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ABSTRACT 

A new approach is presented for evaluating seismic responses of arch-type long-span structures. The responses 
are estimated by a series of pushover analyses utilizing multiple load patterns as linear combinations of 
dominant modes. The representative displacement and acceleration are defined in a general manner without 
using the base shear or roof displacement. The eigenmodes of initial elastic structure are used for assembling 
the equivalent static loads to take the snapshot of the deformed structure at the maximum deformation. The 
damping due to plastic energy dissipation is modeled by equivalent linearization for inelastic systems. Accuracy 
of the proposed method, especially for force and stress responses, is demonstrated in the numerical example of 
an arch-type long-span truss. 
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1. INTRODUCTION 

In the seismic design process of long-span 
structures, including arches and latticed shells, the 
maximum values of responses such as 
displacements and stresses under seismic motions 
are evaluated using time-history analysis. However, 
a time-history analysis can confirm the responses to 
the specific motion; accordingly, it does not reveal 
general and average properties of the seismic 
responses of the structure, although it demands a 
substantial computational cost. In contrast, for 
building structures, a static analysis called pushover 
analysis is used to evaluate the inelastic responses 
under monotonically increasing seismic loads. 
Therefore, it is convenient to use pushover analysis 
for long-span structures in a similar manner as 
building structures.  

It is important that several dominant modes should 
be considered in evaluation of seismic responses of 
long-span structures [1,2]. In contrast, the lowest 
mode dominates in building structures. However, 
several methods have recently been developed for 
incorporating higher modes for seismic design of 
building structures. Hence, we can extend such 

methods to be applicable to long-span structures.  

If the responses are in elastic range, the maximum 
responses can be obtained using the Square-Root-
of-Sum-of-Squares (SRSS) rule, or preferably the 
Complete Quadratic Combination (CQC) rule [3], 
when the frequencies of the dominant modes are 
closely spaced. For inelastic systems, however, a 
nonlinear static pushover analysis with fixed pattern 
is usually adopted. Three problems then arise in this 
procedure: (1) how to deal with the change of mode 
shape after redistribution of inertia force due to 
plastification, (2) how to determine the rule for 
modal combination, and (3) when to terminate the 
process of pushover analysis.  

For the first problem, several methods of adaptive 
pushover analysis have been proposed to modify 
the load pattern after plastification [4-6]. There are 
two approaches to overcome the second problem: 
(a) combine modes to define the static load pattern 
before pushover analysis, (b) combine the response 
against each dominant mode after pushover analysis. 
Various methodologies have been presented for 
incorporating multiple modes, or the change of load 
distribution due to plastification of building frames. 
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Chopra and Goel [7] proposed a method of 
multimodal pushover analysis (MPA), where the 
responses of several modes are computed by the 
pushover analysis that are combined using the 
SRSS rule; however, in this method, the response of 
a less dominant mode remains in an elastic range 
and may be underestimated in prediction of 
elastoplastic responses. MPA has also been 
extended to three-dimensional structures utilizing 
three-dimensional version of CQC method [8], and 
to estimation of member forces by local correction 
utilizing the stress-strain relation [9]. However, it is 
very difficult to estimate the maximum response 
induced by seismic motions by a pushover analysis 
of an only one load pattern.  

Some parametric studies have been done to find the 
optimal combination coefficients for response 
prediction [10,11]. Kunnath [10] presented a 
method to take a snapshot of the deformation at 
which a response quantity has the maximum value 
using three modes. In FEMA-356 [12], it is 
recommended to use more than two patterns among 
the three patterns of uniform, triangular, and modal 
combination by SRSS or CQC rule. Eurocode 8 
[13] also recommends the use of multiple load 
patterns.  

Regarding the third problem above, the capacity 
spectrum method (CSM) is usually used for 
incorporating the energy dissipation after 
plastification [14,15]. Similar approach called 
Calculation of Response and Limit Strength is used 
in Japan based on Notification 1457 of the Ministry 
of Land, Infrastructure and Transport (MLIT). 

