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Abstract A random sampling approach is presented
for worst-case design of structures. Uncertainties are
considered in structural and material parameters, which
are assumed to exist in intervals with prescribed upper
and lower bounds. Constraints are given for the worst
responses that are found by solving anti-optimization
problems. Optimal cross-sections are then selected from
the list of available sections. The regions of uncertainty
of parameters are discretized into integer values to for-
mulate the hybrid problem of optimization and anti-
optimization as an integer programming problem. The
accuracy of solution is defined based on the order of the
objective value; hence, a random sampling approach is
successfully applied to obtain optimal and anti-optimal
solutions within the prescribed accuracy. It is shown in
the numerical examples that a good approximate opti-
mal solution is found by random sampling with small
number of analyses.

Keywords Optimization · Random sampling ·
Anti-optimization · Worst-case design · Building frame

1 Introduction

In the conventional structural optimization methods,
the parameters representing the structural and mate-
rial properties are given deterministically. However, in
the practical design process, uncertainty in those pa-
rameters should be appropriately taken into account
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(Elishakoff and Ohsaki, 2010). There are various ap-
proaches to such purpose; namely, reliability-based ap-
proach (Frangopol, 1995; Valdebenito and Scuëller, 2010;
Noh et al., 2009), probabilistic approach (Augusti et al.,
1984), worst-case design (Rustem and Howe, 2002), and
robust design (Gu et al., 2000; Kanno and Guo, 2010).
In this paper, we utilize the concept of unknown-but-
bounded (Elishakoff et al., 1994), and assume that the
uncertain parameters exist in the specified bounded in-
tervals. Constraints are assigned on the worst values
of the structural responses. In this case, the optimiza-
tion problem turns out to be a two-stage problem of
optimization and anti-optimization. The optimal de-
sign variables are obtained by solving the upper-level
optimization problem. The worst parameter values in
bounded intervals of the lower-level anti-optimization
problem can be found using the standard approach of
interval analysis (Moore, 1966); however, this approach
is not applicable to a problem with large number of pa-
rameters and/or highly nonlinear constraint functions.

Heuristic approaches have been developed for ob-
taining approximate optimal solutions within reason-
able computational cost. They are also called statisti-
cal approaches, evolutionary methods, etc., and usu-
ally involve randomness. They can be classified into
population based approaches and those based on lo-
cal search (Ohsaki, 2010). The former include genetic
algorithms (GA) (Goldberg, 1989; Ohsaki, 1995), and
particle swarm optimization (Kennedy, 1997; Schutte
and Groenwold, 2003), which have a family of solu-
tions called generation at each step of optimization;
therefore, the functions should be evaluated many times
before reaching an approximate optimal solution. Fur-
thermore, evaluation of objective and constraint func-
tions requires much computational cost for structural



2

optimization problems; therefore, we cannot carry out
function evaluation many times for optimization.

Among various approaches based on local search,
tabu search (TS) (Glover, 1989) is regarded as a deter-
ministic approach, because it moves to the best solution
among all the neighborhood solutions of the current so-
lution, although a randomness exists in the selection of
initial solution. A tabu list is used to prevent a cyclic
selection of a set of small number of solutions. However,
for a problem with many variables, it is not desirable to
carry out exhaustive local search at each step. There-
fore, we can limit the number of neighborhood solutions
in a similar manner as simulated annealing (Aarts and
Korst, 1989) and random search (Ohsaki, 2001), which
is extensively used in chemical engineering (Luus and
Jaakola, 1973; Salcedo et al., 1990).

Recently, random sampling (RS) approach, or ran-
domized algorithm (Mitzenmacher and Upfal, 2005; Lip-
ton and Naughton, 1995), has been studied extensively
for knowledge discovery (Domingo et al., 1999), esti-
mation of average and worst computational costs of an
algorithm, and finding an approximate optimal solution
of a combinatorial problem. Based on the simple formu-
las of probability theory, we can estimate the probabil-
ity of obtaining the optimal solution using RS. However,
application of RS to a two-stage optimization problem
involving real variables has not been investigated.

In this paper, we present a new approach to two-
stage problem of optimization and anti-optimization of
structures, which is also called worst-case design prob-
lem. Uncertainties are considered in structural and ma-
terial parameters. The parameters are assumed to ex-
ist in bounded intervals. A lower-level anti-optimization
problem is formulated for finding the worst value of the
response. Optimal cross-sections are then selected in
the upper-level problem from the list of available sec-
tions under constraints on worst responses. The inter-
vals of uncertain parameters are discretized into integer
values. Thus, the anti-optimization problem as well as
the optimization problem turns out to be an integer
programming problem, which is also called a combina-
torial problem.

The accuracy of solution is defined based on the or-
der of the objective value; hence, an RS approach is
successfully applied to obtain optimal and anti-optimal
solutions within the prescribed accuracy. Since we do
not carry out statistical investigation, our purpose is
different from that of order statistics (Hosking, 1990).
A mathematical problem is first solved for verification
of the proposed approach. Then, optimal cross-sections
of a building frame are found under constraint on the
worst representative elastoplastic response under seis-
mic motions. It is shown in the numerical examples that

a good approximate optimal solution can be success-
fully found by RS within practically acceptable number
of analyses. The results are compared with those by GA
and TS.

