical gravity load of 1.0G to all mem-

bers without fixing node 1.

Step 2: 1 ≤ t ≤ 2: Shape transformation under forced vertical displacement

at node 1 to the final value Uy
1 listed in Table 4.

Step 3: 2 ≤ t ≤ 3: Application of lateral load of 0.2G to all members in

positive x-direction after constraining vertical displacement of node 1.

The solid line in Fig. 7 shows variation of vertical reaction force Ry
1 at

node 1 with respect to time t of the standard model. A snapthrough behav-

ior is observed in negative y-direction, and the maximum absolute value of

reaction force is 2.641 kN. In the following, the maximum value R
y(max)
1 is

assumed to represent the maximum absolute value, for brevity. Note that

the reaction force at the final state of shape transformation (t = 2.0) has a

rather large value 0.570 kN due to gravity load that is not incorporated in the

optimization process; however, if we stop the process at the self-equilibrium

state without reaction force, which is slightly before t = 2, then only a small

upward force is needed to recover the initial state.

The lateral displacement Ux
11 of node 11 is plotted in Fig. 8. The values

of R
y(max)
1 , as well as the values of Ry

1 and Ux
11 at t = 2 and 3 are sum-

marized as ‘Standard’ in Table 5. The relative displacements during shape

transformation (1 ≤ t ≤ 2) and those against lateral loads (2 ≤ t ≤ 3) are
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Figure 7: Vertical reaction force Ry
1 of node 1; solid line: standard model, dashed line:

Opt-1b.

denoted by superscripts (S) and (L), respectively; i.e., U
x(S)
11 = 0.5435 m and

U
x(L)
11 = 0.5703 − 0.5435 = 0.0268 m. The value of U

x(L)
11 is also listed in

Table 5. Note that U
x(L)
11 of the standard model is larger than 0.025 m that

is equivalent to 1/200 of the total height 5.0 m. The required vertical load

Ry
1 and the stiffness against lateral loads can be independently modified as

follows.

If we increase the cross-sectional area Ag
6 of the members in group 6 to

the five times of the standard model, U
x(S)
11 and U

x(L)
11 become 0.5309 m and

0.0230 m, respectively, while R
y(max)
1 is 2.649 kN as summarized as Opt-1a

in Table 5. This way, the displacement due to lateral loads can be reduced

effectively without increasing the maximum reaction force.

Let Ag∗
6 denote the ratio of Ag

6 to the value of the standard model. The ra-

tios of other values are also indicated by superscript *. Variations of R
y(max)∗
1 ,

U
x(S)∗
11 , and U

x(L)∗
11 are plotted with respect to Ag∗

6 in Fig. 9, which confirms

that R
y(max)∗
1 is almost constant with respect to Ag∗

6 .
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Figure 8: Lateral displacement Ux
11 of node 11 of standard model.

Table 5: Maximum reaction force R
y(max)
1 (kN), and values of reaction force Ry

1 (kN) and

lateral displacements Ux
11 (m) of node 11 at t = 2 and 3, and U

x(L)
11 (m) of column-type

model.

R
y(max)
1 t = 2 t = 3 U

x(L)
11

Standard Displacement – 0.5435 0.5703 0.0268

Reaction 2.641 0.5701 0.9529 –

Opt-1a Displacement – 0.5309 0.5539 0.0230

Reaction 2.649 0.5450 0.9158 –

Opt-1b Displacement – 0.4796 0.5192 0.0396

Reaction 1.061 0.5258 0.9053 –
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of cross-sectional area of group 6; solid line: U
x(S)∗
11 , dashed line: U

x(L)∗
11 , dotted line:

R
y(max)∗
1 .

If we decrease the cross-sectional area Ag
5 of members in group 5, which

is directly related to snapthrough behavior, to half of the standard model,

then the reaction force becomes as shown in the dashed line in Fig. 7. This

model is designated as Opt-1b. The maximum reaction force R
y(max)
1 is 1.061

kN, which is less than half of the standard model. The values of U
x(S)
11 and

U
x(L)
11 are 0.4796 m and 0.0396 m, respectively, as summarized as Opt-1b in

Table 5; i.e., Opt-1b has less reaction force R
y(max)
1 but larger displacement

U
x(L)
11 than Opt-1a. Therefore, the cross-sectional areas can be decided in

view of trade-off between reaction force and displacements. Variations of

R
y(max)∗
1 , U

x(S)∗
11 , and U

x(L)∗
11 are plotted with respect to Ag∗

5 in Fig. 10, which

confirms that U
x(S)∗
11 and U

x(L)∗
11 are almost constant with respect to Ag∗

5 . The

maximum absolute value of stress in the truss and beam members except the

thin members are 41.66, 40.74, and 29.75 (MPa), for standard model (Opt1),

Opt1-a, and Opt1-b, respectively, all of which are in the beam connecting
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nodes 8 and 14. The maximum stress does not depend on the cross-sectional

areas of thin members in group 6; however, it depends on those of group 5.