For long-span structures, Nakazawa et al. [16] 
presented modal pushover analysis and adaptive 
modal pushover analysis. Kato et al. [17] applied 
MPA to latticed domes. However, it is difficult to 
define the representative displacement and 
acceleration (force) for long-span structures, 
because their vertical components against 
horizontal seismic motions should be appropriately 
incorporated; hence, the base shear and roof 
displacement in horizontal direction cannot be used. 
Uchida et al. [18] and Zhang et al. [19] presented a 
general definition of the representative 
displacement and acceleration that are applicable to 
long-span structures, which have multiple dominant 
modes.  

In this paper, we present a general approach to 

evaluation of mean-maximum responses of long-
span structures utilizing several load patterns. The 
representative displacement and acceleration are 
defined in a general manner without using roof 
displacement or base shear. It is shown that the 
maximum responses, including forces and stresses, 
of a long-span arch-type truss are successfully 
evaluated by carrying out static pushover analyses 
several times. 

2. DEFINITION OF DOMINANT MODES 

Consider a structure subjected to base acceleration 

g ( )u t , which is a function of time t . The mass 

matrix, damping matrix, and stiffness matrix are 
denoted by  M , C , and K , respectively. The 
vectors of relative displacement, velocity, and 
acceleration from the base are denoted by ( )tu , 

( )tu , and ( )tu , respectively. Let I  denote the 
vector, in which the components corresponding to 
the input direction are 1, and the remaining 
components are 0. Then, the equation of motion is 
written as  

g( ) ( ) ( ) ( )t t t u t   Mu Cu Ku MI     (1) 

Let n  denote the n th mode of undamped free 
vibration, which is orthonormalized by 

i j ij  M          (2) 

where ij  is the Kronecker delta. The participation 

factor n  and the effective modal mass nM  of the 

n th mode are defined as 

n n   MI ,  2( )n nM        (3) 

The time history of relative displacement and 
acceleration vectors ( )tu  and ( )tu , respectively, 
are approximated using the modal responses 

( )n nD t  and ( )n nA t  with the coefficients ( )nD t  

and ( )nA t  as  

1

( ) ( )
N

n n n
n

t D t


  u , 
1

( ) ( )
N

n n n
n

t A t


  u  (4a,b) 

where we assume, for simplicity, that N  lowest 
modes are used. 



JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES: J. IASS 

 3 

In the current practical design process, the 
magnitude and dynamic characteristics of the 
seismic motions are specified by the design 
acceleration spectrum. Let n  denote the n th 
natural circular frequency. The design acceleration 
response spectrum is given as a function of natural 

circular frequency as a ( )nS  . Then, the pseudo-

displacement response spectrum d ( )nS   is defined 
as  

d a
2

1
( ) ( )n n

n

S S 


        (5) 

The effective mass ratio n  and the maximum 

strain energy nE  of the n th mode are defined as 

n
n

M 
I MI

, d 21
( ( ))

2n n n nE M S    (6) 

The mode with large values of nE  and n  are 
selected as dominant modes. 

Let 0nf  denote the static load vector corresponding 

to the n th mode. The static seismic load 0f  is 

defined as a linear combination of 0nf  with 

coefficients n  as 

0 0
1

N

n n
n




f f , a
0 ( )n n n nS   f M   (7) 

If damping is not very large, any deformed shape of 
an elastic structure can be expressed as a linear 
combination of dominant modes, which can be 
found by applying the seismic load 0f  defined in 
Eq.(7) statically. Therefore, the process of finding 
the maximum value of each response displacement 
component is reduced to that of determining the 
coefficients n  appropriately to take the snapshot 
of the deformed shape at the maximum 
displacement. 

3. ESTIMATION OF INELASTIC RESPONSE 
USING EQUIVALENT LINEARIZATION 

3.1 Multimodal Pushover Analysis 

In most of the static estimation methods of inelastic 
dynamic responses, including MPA, the modal 
responses are computed independently using a 

nonlinear pushover analysis with incremental load 
coefficient, and they are combined using the SRSS 
rule. The roof displacement and base shear are used 
as the representative displacement and force 
(acceleration) for a regular building frame to draw 
the force-displacement curve. However, for long-
span structures, vertical displacements and forces 
sometimes dominate over the horizontal ones; 
hence, more appropriate representative 
displacement and force should be defined. 