2 Optimization Problem

Consider a problem of optimizing the cross-sections of
structures, which are selected from the pre-assigned list
of standard sections. The members are classified into m
groups, each of which has the same section. The design
variable vector is denoted by J = (J1, . . . , Jm), which
has integer values. For example, if Ji = k, then the
members in the ith group have the kth section of the
list. Let F (J) denote the objective function represent-
ing, e.g., the total structural volume. The constraint
functions defined by structural responses are denoted
by Gi(J) (i = 1, . . . , n), where n is the number of con-
straints. Then, the optimization problem is formulated
as

Minimize F (J) (1a)

subject to Gi(J) ≤ Ḡi, (i = 1, . . . , n) (1b)

Ji ∈ {1, . . . , s}, (i = 1, . . . ,m) (1c)

where Ḡi is the upper bound for Gi, and s is the number
of sampling values of variables.

We incorporate uncertainty in structural and mate-
rial parameters such as the geometry of member cross-
section, location of node, Young’s modulus, and yield
stress. The vector consisting of uncertain parameters is
denoted by p = (p1, . . . , pr), where r is the number of
parameters. Then, the structural response is given as a
function of J and p as G̃i(J,p). We assign constraints
on the worst values Ĝi(J) of responses, and formulate
the optimization problem as

Minimize F (J) (2a)

subject to Ĝi(J) ≤ Ḡi, (i = 1, . . . , n) (2b)

Ji ∈ {1, . . . , s}, (i = 1, . . . ,m) (2c)

The worst value Ĝi(J) is obtained by solving the fol-
lowing anti-optimization problem:

Find Ĝi(J) = max
p

G̃i(J,p) (3a)

subject to pL ≤ p ≤ pU (3b)

where pU = (pU
1 , . . . , pU

r ) and pL = (pL
1 , . . . , pL

r ) are
the upper and lower bounds for p, respectively, which
can be obtained from measurements, statistics, and ex-
periments. Hence, the optimal solution considering the
worst values of responses can be found by solving a two-
stage problem of optimization and anti-optimization.
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3 Optimization methods

3.1 Tabu search

The simplest heuristic approach may be the local ran-
dom search that consecutively selects the best solution
in the neighborhood of the current solution. The con-
vergence property to the local optimal solution may
be enhanced if many solutions, or preferably all neigh-
borhood solutions, are searched to select the best so-
lution. A neighborhood solution that does not improve
the objective value can also be selected to reduce the
possibility of being trapped at a local optimal solution.
However, in this case, a so-called cycling or loop can
occur, where a set of neighboring solutions is chosen
iteratively. TS has been developed to prevent cycling
utilizing the tabu list containing the prohibited solu-
tions that have already been searched (Glover, 1989).

Suppose the constraints are incorporated into the
objective function using a penalty function approach.
The algorithm of TS for a minimization problem is
shown in Fig. 1, where Nb is the number of neighbor-
hood solutions, N s is the number of steps, N t is the
maximum size of tabu list, and the superscript (k) de-
notes a value at the kth iteration.

In the following examples, we apply TS to both op-
timization and anti-optimization problems for compar-
ison purpose with the random sampling approach pre-
sented below. The neighborhood solutions are gener-
ated using a random number τ ∈ [0, 1]. Each variable
is increased if τ ≥ 2/3, decreased if τ < 1/3, and is not
modified if 1/3 ≤ τ < 2/3.

3.2 Random sampling

We first discuss applicability of RS to an anti-optimization
problem. Consider a maximization problem with r un-
certain parameters, which can take q different integer
values. The total number of different parameter sets is
M = rq. When solving an anti-optimization problem,
it often happens that the global worst solution is not
necessary to be found, and only a good approximate so-
lution is needed because the bounds of parameters are
not defined rigorously.

The accuracy of the worst solution may be defined
using the objective function value; however, we cannot
use this approach because the global worst value is un-
known. Therefore, we define the accuracy of solution
based on the order of objective value. Although we do
not carry out enumeration when using the RS approach,
all solutions are supposed to be enumerated and num-
bered in non-increasing order of the objective function
value, for discussing the accuracy of the solution; i.e.,

start

Yes

Assign initial solution J(0)

Tabu list T = empty

Iteration counter k = 0

Generate Nb neighbor solitions Ji
N  (i = 1, ..., Nb) of J(k)

Select the best solution J* among neighborhood solutions

Add  J* to T

Remove the oldest solution in T

if the length of the list exceeds Nt

J(k+1) = J*

k ← k+1

Output the best solution

Terminate the process

                      k = Ns  or

other termination conditions satisfied

No

J* ∈ T

No

Yes Remove  J* the from the

neightborhood solutions

Fig. 1 Algorithm of TS for a minimization problem.

the first solution has the worst (maximum) objective
value.

We assume that N worst solutions are regarded as
approximate worst solutions. Suppose the parameters
pi (i = 1, . . . , r) have the uniform probability density
functions

φ(pi) =
1

pU
i − pL

i

, (i = 1, . . . , r) (4)

The parameter pi is sampled to q values pij (j = 1, . . . , q)
using an integer value Ii that can take q values Iij

(j = 1, . . . , q) as

pij = (Iij − 0.5)
pU

i − pL
i

q
, (i = 1, . . . , r; j = 1, . . . , q)

(5)

Then, Iij has the same probability 1/q to be sampled.
Therefore, the probability of failing to obtain an ap-
proximate worst solution is 1 − N/M for a randomly
sampled solution with uniform probability from the set
of M solutions. Hence, the probability that no approx-
imate worst solution is found after t random selections
is (1 − N/M)t. Note that we utilize the procedure of
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Fig. 2 Probability of failing to obtain an approximate worst
solution.

sampling with replacement; i.e., a solution might be se-
lected more than once, and the probability of selecting
a particular solution is always 1/M .