Since deformation of a compliant mechanism is concentrated in the restricted

parts, which are manufactured as springs, the stresses of the remaining mem-

bers are sufficiently small; i.e., the maximum stresses for three cases are less

than 1/7 of the yield stress of a steel material, and stress of a beam member

can be reduced if its cross-sectional property is modified without changing

the self-weight.

If we do not consider the gravity for Opt1-b, the variation of Ry
1 becomes

as plotted in the solid line in Fig. 11, which is to be compared with the

dashed line with gravity. As is seen, the maximum reaction force can be

reduced utilizing the self-weight of the structure.

The results in this section reveal that utilization of flexibility, or equiva-

lently, stiffness of the structure has several advantages over unstable mecha-
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Figure 11: Vertical reaction force Ry
1 of node 1 of column-type model; solid line: Opt-1b

without gravity, dashed line: Opt-1b with gravity.

nisms, which are summarized as follows:

1. The structure in the process of shape transformation can be stabilized

by constraining only the vertical input displacement; i.e., lateral con-

straint is not needed.

2. Only one actuator is needed to generate global shape transformation.

3. Only downward force is needed for shape transformation, because the

initial state can be recovered by application of small upward force at

the final state, if we stop the process slightly beyond the first self-

equilibrium state that appears after reduction of reaction force from

the limit point.

4. The structure after constraining single node at the final state has

enough stiffness against lateral loads.

5. The required input force and stiffness against lateral loads can be con-

trolled independently by modifying stiffnesses of different sets of mem-

bers.
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Table 6: Nodal coordinates (m) of roof models 1 and 2.

Node Model 1 Model 2

1 (0,2.5,2.5) (0,2.93,0)

2 (0,0,0) (0,0,0)

3 (0,0,3) (0,0,3)

4 (0,10,5) (0,10,5.7115)

5 (5,5,0) (5,5,0)

6 (−5,5,0) (−5,5,0)

7 (0,5,0) —

Note that the plane mechanisms obtained here can easily be converted to

3-dimensional mechanisms with hexahedral units. The buckling triangular

parts are extended to tetrahedral parts. We have confirmed this re-modeling;

however, the result is not presented here, because it is rather obvious.

4. Roof model

The purpose of this section is to investigate the effectiveness of utilizing

flexibility and geometrical nonlinearity of structure using the roof model as

shown in Fig. 12, which is designated as model 1. Geometrically nonlinear

analysis quasi-static analysis is carried out using ABAQUS.

Let (Xi, Yi, Zi) denote the coordinates of the ith node, which are listed in

Table 6. Boundary conditions are given to preserve symmetry with respect

to yz-plane. Nodes 1, 2, 3, and 7 are fixed in x-direction, node 2 is fixed in

y-direction, and nodes 2, 5, 6, and 7 are fixed in z-direction. All members
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Figure 12: Roof model 1; (a) plan, (b) elevation, (c) diagonal view; solid line: initial shape,

dotted line: deformed shape.
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except the flexible member are modeled as truss element with the cross-

sectional area 0.02194 m2, which is sufficiently large so as to concentrate the

deformation at the flexible member. The triangular planes 2-3-5 and 2-3-6

represent the walls, and the roof consists of triangular planes 4-3-5 and 4-3-6.

By application of forced downward displacement at node 1, node 7 moves in

x-direction, and the distance between nodes 5 and 6 decreases; consequently,

the top node 4 moves upward. A vertical load 25.0 kN and a lateral load

5.0 kN, respectively, are given at node 4 in addition to the gravity load of

1.0G and the horizontal load of 0.2G, where the vertical load is estimated

from the covering area and the load per unit area of the roof. The same

loading history is given as the column-type model; i.e., gravity is applied in

the period 0 ≤ t ≤ 1, shape transformation is carried out in 1 ≤ t ≤ 2, and

lateral load in y-direction is applied in 2 ≤ t ≤ 3.

This model, called model 1-1, is unstable before fixing node 1, which is

pulled down to the xy-plane to move node 4 upward from Z4 = 5.0 to 5.7115

(m). The z-directional reaction force Rz
1 of node 1 is plotted in solid line

in Fig. 13. Note that Rz
1 at the final state of shape transformation (t = 2)

corresponds to the weight of members 1-2 and 1-7, which are collinear on

xy-plane.