Let iu  and ia  denote the vectors of nodal 
displacements and accelerations at the i th step of 

pushover analysis, where ia  is obtained by dividing 
the nodal force by the corresponding nodal mass. 

The vector iu  is normalized to a mode 0
iu  as 

0

1i i

i i
u u

u Mu
        (8) 

i.e., 0
iu  satisfies the following normalization 

condition: 

0 0 1i i u Mu           (9) 

The participation factor i  corresponding to 0
iu  is 

given as 

0
i i  u MI          (10) 

Assuming that 0
iu  is the vibration mode at the i th 

step, the generalized displacement and acceleration, 

denoted by u
ic  and a

ic , respectively, at the i th step 

are obtained by premultiplying 0
iu M  to iu  and ia  

as 

u 0
i i ic  u Mu , a 0

i i ic  u Ma     (11) 

Furthermore, iu  and ia  are approximated by 0
iu  in 

a similar manner as Eq.(4a,b) as 

0
i i i iD u u ,  0

i i i iA a u     (12) 

with the representative displacement iD  and 

acceleration iA . From Eqs.(9), (11), and (12), we 
obtain 
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u
i

i
i

c
D 


, a

i
i

i

c
A 


       (13) 

Accordingly, the equivalent period eq
iT  is defined as 

eq 2
i

i
i

D
T

A
         (14) 

The proposed approach is similar to the 
displacement-based adaptive CSM [4], because the 
actual displacements are used for computing 
representative responses. However, important point 
here is that the representative acceleration is 
defined without using the base shear, because 
higher modes of an arch do not have large 
horizontal base shear. 

3.2 Estimation of Inelastic Response 

The energy dissipation due to plastification is 
incorporated using the technique of equivalent 

linearization. Pushover curve between iD  and iA  
is approximated by a bilinear relation. 

Let yD  and yA  denote the values of iD  and iA  at 

the yield point when the first plastification occurs. 
The equivalent damping coefficient eqh  is defined 

using the plasticity factor y/iD D   as 

p
eq eqh h h  , p

eq

2( 1)(1 )

(1 )
h

 
  

 


 
  (15) 

where h  is the initial damping ratio, p
eqh  is the 

equivalent damping ratio due to plastification, and 
  is the ratio of stiffness after yielding to the initial 
stiffness. The parameter   is the damping 
modification factor in ATC-40 [19], which is 
classified to three types A, B, and C depending on 
the ductility of the structure. 

As demonstrated in the numerical examples in the 
next section, it is difficult to estimate the mean-
maximum dynamic responses under several seismic 
motions using a single pushover analysis especially 
for the case with multiple dominant modes. 
Therefore, we carry out pushover analyses using 
several load patterns defined by the coefficients 

1( , , )N   and find the maximum values among 
those responses.  

The inelastic responses are evaluated as follows: 

[Step 1:] Define p  load patterns by the coefficients 
( ) ( )
1( , , )k k

N   ( 1, , )k p  . Initialize the load-

pattern number as 1k  . 

[Step 2:] Carry out pushover analysis for the k th 
load pattern. 

[Step 2-1:] Initialize the step number as 0i  . 

[Step 2-2:] Increase the load factor for the k th load 
pattern by the specified value, and let 1i i  . 

Update ( , )i iD A  in the representative displacement-
acceleration plane. 

[Step 2-3:] Go to Step 2-6, if ( , )i iD A  goes beyond 
d a( , )S S . Go to Step 2-2 if all members are in 

elastic range; otherwise, define the yield point as 

y y( , ) ( , )i iD A D A . 

[Step 2-4:] Increase the load factor, and let 
1i i  . Compute the plasticity factor from the 

bilinear relation. 

[Step 2-5:] Let eq
i  denote the circular natural 

frequency corresponding to eq
iT . Compute  ,  , 

eqh , and re-calculate the response spectra d
eq( )iS   

and a
eq( )iS  , which depend on the damping 

coefficient. Go to Step 2-4, if ( , )i iD A  does not go 

beyond d a( , )S S . 