Fig. 2 shows the probabilities of failing to obtain
approximate worst solutions for N/M = 0.1, 0.05, and
0.01. Note that the vertical axis has a logarithmic scale.
For example, the probability for N/M = 0.05 is less
than 0.01 if random sampling is carried out 100 times. It
should be noted here that the relation does not depend
on M directly. The required number of analysis for the
desired probability depends on the ratio N/M .

We can modify the values of Iij , if the probability
functions of parameters are known to be nonuniform.
Using the well known fact that the probability density
of a probability distribution function Φ(pi) is uniform
in the interval [0,1], Iij can be given as follows:

Iij = Φ−1(kij), kij = (j − 0.5)
1
q

(6)

However, the probability distribution is not important
if only an approximate worst solution is to be found
and the variations of responses are not investigated.

For the upper-level optimization problem, it is nat-
ural to define the accuracy of solution using the or-
der of solutions, because it is an combinatorial prob-
lem. This way, the order of solutions can be utilized for
both optimization and anti-optimization problems, and
the two-stage problem is solved using an RS approach.
Let Ao and Aa denote the number of random sets to
be generated, respectively, in optimization and anti-
optimization problems, and let I = (I1, . . . , Ir). The
RS algorithm is summarized in Fig. 3.

Although the purpose of this paper is to present a
computationally inexpensive method for approximate
worst-case design, we can carry out probabilistic eval-
uation of the objective function, if a large number of
samples are available. Let f̃ denote the ratio of ap-
proximate worst solutions in the M original samples.

g < 0

j = A
a

i = A
o

start

Assign iteration counter i = 0

Objective function Fopt = ∞

i ← i+1

Randomly sample J

Assign iteration counter j = 0

Initialize  

j ← j+1

Randomly sample I

{ }1,..,

( ( , ))max k k
k n

g G G
∈

= − J Iɶ

Output Fopt and corresponding sets of  J and I

No

Yes

No

Yes

Yes

No

* *max{ , ( , )}F F F= J Iɶ

*,g F= −∞ = −∞

opt opt *min{ , }F F F=

Fig. 3 Algorithm of RS for a two-stage problem of optimiza-
tion and anti-optimization.

We can evaluate the objective functions of H samples
and find the value F ∗ of the f̃Hth worst solution; i.e.,
F ∗ = X(1− f̃), where X is the quantile function in the
sampled set. Let f denote the probability of exceed-
ing F ∗ in the original set. Then, the following inequal-
ity holds from the Chernoff bound (Mitzenmacher and
Upfal, 2005):

Pr(f /∈ [f̃ − δ, f̃ + δ]) < e−Hδ2/(2f) + e−Hδ2/(3f) (7)

where the unknown probability f should be estimated.
The most conservative value for f is 1, while a tighter
upper bound can be given, if a smaller upper bound is
available for f . Note that several alternative forms exist
for the Chernoff bound.
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3.3 Genetic algorithms

We also carry out genetic algorithm (GA) for compari-
son purpose. The details of GA are not presented here,
because there exist many text books, e.g., (Goldberg,
1989). The ranking strategy in Ohsaki (1995) and the
elitist strategy are used with the framework of simple
GA. Note that the purpose of this paper is to present
an efficient method for structural optimization problem,
where computational cost for each function evaluation
is very large and we cannot carry out analyses many
times. Therefore, small numbers are given for popula-
tion size and number of generations for GA.

4 Mathematical example

4.1 Problem formulation

We first compare the performances of TS, GA, and RS
using a small mathematical optimization problem. Let
−4 ≤ xi ≤ 4 (i = 1, . . . , 4) denote the variables. The
uncertain parameters are denoted by −1 ≤ pi ≤ 1 (i =
1, . . . , 4). The objective function is given as

F̃ (x,p) =
4∑

i=1

(x4
i − 16x2

i + 5xi)

+ a[(p2
1 + 0.1p1)x1 + (p2

2 + 0.2p2)x2

+ p3x3 + 0.9p4x4]

(8)

where a = 10 is a specified parameter, x = (x1, . . . , x4),
and p = (p1, . . . , p4). This function without parame-
ter uncertainty (a = 0) has 2n local minima; hence,
it is called 2n-minima function (Yasudada et al., 2008).
Fig. 4 shows the contour lines for n = 2 with a = 0. The
optimal solution exists at (x1, x2) = (−2.9035,−2.9035),
and local minima are found at (2.7468,−2.9035),
(−2.9035, 2.7468), and (2.7468, 2.7468).