Next we consider a compliant model, called model 1-2, that has a thin

member with cross-sectional area 2.194 × 10−7 m2 between nodes 2 and 7.

Note that the cross sectional area is 1/100000 of that of the stiff members.

This structure is stable without fixing node 1. The thin member is to be

manufactured as a spring with extensional stiffness 9.215 N/mm, which is

sufficiently small as a practically available coil spring.
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Figure 13: Reaction force Rz
1 of node 1 of model 1; solid line: unstable model 1-1, dashed

line: compliant model 1-2.

Let Ui = (Ux
i , Uy

i , U z
i ) denote the displacement vector of node i. The

displacements (m) of nodes 4, 5, and 6 at t = 1 due to self-weight and vertical

load, which are simply denoted as self-weight for brevity, are sufficiently

small. The reaction force Rz
1 of model 1-2 is plotted in dashed line in Fig. 13,

which indicates that the maximum absolute value of Rz
1 becomes larger if

we assign a thin member. However, because Rz
1 at the final state is positive,

this state can be stabilized easily by assigning an obstacle slightly below

xy-plane to terminate deformation beyond the self-equilibrium state before

t = 2. Hence, the initial state can be recovered by applying a small upward

force. The maximum absolute value of stress in the truss members is 12.36

MPa, which is about 1/25 of the yield stress of a steel material.

We next consider roof model 2 as shown in Fig. 14, which is unstable,

and a pair of members 1-5 and 1-6 are located on xy-plane. The boundary

conditions are the same as model 1 except node 1 that is fixed in x- and

z-directions. This model is designated as model 2-1. If we pull node 1 in
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Figure 14: Roof model 2; (a) plan, (b) elevation, (c) diagonal view; solid line: initial shape,

dotted line: deformed shape.
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y-direction on xy-plane, then the distance between nodes 5 and 6 increases;

consequently, the top node 4 moves downward, which is opposite to model

1-1, to the shape shown in dotted lines in Fig. 14. Since Z4 = 5.7115 at

the final state after shape transformation of model 1-1, the initial shape of

model 2-1 is given as Z4 = 5.7115 to demonstrate the reverse process. The

y-directional reaction Ry
1 of node 1 is plotted in solid line in Fig. 15, which

shows that Ry
1 is larger than |Rz

1| of model 1-1.

A thin member is next placed between nodes 5 and 6 to stabilize the

mechanism. Let As denote the cross-sectional area of the thin member. For

Model 2-2, As = 2.194 × 10−5 m2 that is equivalent to a spring with exten-

sional stiffness 460.7 N/mm, which is in a practical range. Note that the

cross sectional area is 1/1000 of that of the stiff members. For this model,

the z-directional displacement U z
4 of node 4 at t = 1 is −0.2757 m. All nodal

displacements at t = 1 are compensated to update the initial shape to obtain

the reaction force as plotted in dashed line in Fig. 15, which shows that the

maximum absolute value of reaction, denoted by R
y(max)
1 , increases as a re-

sult of adding a thin member. Therefore, we decrease As to 1.097× 10−5 m2,

which is called model 2-3, to obtain the chain line in Fig. 15 that has less

R
y(max)
1 than the unstable model 2-1. Note that the cross sectional area is

1/2000 of that of the stiff members. Furthermore, it is important to note that

no reaction force is needed at node 1 at t = 1. Variation of U z
4 is plotted with

respect to t in Fig. 16. The displacement at t = 1 is 0.1558 m, which can be

reduced if we allow larger reaction force. Alternatively, the initial location of

node 4 may be adjusted so that it is placed at the desired location at t = 1.

The maximum absolute value of stress in the truss members is 5.17 MPa in
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Figure 17: Illustration of effect of self-weight on reaction force of a two-bar truss; (a)

deformation without self-weight, (b) deformation with self-weight.

the members connecting nodes 2 and 5, and 2 and 6. Note that the value is

about 1/60 of the yield stress of a steel material.

By contrast, if we consider model 2-4 without the self-weight for model

2-3, Ry
1 becomes as plotted in dotted line in Fig. 15. Therefore, the maximum

reaction force can be reduced by incorporating the self-weight.