[Step 2-6:] Find the intersection point between the 
pushover curve and response spectrum, and output 
the absolute value of each response, which is 

represented by s( )k
jR  for the j th response quantity, 

at the intersection point. 

[Step 3:] Let 1k k   and go to Step 2, if k p . 
Otherwise, find the maximum value among the 

responses to p  load patterns s( )k
jR  ( 1, , )k p   for 

each response quantity. 

This way, the approximate maximum responses can 
be found if the load patterns are appropriately 
defined. 

The use of elastic eigenmodes for inelastic 
deformation does not mean that the eigenmodes do 
not change after yielding. The modes are used only 
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as bases of expanding the deformation and 
acceleration. 

 

Figure 1.  An arch-type pin-jointed truss model. 
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Figure 2.  Member groups. 

Table 1.  Cross-sectional areas of member groups. 

Member 
group 

Cross-
sectional area 

( 2m ) 

Member 
group 

Cross-
sectional 

area ( 2m ) 
Chord-1 35.341 10  Strut-1 31.524 10
Chord-2 34.835 10  Strut-2 31.083 10
Chord-3 36.333 10  Strut-3 31.524 10
Col-side 39.839 10  Col-mid 31.524 10
 

4. NUMERICAL EXAMPLES  

4.1 Arch-type truss model 

Maximum responses of an arch-type pin-jointed 
truss as shown in Fig. 1 are found for verification of 
the proposed method. The model is a slight 
modification of the arch-type truss in [21]. The 
lower columns are also modeled as pin-jointed 
trusses. The span length is 80 m , the open angle of 
the lower circle of the arch is 2 / 9 , and the 
difference between the radii of the lower and upper 
circles is 2.0 m . The height and width of the 
column are 4.5 m  and 2.0 m , respectively.  

The members of arch and column are classified to 
nine groups as shown in Fig.2. The cross-sectional 
areas of member groups are listed in Table 1, except 

the rigid members connected to the pin support, for 
which sufficiently large areas are given. 

The material of all members is steel, where the 

elastic modulus is 2205.0 kN/mm , the yield stress 

is 2235.0 N/mm , and the hardening coefficient is 
1/100. The nodal masses are 1800.0 kg  for four 
nodes at the exterior side of each column, and 
1600.0 kg  for the lower nodes of arch. Note that 
the nodal mass is assumed to include the mass of 
steel members.  

The frame analysis program OpenSees Ver. 2.2.2 
[22] is used for inelastic static/dynamic analysis. 
The arch-type truss is subjected to horizontal 
excitation. The responses due to vertical excitation 
and self-weight are not considered for simple 
presentation of the proposed method. The Rayleigh 
damping is used with the damping ratio 0.02 for the 
two lowest antisymmetric modes that are excited by 
horizontal motion.  

The design acceleration response spectrum is 
specified by Notification 1461 of MLIT, Japan, 
corresponding to the performance level of life 
safety. The amplification factor G  for the ground 
of second rank and the definition of F  defined in 
Notification 1457 of MLIT is used. Then the design 

response acceleration spectrum aS  2(m/s )  is 
defined as follows for a ground of second rank: 

a
0S aFA , 

eq

1.5

1 10
F

h



,       

eq

0 eq

eq eq

0.96 9 0.16

0.16 0.864

2.074 / 0.864

2.4

T T

A T

T T

  
  
 

  (16) 

where eqT  (s) is the equivalent natural period, 0A  
2(m/s )  is the acceleration response spectrum for 

0.05h  , and a  is the intensity factor, which is 
equal to 7.5 in the following examples. 

The three lowest antisymmetric eigenmodes are 
illustrated in Fig. 3. Note that the 2nd and 4th 
modes are symmetric with respect to the center axis 
and are not excited by a horizontal motion. The 

values of nT , n , n , a
nS , and nE  of each mode is 

listed in Table 2. As seen from Table 2, the sum of 
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n  of the 1st and 3rd modes is 0.8871, which is 

close to the total sum 1.0, and n  of the 5th mode is 
very small. However, as shown in the following 
example, the 5th mode may be indispensable for 
evaluation of force and stress responses. Therefore, 
we consider the three lowest antisymmetric modes 
in the following. 