The upper-level optimization problem is written as

Minimize F̂ (x) (9a)

subject to − 4 ≤ xi ≤ 4, (i = 1, . . . , 4) (9b)

where the worst value F̂ (x) is obtained by solving the
following anti-optimization problem:

Find F̂ (x) = max
p

F̃ (x,p) (10a)

subject to − 1 ≤ pi ≤ 1, (i = 1, . . . , 4) (10b)

The variables and parameters are defined using in-
teger values as follows:

xi = −4 + ∆x(Ji − 0.5), (i = 1, . . . , 4) (11a)

pi = −1 + ∆p(Ii − 0.5), (i = 1, . . . , 4) (11b)
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Fig. 4 Contour lines of 2n-minima function for n = 2 with-
out parameter uncertainty.
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Fig. 5 Probability of objective function by enumeration.

where

∆x = 8/(s − 1), Ji ∈ {1, . . . , s} (12a)

∆p = 2/(q − 1), Ii ∈ {1, . . . , q} (12b)

Finally, the hybrid problem with integer variables
J = (J1, . . . , J4) and integer parameters I = (I1, . . . , I4)
is formulated as

Minimize F̂ (J) = max
I

F̃ (J, I) (13a)

subject to Ji ∈ {1, . . . , s}, (i = 1, . . . , 4) (13b)

Ii ∈ {1, . . . , q}, (i = 1, . . . , 4) (13c)

4.2 Performance of random sampling for
anti-optimization

The performance of RS for anti-optimization is com-
pared with those of TS and GA. A rather large value 8 is
assigned for s and q for the convenience in coding of GA.
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Table 1 Values of Rmin
i of 50 solutions for five cases with different random seeds by RS, GA, and TS.

(a) RS
Case 1 2 3 4 5 Average

Maximum 90 110 128 118 120 113.2
Minimum 1 1 1 1 2 3
Average 31.780 25.120 22.760 29.560 29.240 27.692

Standard deviation 25.224 24.756 25.109 28.768 25.920 25.956

(b) GA
Case 1 2 3 4 5 Average

Maximum 490 357 428 273 67 323.0
Minimum 1 1 1 1 1 1
Average 54.640 32.660 32.120 26.000 15.200 32.124

Standard deviation 91.058 67.587 68.444 48.683 18.123 58.779

(c) TS
Case 1 2 3 4 5 Average

Maximum 40 210 70 74 45 87.8
Minimum 1 1 1 1 1 1
Average 10.640 15.300 13.600 13.440 14.560 13.508

Standard deviation 8.390 30.550 13.454 15.170 11.632 15.839

Therefore, we have 84 = 4096 solutions and 4096 pa-
rameter sets for each solution; hence, the total number
of different solution-parameter sets is 88 = 16777216.
The objective values of all 16777216 sets are enumer-
ated to obtain the probability of objective function as
shown in Fig. 5.

In order to evaluate the performance of RS, the
worst value is found from the 144 sets, which is 3.52%
of the total 4096 sets, of randomly sampled parameters
for each of 50 solutions. As discussed in the previous
section, 50 trials are enough for a good approximation
of the worst solution; however, for comparison purpose
with the genetic algorithm, a rather larger 144 trials
are used also for RS and TS.

Let Rij (i = 1, . . . , 50; j = 1, . . . , 144) denote the
order of the jth parameter set, which is assigned in non-
increasing order of the objective function, among the
4096 parameter sets for the ith solution. The smallest
(worst) order of the parameter sets for each solution is
denoted by Rmin

i ; i.e.,

Rmin
i = min

j
Rij , (i = 1, . . . , 50) (14)

Table 1(a) shows the maximum, minimum, and aver-
age values, as well as the standard deviation of Rmin

i

among the 50 solutions for five cases denoted by Cases
1–5 with different initial random seeds. The average val-
ues among five cases are also listed in the last column.
As is seen, the average value of Rmin

i is 27.692, which is
sufficiently small compared with the total number 4096
of the parameter sets. Furthermore, the worst parame-
ter set, i.e., Rij = 1, is obtained in at least one of the
50 solutions for three cases. The maximum value is 128,
which is 3.13% of the 4096 parameter sets.

GA is carried out for comparison purpose. We use
the ranking strategy in Ohsaki (1995) and elitist strat-
egy. The probabilities of single-point crossover and mu-
tation are 0.8 and 0.01, respectively, and the number of
elite solutions is 2. The numbers of population and gen-
eration are 12; i.e., the total number of function evalua-
tion is 144, which is same as RS. The results are listed in
Table 1(b). As is seen, the worst parameter set is found
for at least one of 50 solutions; however, the maximum
order is 490, which is very large, and the average order
also has larger value than that of RS.

Similar investigation is also carried out for TS to
obtain the results in Table 1(c), which shows that TS
is superior to RS in average performance; however, TS
sometimes has very poor performance and the maxi-
mum value has larger order than that of RS. There-
fore, RS is a very effective approach for optimization
problems that have several local optima, because no
problem-dependent parameter exists for RS.

For solving a hybrid problem of optimization and
anti-optimization in next section, we further decrease
the numbers of sampling values and function evalua-
tions. Therefore, the performances of RS, TS, and GA
for small number 5 of the sampling parameter value q

is investigates; i.e., we have 54 = 625 parameter sets for
each solution.

Tables 2(a), (b), and (c) for RS, GA, and TS, re-
spectively, show the maximum, minimum, and average
values, as well as the standard deviation of Rmin

i among
the 50 with different numbers of analyses. As is seen,
the average value and standard deviation decrease as
the number of selections is increased, although the max-
imum value sometimes increases. It is seen from these
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Table 2 Values of Rmin
i of 50 solutions with different numbers of analyses by RS, GA, and TS.

(a) RS
Number of selections Maximum Minimum Average Std. dev.