Fig. 17 illustrates the reduction of reaction force for a forced deformation

due to self-weight of a symmetric two-bar truss. The inclination angle of the

rigid bars decreases from θ at the undeformed initial state to θ∗ at a deformed

state, as shown in Fig. 17(a), where the reaction force and axial force of the

thin member are P and N , respectively; i.e.,

P = 2N tan θ∗ (3)

Fig. 17(b) illustrates the same deformation considering self-weight. The un-
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stressed state is adjusted so that the angle is θ after application of self-weight

G. The axial force of the thin member at this state is denoted by αN . Assum-

ing linearity between axial force and axial deformation of the thin member,

the increase of axial force from the initial state to the deformed state with

the angle θ∗ has the same value N as the case without self-weight; i.e., the

axial force at the deformed state is (1 + α)N , where the reaction force is

denoted by P ∗.

Define β by

β =
tan θ∗

tan θ
(4)

which is less than 1. Then, the axial force N∗ of the thin member in equilib-

rium with the self-weight, excluding P ∗, after deformation is found as

N∗ =
G

2 tan θ∗

=
G

2β tan θ

=
αN

β

> αN

(5)

Hence, the axial force in equilibrium with the self-weight increases due to

deformation. The reaction force P ∗ is written as

P ∗ = 2(1 + α)N tan θ∗ − G

= 2(1 + α)N tan θ∗ − 2αN tan θ

= 2

(
1 + α − α

β

)
N tan θ∗

= P + 2α

(
1 − 1

β

)
N tan θ∗

< P

(6)
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Figure 18: Relation between ∆Uy
1 and axial force of thin member 5-6 of model 2-3; solid

line: total axial force, dashed line: axial force due to self-weight.

This way, the reaction force decreases due to existence of self-weight, if the

contribution of self-weight on the axial force increases.

In order to investigate more details of this property for model 2-3, the

axial force N5−6 of thin member 5-6 of model 2-3 is plotted with respect to

Uy
1 in Fig. 18. The solid line shows the relation between the incremental

displacement ∆Uy
1 from t = 1 and N5−6 for 1 ≤ t ≤ 2 of model 2-3, and the

dashed line is the value of N5−6, denoted by N0
5−6, that satisfies equilibrium

against the self-weight without reaction force Ry
1. Therefore, N5−6 − N0

5−6

corresponds to the axial force due to forced displacement ∆Uy
1 . Note that

the axial forces of members connected to nodes 5 and 6 also have effect on

the axial forces of members 1-5 and 1-6, and accordingly, on Ry
1; hence, the

overall properties can be characterized by the axial force of member 5-6 that

directly correspond to the snapthrough behavior. As seen from Fig. 18, Ry
1

decreases owing to the self-weight, because N0
5−6 is an increasing function of

Uy
1 , which means that the contribution of self-weight increases as deformation
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proceeds. Fig. 19 shows the relation between Uy
1 and N0

5−6 for various initial

height Z4 = 5, 6, and 7 m of model 2-3. Note that N0
5−6 is an increasing

function of Uy
1 for all cases, and a smaller height leads to a larger axial force.

This way, the self-weight may be effectively utilized to reduce the maximum

force needed for shape transformation of a shallow roof.

5. Conclusions

An optimization approach has been presented for designing retractable

structures utilizing bistable compliant mechanisms exhibiting snapthrough

behavior. The parameters, including nodal coordinates and member cross-

sectional areas, of a column-type mechanism are optimized to realize target

deformation using a heuristic approach called tabu search. The properties

of the optimized column-type mechanism have been extensively investigated

through geometrically nonlinear analysis considering self-weight and lateral
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design load. It is important to note that the required input force and stiffness

against lateral loads can be controlled independently by modifying stiffnesses

of different sets of members.

The characteristics of roof-type bistable compliant mechanism have also

been compared with those of unstable link mechanisms. It has been shown

that the maximum load for shape transformation can be reduced utilizing the

flexibility of the mechanism and self-weight of the structure. This property

has been clearly demonstrated through a simple example of a two-bar truss.
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Appendix

Algorithm of tabu search is summarized as follows:

Step 1 Randomly generate a seed solution Ĵ, and initialize the tabu list T as

T = {Ĵ}. Evaluate the objective function and initialize the incumbent

optimal objective value as F opt = F (Ĵ).

Step 2 Generate a set of q neighborhood solutions N = {JN
1 , . . . ,JN

q } from

Ĵ, and evaluate the objective value of each solution.

Step 3 Among the solutions in the set N , select the best one that has the

maximum value of F (JN
j ), and is not included in the list T . Assign the

best solution as the new seed solution Ĵ.

Step 4 Update the incumbent optimal objective value as F opt = F (Ĵ), if

F (Ĵ) > F opt.

Step 5 Add Ĵ to the list T . Remove the oldest solution from T , if the

number of solutions in T exceeds the specified limit.

Step 6 Output F opt and the corresponding optimal solution, if the number

of iterations reaches the specified value; otherwise, go to Step 2.
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