1st   

3rd   

5th   

Figure 3.  Three lowest antisymmetric eigenmodes. 

Table 2.  Values of nT  (s), n , n , a
nS  2( / )m s , and 

nE  (kNm) of the arch-type truss. 

Mode 
nT  n  n  a

nS  nE  

1 1.054 216.8 0.5874 15.37 3999
2 0.6955 0.0 0.0 --- --- 
3 0.3420 154.8 0.2997 18.75 319.7
4 0.2758 0.0 0.0 --- --- 
5 0.1800 56.62 0.04007 17.14 9.900
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Figure 4.  Design acceleration response spectrum and 
response spectra of artificial motions for h 0.02 , 0.05, 
and 0.10. 

4.2 Time-History Analysis 

In order to investigate accuracy of the pushover 
analysis, dynamic responses are found for ten 

artificial ground motions that are compatible to the 
acceleration response spectrum in Eqs.(16) with 

0.05h  . The waves are generated using the 
standard approach of assemblage of sinusoidal 
waves. The response spectra for various damping 
ratios are shown in Fig. 4. 

The Newmark-   method with 1 / 4   is used for 

analysis with the time increment 0.01s . Fig. 5(a) 
and (b) show the modal displacement response 

n nD , defined in Eq.(4), for modes 1 and 3 for two 
of the ten artificial waves. The response for mode 5 
is omitted, because it is very small. As is seen, the 
lowest mode dominates in displacement response 
even in the inelastic range. 

Fig. 6 shows the modal acceleration response n nA , 
defined in Eq.(4), for modes 1, 3, and 5 for two of 
the ten artificial waves. As is seen, the higher 
modes including mode 5 dominate in the 
acceleration response. Similar properties can be 
observed for wave 2. 
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Figure 5.  Time histories of modal displacement 
responses; solid line: mode 1, dotted line: mode 3; (a) 
wave 1, (b) wave 2. 
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Figure 6.  Time histories of modal acceleration 
responses for wave 1; (a) mode 1, (b) mode 3, (c) mode 5. 
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Figure 7.  Relation between horizontal displacement of 
center and base shear. 
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Figure 8.  Relation between generalized displacement 
and acceleration. 

 

4.3 Pushover analysis 

We first carry out pushover analysis using the load 
pattern proportional to each of modes 1, 3, and 5, 
and investigate the applicability of bilinear 
approximation of the pushover curve. The initial 
damping ratio is 0.02, and the Type-A in ATC-40 
[21] with stable hysteresis is used for definition of 
damping modification factor  , because member 
buckling is ignored and the stress-strain relation is 
assumed to have a full loop.  

Fig. 7 shows the relation between the horizontal 
displacement of the center node and the base shear 
for modes 1, 3, 5, and their summation 

1 3 5( , , ) (1,1,1)    . Fig. 8 shows the relation 
between the representative displacement and 
acceleration for the same load patterns as Fig. 7. As 
is seen from these figures, each curve may be 
approximated by a bilinear relation with good 
accuracy. However, the rates of plasticity are 
different depending on the load pattern; therefore, it 
will be difficult to combine inelastic responses of 
each mode, as demonstrated in the numerical 
examples, to obtain the total responses. Note that 
the yield point is numerically detected in the 
following pushover analysis as the point where the 

tangent stiffness in the ( , )i iD A  space is less than 
half of its initial value.  

Furthermore, the contributions of higher modes in 
Fig. 8 are larger than those in Fig. 7, because the 
higher modes have mainly vertical displacements 
and do not contribute to the base shear, and they do 
not yield simultaneously. 

It is not straightforward to define the initial 
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damping ratio h  in Eq.(15) for a multimodal 
pushover analysis, because the generalized 
displacement and acceleration are combinations of 
multiple modes that have different damping ratios. 
In the example below, the smallest value 0.02 is 
used in the process of equivalent linearization. 