50 46.4 1 9.116 10.399
60 35.4 1 7.180 8.326
70 26.6 1 6.720 6.975
80 31.8 1 6.072 7.330
90 31.2 1 5.612 6.602
100 26.6 1 5.152 6.318

(b) GA
Population generation Maximum Minimum Average Std. dev.

7 7 172.0 1 23.372 37.689
8 8 249.0 1 25.652 47.280
9 9 130.0 1 12.056 23.044
10 10 195.2 1 14.888 34.075
11 11 83.0 1 6.472 14.631

(c) TS

Nb Ns Maximum Minimum Average Std. dev.
5 10 84.8 1 7.124 14.451
6 10 65.6 1 5.984 11.406
6 11 55.0 1 4.924 9.396
7 11 55.0 1 3.776 9.196
7 12 43.0 1 4.184 7.826
8 12 39.0 1 4.328 7.450

results that TS has smallest average values; however,
the maximum values are larger than those of RS.

4.3 Performance of random sampling for hybrid
problem

It has been shown in Sec. 4.2 that the performance of
GA is not always good, if the number of function eval-
uations is limited to be very small. Therefore, we com-
pare the performances of RS and TS for the hybrid
problem. The numbers of sampling values of variables
and parameters are given as s = 5 and q = 5. There-
fore, we have 54 = 625 solutions and 625 parameter sets
for each solution; hence, the total number of different
solution-parameter sets is 58 = 390625.

Since good approximate worst solution is found with
50 selections, we fix the number of selections as 50 for
both of upper and lower problems. The approximate
optimal solutions found by RS are listed for five cases
with different random seeds in Table 3, where ‘objec-
tive value FA’ denotes the value of objective function
corresponding to the approximate worst parameter set
IA of the approximate optimal solution JA, and ‘worst
value FW’ denotes the exact worst objective value of
the approximate optimal solution; i.e.,

FA = F̃ (JA, IA),

FW = max
I

F̃ (JA, I)
(15)

The order of FA in the complete list of 625 parame-
ter sets by enumeration for each solution is denoted by
‘order’. Note that the objective values cannot be com-
pared among different cases, because they have different
approximate solutions.

The optimal solution by enumeration is J = (1, 1, 1, 1)
with the worst objective value −251.29 corresponding
to the parameters I = (3, 3, 1, 1). Although the exact
solution has not been found within five trials, a good
approximate solutions has been found using RS.

The results of different numbers of neighborhood
solutions Nb and steps N s are listed in Table 4, where
the length of tabu list is N t = NbN s. Note that the
results do not depend strongly on Nb and N s, if the
total number of analyses is almost the same.

Finally, a quantitative evaluation is carried out for
RS using larger number of solutions with q = 20. The
variables Ji (i = 1, . . . , 4) are fixed at 1, and only the
second term in (8) corresponding to parameter uncer-
tainty is considered; therefore, the total number of com-
bination is 204 = 160000. Random selection is carried
out 10000 times from five different random seeds. The
histories of order of worst solutions are plotted with re-
spect to the number of selections in Fig. 6 in logarithmic
scale. As is seen, the solution within 1600th worst cor-
responding to the accuracy of 0.01 can be found with
less than 500 selections for all five cases.
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Table 3 Approximate optimal solutions by RS.

Variables Parameters Objective value FA Worst value FW Order of FA

Case 1 1 1 1 5 2 1 1 5 −238.49 −219.29 20
Case 2 1 1 5 1 4 3 5 2 −237.21 −219.29 17
Case 3 1 2 2 1 3 3 1 1 −198.94 −198.94 1
Case 4 1 1 5 1 4 3 5 2 −237.21 −219.29 17
Case 5 1 4 2 1 2 5 3 1 −186.77 −170.14 22

Table 4 Approximate optimal objective values by TS.

Nb Ns Case 1 Case 2 Case 3 Case 4 Case 5
4 12 −221.25 −221.25 −199.06 −176.25 −221.25
5 10 −253.75 −221.25 −148.75 −180.00 −196.25
6 8 −243.75 −191.25 −207.50 −176.25 −168.75
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Fig. 6 History of order of worst solution for five cases with
q = 20.

4.4 Probabilistic analysis

Suppose we carry out probabilistic analysis to find the
objective value of 4% exceedance. The objective values
Fi (i = 1, . . . , 5) of the 400th worst solutions in 10000
samples for five cases are 22.35, 22.15, 22.15, 22.35,
22.15; i.e., the quantile function for the probability 0.96
(= 1− 0.04) is 22.35, 22.15, 22.15, 22.35, and 22.15, re-
spectively, for five cases. Let fi denote the probability
in the original set to exceed these five values, respec-
tively. Then, using the Chernoff bound (7) assuming
1% confidence, probability for |fi − 0.04| ≤ 0.01 are
bounded by 0.042412 if we assume fi ≤ 0.1, and by
0.0013180 if fi ≤ 0.05. In fact, the orders of Fi in the
complete list of 160000 solutions are 6361, 6685, 6685,
6361, 6685; therefore, the probabilities for exceeding Fi

are 0.039756, 0.041781, 0.041781, 0.039756, 0.041781,
which are very close to 0.04.

5 Optimization of building frame

5.1 Description of design problem

Optimal cross-sections are found for a 4-story single-
span plane steel frame model as shown in Fig. 7 sub-
jected to severe seismic motions. The same notations
as Sec. 4 are used for the variables and parameters.
The objective function is the total structural volume
V (J, I). The steel sections of beams and columns are
selected from the list of standard sections in Table 5,
where ‘H’ means wide-flange section, and ‘HSS’ means
tubular hollow square section.