Let d
iR  denote the mean value of the maximum 

absolute value of the i th response quantity under 
ten seismic motions. We carry out pushover 
analyses with p  different load patterns to obtain 

the absolute values of static responses s( )k
iR  

( 1, , )k p  . Then, approximation ratio iC  is 
defined as follows for the i th response quantity: 

s( )

dmax
k

i
i k

i

R
C

R
        (17) 

The pushover analysis overestimates 
(underestimates) the response if 1iC   ( 1iC  ), 

and good approximation is achieved if 1iC  . 
Since approximation ratios of horizontal 
displacements (H-disp.), vertical displacements (V-
disp), and stresses are different depending on 
displacement components and members over the 
total structure, the mean, maximum, minimum, and 
standard deviation are computed for those responses, 
respectively. 

We first discretize the coefficients 1 , 3 , and 5  
into five values ( 1.0, 0.5,0.0,0.5,1.0)  . Therefore, 

we have 35 125  load patterns. The results for all 
load patterns are listed in the first part, indicated by 
‘All’, in Table 3. Note that the four vertical 
displacements that are less than 0.01 m are 
excluded, and only 116 stresses that are greater than 
a half of the yield stress is evaluated.  

As is seen, the pushover analysis overestimates 
some displacement and stress components, and the 
standard deviation is rather large, although a good 
accuracy is achieved for the base shear. 
Furthermore, it is not practically acceptable to carry 
out analysis 125 times. Therefore, we reduce the 
number of sampling values to three as 
( 1.0,0.0,1.0) ; i.e., the total number is reduced to 

33 27 . 

 

Table 3.  Results of pushover analysis of inelastic 
structure. 

  H-disp. V-disp. Stress Base 
shear 

All Mean 0.9687 0.8827 1.093 1.0277 
 Std. 

dev 
0.1530 0.1901 0.0978  

 Max. 1.344 1.295 1.346  
 Min. 0.8342 0.6998 0.8473  
Case 
13 

Mean 0.8977 0.8211 0.9367 0.9961 

 Std. 
dev 

0.1037 0.1169 0.0934  

 Max. 1.172 1.068 1.077  
 Min. 0.7894 0.6899 0.7030  
Case 
9 

Mean 0.8977 0.8210 0.9084 0.9961 

 Std. 
dev 

0.1037 0.1169 0.1433  

 Max. 1.172 1.068 1.077  
 Min. 0.7894 0.6899 0.4438  
Mode 
1 

Mean 0.7043 0.7142 0.6951 0.6865 

 Std. 
dev 

0.0097 0.0181 0.2386  

 Max. 0.7199 0.7430 0.9697  
 Min. 0.6609 0.6843 0.0135  
Mode 
3 

Mean 0.0879 0.1319 0.4340 0.7733 

 Std. 
dev 

0.0482 0.0773 0.2435  

 Max. 0.1892 0.2395 0.9529  
 Min. 0.0396 0.0005 0.0098  
Mode 
5 

Mean 0.0049 0.0199 0.0928 0.1117 

 Std. 
dev 

0.0035 0.0100 0.0647  

 Max. 0.0186 0.0367 0.2400  
 Min. 0.0000 0.0001 0.0011  
MPA Mean 0.7114 0.7210 0.8872 1.040 
 Std. 

dev 
0.0102 0.0688 0.1159  

 Max. 0.7261 0,7670 1.260  
 Min. 0.6822 0.2818 0.6591  

 

It should also be noted that there are many identical 
load patterns in the set of 27 patterns; e.g., 

1 3 5( , , ) (1,0, 1)      and ( 1,0,1)  lead to the 
same result for the symmetric arch-type truss. 
Therefore, the load patterns can be reduced to 13 to 
obtain the results in the second part (Case 13) of 
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Table 3. In this case, all the responses are slightly 
smaller than those for the case ‘All’ with five 
sampling values. 

In order to further reduce the number of analyses, 
we assume that the 1st mode should always be 
included. Hence, the load patterns are reduced to 
nine as (1, 1, 1), (1, 1, 0), (1,1, 1) , (1, 0, 1), (1, 0, 
0), (1,0, 1) , (1, 1,1) , (1, 1,0) , (1, 1, 1)  . The 
results are listed in the third part (Case 9) of Table 3, 
which are almost the same as Case 13. This 
indicates that the 1st mode should be included in 
the load pattern at the maximum deformation even 
for the evaluation of maximum stresses and base 
shear. The single-mode responses are also listed as 
‘Mode 1, 3, 5’ in Table 3, which obviously do not 
have good accuracy. The MPA [7] is carried out for 
comparison purpose, where the modal responses 
obtained by the load patterns (1,0,0), (0,1,0), and 
(0,0,1) are combined by the SRSS rule. As shown 
in the last part of Table 3, the MPA underestimate 
displacements.  

Table 4.  Comparison of estimated stresses 2(N/mm )  

and its ratio to dynamic response of yielded members. 

 All Case 13 Case 9 
 stress ratio Stress ratio Stress ratio 
a 256.4 1.054 255.4 1.050 255.4 1.050 
b 270.3 1.083 269.4 1.077 269.4 1.077 
c 298.1 1.202 256.1 1.033 256.1 1.033 
 Mode 1 Mode 3 Mode 5 
 Stress Ratio Stress Ratio Stress Ratio 
a 146.1 0.6007 153.6 0.6314 19.41 0.07980
b 227.4 0.9089 220.8 0.8826 24.40 0.09750
c 146.9 0.5922 240.3 0.9691 47.79 0.1928 
 MPA MPA2   
 Stress Ratio Stress Ratio   
a 211.0 0.8676 211.0 0.8676   
b 315.3 1.260 235.8 0.9425   
c 282.3 1.139 235.5 0.9497   

 

In order to investigate more details of the stress 
responses, the stresses of the yielded members ‘a’, 
‘b’, and ‘c’, which are indicated in Fig. 2, are listed 
in Table 4. Note that the yielding is detected by the 
mean values of the dynamic responses. As is seen, 
mode 1 dominates in the stress responses of 
member ‘b’, while modes 3 dominates for members 
‘b’ and ‘c’. Member ‘c’ yields for mode 3, and the 
remaining single-mode responses are all in elastic 

range. Furthermore, mode 5 cannot be neglected, 
because it has some effect on member ‘c’, although 
it does not dominate in any of these three members. 
Consequently, the MPA overestimates the stresses, 
because it cannot incorporate the reduction of 
stiffness due to yielding in the process of SRSS 
combination. In contrast, Cases 13 and 9 can 
estimate the stresses with good accuracy, because 
yielding is appropriately taken into account in the 
process of pushover analysis utilizing the load 
pattern with combined modes.  

The maximum value 1.260 for MPA in Table 3 
indicates that the stress of a yielded member is 
overestimated, while the minimum value 0.7030 for 
Case 9 corresponds to underestimate of the stress of 
a member with small value. It should be noted that 
accuracy of stresses of yielded members is more 
important than that with small values. If we use the 
extended MPA, which estimates stresses by local 
correction utilizing the stress-strain relation [9], we 
considerably underestimate the stresses as shown in 
the last column of MPA2 in Table 4. 

 

5. CONCLUSIONS 

A static analysis procedure has been presented for 
evaluation of the mean-maximum inelastic seismic 
responses of long-span structures subjected to 
seismic motions. Representative displacement and 
acceleration are defined assuming that the 
displacement response at each step of pushover 
analysis represents a vibration mode. This way, the 
representative responses can be defined in a general 
manner for long-span structures for which the base 
shear and roof displacement that are used for 
regular building frames are not applicable. 

Pushover analyses are carried out several times for 
the specified set of load patterns, and inelastic 
responses are found using equivalent linearization. 
Since more than one mode dominate in the seismic 
responses of long-span structures, each load pattern 
is defined as a combination of multiple modes. 
However, the number of analyses will very large if 
many modes dominate; therefore, we restrict 
application of our approach to the case where at 
most three modes dominates.  

Numerical studies on an arch-type truss model have 
shown that the proposed method has good 
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performance in estimating the mean-maximum 
inelastic responses including stresses and base shear. 
However, further investigation is needed to find 
appropriate set of modal combinations to reduce the 
number of load patterns. The methods of design of 
experiments can be effectively used for this purpose. 
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