The design is designated by the section numbers in
the list. Beams are classified into two groups denoted by
Beam 1 in 2nd and 3rd floors and Beam 2 in 4th floor
and roof, which are defined by the variables J1 and J2,
respectively. Columns are also classified into two groups
denoted by Columns 1 and 2, respectively, consisting
of those in 1st and 2nd stories and those in 3rd and
4th stories, which are defined by the variables J3 and
J4, respectively. Thus, we have four design variables.
The sections of all columns are selected from the same
list, because the external size of all columns should be
the same for this low-rise building frame. The standard
model consisting of H-400×200×9×19 for Beam 1, H-
350×175×7×11 for Beam 2, and HSS-300×300×16 for
Columns 1 and 2 is designated by J = (3, 3, 3, 3).

The steel material has a bilinear stress-strain rela-
tion, where Young’s modulus is 205 kN/mm2, the nom-
inal value of hardening ratio of linear kinematic hard-
ening is 0.01, and the nominal values of yield stresses
of beams and columns are 235 N/mm2.

The artificial seismic motions are generated using
the standard superposition method of sinusoidal waves
(Iyengar and Rao, 1979). The target acceleration spec-
trum is the design acceleration response spectrum for
5% damping specified by Notification 1461 of the Min-
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Table 5 List of standard sections for beams and columns.

Beam 1 (2F, 3F) Beam 2 (4F, RF) Column
1 H-400×200×9×12 H-250×125×6×9 HSS-300×300×9
2 H-400×200×9×16 H-300×150×6.5×9 HSS-300×300×12
3 H-400×200×9×19 H-350×175×7×11 HSS-300×300×16
4 H-400×200×9×22 H-400×200×8×13 HSS-300×300×19
5 H-400×200×12×22 H-450×200×9×14 HSS-300×300×22

1FL

2FL

3FL

4FL

RFL

3000 3000

6000

3
6
0
0

1
4
4
0
0

A B C

3
6
0
0

3
6
0
0

3
6
0
0

Fig. 7 A 4-story plane frame.

istry of Land, Infrastructure and Transport (MLIT),
Japan. Although the details of parameters used in build-
ing engineering are not presented here, the acceleration
spectrum Sa is given as a function of the natural period
T as

Sa(T ) = (0.96 + 9T )C for T ≤ 0.16
Sa(T ) = 2.40C for 0.16 ≤ T ≤ 0.64
Sa(T ) = 1.536C/T for 0.64 ≤ T

(16)

where C is the scaling factor, which is 7.5 in the fol-
lowing example. The seismic motion with duration 20
sec. is applied at the base of the frame in horizontal
direction. A constraint is given for the maximum value
among the mean-maximum interstory drifts of all sto-
ries against five artificial motions, which is simply de-
noted by maximum interstory drift Dm(J, I). By as-
signing an appropriately small upper bound for Dm,
the frame does not collapse under severe earthquakes.

A general purpose frame analysis software called
OpenSees (PEERC, 2006) is used for seismic response

analysis of the frame. Each column is modeled by a
beam-column element, whereas each beam is divided
into two elements. The sections of elements are divided
into fibers. Since only plane frame analysis is carried
out, the flange and web of the beam are discretized
into 4 and 16 fibers only in the directions of thick-
ness and depth, respectively. The integration is carried
out using the Gauss-Lobatto rules that has integration
points at the ends of the element, where the number
of integration points is 8; thus, the plastification at the
member ends can be accurately detected. The standard
Newmark-β method (β = 0.25, γ = 0.5) is used for in-
tegration in time domain with the increment of 0.01
sec.

The stiffness-proportional damping is used with the
damping ratio 0.02 for the first mode. The fundamen-
tal period of the standard design with J = (3, 3, 3, 3) is
0.71 sec, which means from (16) that the response ac-
celeration reduces as the natural period becomes larger
as the result of plastification.

5.2 Anti-optimization of standard design

We first carried out preliminary parametric study to in-
vestigate the effect of various parameters on the max-
imum interstory drift Dm, and found that Dm is a
monotonically decreasing function of the yield stress of
columns and the hardening ratios of beams and columns.
Therefore, the smallest possible values should be cho-
sen for these parameters to obtain the worst response;
hence, the yield stress of column has the lower bound
value 235 N/mm2, and the hardening coefficient is equal
to the specified small value 0.01.

In contrast, Dm is not a monotonic function of the
yield stress σb

Y of beams. The range of uncertainty is
given as 20 % of the nominal value, which is discretized
into five equally spaced values. Note that the nominal
value 235 N/mm2 of yield stress indicates the lower
bound according to the specification of steel material.
Therefore, the integer parameters I1 and I2 for σb

Y of
Beams 1 and 2, respectively, correspond to 239.7, 249.1,
258.5, 267.9, and 277.3 N/mm2 for the integer values 1,
2, 3, 4, and 5.
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Fig. 8 Relation between yield stress of beams and normal-
ized values of maximum interstory drifts of various designs.

Fig. 8 shows the values of Dm normalized by those
for σb

Y = 258.9. For the standard design J = (3, 3, 3, 3),
Dm is an increasing function of σb

Y, because a strong
beam leads to a column-collapse mechanism that has
small energy dissipation and large local interstory drift.
For the design (5,5,3,3) with stronger beam, Dm is an
decreasing function of σb

Y, because, in this case, a larger
σb

Y leads to larger energy dissipation without chang-
ing the collapse mechanism. Finally, the values of Dm

for intermediate designs (2,5,3,3) and (5,2,3,3) are not
monotonic functions of σb

Y.
In addition to material parameters, the cross-sectional

geometry also has uncertainty. We consider uncertainty
in the thicknesses of flanges of Beams 1 and 2, defined
by I3 and I4, respectively, and assume that their nom-
inal values are mean values. The ranges of uncertainty
are given as 10 % of the nominal values, which are dis-
cretized into five equally spaced values; hence, the pos-
sible values are determined by multiplying 0.96, 0.98,
1.0, 1.02, and 1.04 to the nominal value. Using these
notations, the anti-optimization problem is formulated
as

Find D̂m(J) = max
I

D̃m(J, I) (17a)

subject to Ii ∈ {1, . . . , 5}, (i = 1, . . . , 4) (17b)

Since we consider uncertainty in four parameter val-
ues, the number of possible combinations of parameters
is 54 = 625. Although the distribution of each param-
eter can be modeled parametrically using, e.g., normal
distribution, we use the uniform distribution, because
our purpose is to find good approximate worst solu-
tions. Fig. 9 shows the discretized probability density
function of Dm for the 625 parameter sets obtained by
enumeration for the standard design. The maximum
and minimum values are 0.0518 m and 0.0475 m, re-
spectively.
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Fig. 9 Probability density function of Dm by enumeration.

 0

 0.1

 0.2

 0.3

 0.4

 0.047  0.048  0.049  0.05  0.051  0.052

P
ro

b
ab

il
it

y

Interstory drift

Fig. 10 Probability density function of Dm by TS.

We assume the parameter sets corresponding to Dm

up to the 50th maximum value are regarded as approx-
imate worst parameter sets, and select 50 parameter
sets randomly from 625 samples. Then, the probabil-
ity that no approximate worst parameter set is found
through this random sampling is (575/625)50 = 0.0154,
which is very small. For TS, the number of neighbor-
hood solutions Nb is 5, and the number of steps N s is
10; hence, the number of analyses is also 50 and the
length of tabu list is 50. We carry out RS and TS five
times starting with different initial random seeds for
comparison purpose.

The maximum value, minimum value, mean value,
and the standard deviation of Dm obtained by TS is
listed in Table 6(a), where the second row is the order
of the worst (minimum) value in the original list of 625
parameter sets. As is seen, the worst parameter set has
been found for four cases; however, the 37th worst set
has been found for Case 1. The standard deviation is
less than 1/10 of the difference between the maximum
and minimum values in the original list. Fig. 10 shows
the probability density of 50 solutions for a single run of
TS (Case 5). As seen from Figs. 9 and 10, TS searches
the solutions with larger responses. This way, TS mostly
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Table 6 Values of Dm by TS and RS for anti-optimization of the standard design with five different random seeds.

(a) TS
Case 1 2 3 4 5

Maximum 0.050811 0.051322 0.051342 0.051350 0.051350
Order of maximum 37 1 1 1 1

Minimum 0.049082 0.048551 0.049743 0.048701 0.049334
Average 0.049936 0.050354 0.050680 0.050310 0.050654

Standard deviation (10−4) 4.0499 7.3122 3.7777 7.0951 5.2047

(b) RS
Case 1 2 3 4 5

Maximum 0.051164 0.051164 0.051121 0.051240 0.051063
Order of maximum 7 7 9 4 12

Minimum 0.048345 0.048082 0.048680 0.048345 0.048345
Order of minimum 621 625 605 621 621

Average 0.049623 0.049764 0.049874 0.049701 0.049817
Standard deviation (10−4) 6.2438 7.2518 6.5434 6.5169 6.2771
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Fig. 11 Probability density function of Dm by RS.

has a good performance through analyses of less than
1/10 of the size of the original list, but sometimes fails
to obtain a good approximate solution, although the
37th worst solution can be regarded as an approximate
worst solution in our definition.

Table 6(b) shows the results of RS, in which the
maximum order varies between 4th and 12th. There-
fore, the average performance of RS is better than that
of TS, although the global worst solution could not be
found by RS. This way, RS can find a good approximate
worst solution within the analyses of 1/10 of the total
number of solutions. The minimum value and its order
in the original list is also listed in Table 6(b) to show
the range of variation of response due to the parame-
ter uncertainty. Fig. 11 shows the probability density
of 50 solutions for a single run of RS, which is similar
to Fig. 9.
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Fig. 12 Relation between interstory drift and shear force of
1st story.

5.3 Two-stage problem of optimization and
anti-optimization

In the upper-level optimization problem, we select mem-
ber sections from the pre-assigned list of standard sec-
tions in Table 5. A constraint is given such that the
worst value of D̃m(J, I) is not more than D̄m = 0.072 m,
which is equivalent to 2% of the interstory drift angle.
The structural optimization problem for minimizing the
total structural volume V̂ (J) considering parameter un-
certainty is formulated as

Minimize V̂ (J) = max
I

Ṽ (J, I) (18a)

subject to D̃m(J, I) ≤ D̄m (18b)

Ji ∈ {1, . . . , 5}, (i = 1, . . . , 4) (18c)

Ii ∈ {1, . . . , 5}, (i = 1, . . . , 4) (18d)

The performances of RS and TS are compared, where
Nb = 5, N s = 10, and the length of tabu list is 50 for
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Table 7 Approximate optimal solutions by RS and TS.

(a) RS
Variables J Parameters I Objective value Interstory drift Order of objective value

Case 1 3 3 1 1 5 4 1 1 0.49549 0.052664 10
Case 2 4 2 1 1 3 1 2 1 0.48993 0.069918 9
Case 3 1 2 1 1 5 2 1 1 0.44407 0.068477 1
Case 4 1 5 1 1 2 2 1 2 0.50245 0.059975 11
Case 5 2 2 2 2 5 1 5 3 0.55103 0.067830 41

(b) TS
Variables J Parameters I Objective value Interstory drift Order of objective value

Case 1 1 2 1 1 3 1 1 1 0.44407 0.068381 1
Case 2 1 2 1 1 5 1 1 1 0.44407 0.068673 1
Case 3 1 2 1 1 3 1 1 1 0.44407 0.068349 1
Case 4 1 3 2 1 1 3 1 5 0.50778 0.058050 15
Case 5 1 2 5 1 5 5 3 2 0.63127 0.068346 125
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Fig. 13 Envelop of maximum interstory drifts.

Table 8 Global optimal solution J = (1, 2, 1, 1) by TS.

Beam 1 (2F, 3F) H-400×200×9×12
Beam 2 (4F, RF) H-300×150×6.5×9
Column 1 (1S, 2S) HSS-300x300x9
Column 2 (3S, 4S) HSS-300x300x9
Yield stress:

Beam 1 239.7 N/mm2

Beam 2 249.1 N/mm2

Thickness of flange:
Beam 1 11.52 mm
Beam 2 8.64 mm

Objective function 0.44407
Max. story drift 0.068381

TS of both of the optimization and anti-optimization
problems. The solutions violating the constraint is sim-
ply rejected in RS and TS. The results by RS and TS
are listed in Tables 7(a) and (b), respectively. Among
five trials of RS, the global optimal solution has been
found once, and the maximum order is 41st, which can
be regarded as an approximate solution within the 50th.
TS may sometimes lead to a very bad solution as Case

5 in Table 7(b), although the global optimal solution is
found in three trials,

The relation between the interstory drift and shear
force of the 1st story is plotted in Fig. 12 for the optimal
design with worst parameter set subjected to one of
the five seismic motions. As is seen, residual story drift
exists due to plastification of the frame. The envelope
of maximum interstory drifts is plotted in solid line in
Fig. 13. The dotted line is the result of the standard
frame model with the parameter set I = (3, 3, 3, 3). The
interstory drifts increase to slightly smaller value than
the upper bound as a result of optimization.

6 Conclusions

A random sampling approach has been presented for a
two-stage problem of optimization and anti-optimization
for structural design, which is also called worst-case
design problem. A new concept is introduced for the
anti-optimization problem, where the accuracy of the
solution is defined by the order rather than the value
of the response among the possible combinations of the
parameters. Hence, the approximate solutions for the
optimization and anti-optimization problems are found
using a heuristic approach, including TS and RS, for
combinatorial problems.

Optimal cross-sections have been found for a steel
building frame considering uncertainty of parameters
for material and cross-sectional geometry. The objec-
tive function is the total structural volume, and a con-
straint is given for the worst value of the interstory
drifts under a set of seismic motions. The cross-sections
are selected from the list of available standard sections.
The parameters are also discretized into integer values.
Therefore, the optimum design problem and the anti-
optimization problem for finding the worst response
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are formulated as combinatorial problems. It has been
shown that a good approximate solution can be found
using RS within a small number of analyses, which is
less than 1/10 of the total number of solutions. In con-
trast, TS has moderately good performance, but some-
times leads to a very bad solution.

The performance of RS has also been compared with
TS and GA using a small mathematical problem. The
conclusions drawn from these numerical experiments
are as follows:

1. TS and GA are better than RS in view of accuracy,
because they can find the optimal/anti-optimal so-
lution in most of the trials. However, TS and GA
may sometimes result in very bad solutions. In con-
trast, RS has a good average performance.

2. RS does not have any problem-dependent parame-
ter that should be assigned by intuition, which is
regarded as a very important superiority to other
optimization algorithms. Furthermore, the required
number of trials in RS can be estimated rigorously
using the probability of failing to obtain an ap-
proximate solution defined by the order of objective
value. Therefore, RS can be carried out only once,
while other efficient algorithms need many prelimi-
nary analyses for parameter tuning.

3. If analysis can be carried out many times, the accu-
racy of solution can be investigated in a probabilistic
manner using the Chernoff bound.

4. The performance of RS is related to the ratio of
number of approximate solutions to the number of
total solutions, and does not depend on the number
of variables/parameters directly.

It should be noted that the purpose of this paper is
to investigate the performance of RS for finding ap-
proximate solutions to structural optimization prob-
lems with limited small number of analyses. It is true
that RS has poor performance when the global optimal
or anti-optimal solution should be obtained, and GA is
superior to RS, if the functions can be evaluated many
times, e.g., more than 10000 times. However, we need
only an approximate solution with less than 100 analy-
ses. RS is also effective for problems with several local
optimal solutions. The proposed method can be effec-
tively applied to practical design problems, where the
bounds of parameters cannot be given rigorously.
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