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ABSTRACT

Properties of Pareto optimal solutions considering bounded uncertainty are first investigated using an illustra-
tive example of a simple truss. It is shown that the nominal values of the Pareto optimal solutions considering
uncertainty are slightly different from those without considering uncertainty. A hybrid approach of multiobjective
optimization and antioptimization is next presented for force design of tensegrity structures. We maximize the lowest
eigenvalue of the tangent stiffness matrix and minimize the deviation of forces from the specified target distribution.
These objective functions are defined as the worst values due to the possible errors in the fabrication and con-
struction processes. The Pareto optimal solutions are found by solving the two-level optimization-antioptimization
problems using a nonlinear programming approach for the upper optimization problem and enumeration of the
vertices of the uncertain region for the lower antioptimization problem.

1 Introduction

A tensegrity structure consists of cables and struts that can transmit only tensile and compressive forces, respectively [1,
2], which is called stress unilateral property. Tensegrity structures are used as the components of mechanical and aeronautic
structures [3-5] and the models of biomechanical systems [6, 7]. Since the tensegrity structure is unstable in absence of
prestresses, the shape and stability at the self-equilibrium state strongly depend on the member forces that are defined a
the linear combination of the modes of prestress [8-11]. Hence, for a structure consisting of several independent modes of
prestress, the stiffness against external loads is desirable to be maximized by optimization of the coefficients of the prestres:s
modes.

The process of determination of member forces for the tensegrity structure with given shape iozleesigri12],
where the prestresses are to be assigned considering the equilibrium conditions and stress unilateral properties. Bound
for tensile and compressive forces should also be given appropriately to have enough safety against yielding and buckling.
Since these bounds are expressed as linear inequality constraints with respect to the coefficients of the independent modes ¢
self-equilibrium forces, the set of feasible, or admissible, coefficients is given as a convex region bounded by hyperplanes of
the coefficients.

*Address all correspondence related to this paper to this author.



In the practical design process, the forces of cables and struts are appropriately measured and controlled so that the
deviations from the nominal values are within the specified bounds. However, the nodal locations are first adjusted by
sacrificing the accuracy of the forces so as to realize the structural shape that is determined to ensure the target function o
the structure. This process is consistent to the fact that the nodal locations are fixed in the process of force design. Therefore
inevitable error exists in member forces from the nominal values due to errors in fabrication and construction processes.
Although errors also exist in the nodal locations, moderately large errors in nodal locations do not lead to serious deviations
in mechanical properties as demonstrated in the numerical examples. Therefore, in this paper, only uncertainty in member
forces is considered, and the region of uncertainty of the forces is defined as a convex region of the coefficients of the
self-equilibrium force modes.

There have been several optimization approaches developed for force design of tensegrity structures [10,13]. Mechanical
properties such as the lowest eigenvalue of tangent stiffness matrix and the compliance against specified static loads are
considered as objective and/or constraint functions. If we incorporate uncertainty in the variables and parameters, then the
objective and/or constraint functions should be defined as the antioptimal solutions [14] or the worst-case designs, and the
problem turns out to be a hybraptimization—antioptimizatioproblem [15]. Suppose we maximize a concave function of
the coefficients for the self-equilibrium modes. Then, the antioptimal solutiomrhmamizesthe concave function can be
found by enumerating the vertices of the convex region [16, 17].

Another important aspect of practical force design is that multiple performance measures should be considered; hence,
the problem turns out to be a multiobjective programming (MOP) problem [18, 19]. Although numerous works exist for
antioptimization for finding the worst-case design, multiobjective optimization with nonprobabilistic bounded uncertainty
has been mainly investigated in the field of fuzzy-set-based theory [20,21], and no detailed investigation has been made in the
framework of standard nonlinear programming (NLP) problem. Rao [22] defined an M-Pareto optimal solution in the space
of membership functions of fuzzy theory, and proposed an approach that is similar to a goal programming. Loetamonphong
et al.[23] used a genetic algorithm for generating Pareto optimal set. Some applications of the fuzzy-set-based approach are
found for tunneling reinforcement design [24] and planning of water resource system [25].

In this paper, the properties of Pareto optimal solutions considering worst-case scenario are first investigated in detalil
for a simple truss subjected to static loads. The design variables are the cross-sectional area, and the uncertain region of th
height is defined as an interval. It is shown through the optimality conditions that the same set of Pareto optimal solutions
is obtained using the linear-weighted-sum approach and the constraint approach in the similar manner as the case withou
uncertainty in the parameters. It is important to note here that the nominal values of Pareto optimal solutions considering
uncertainty are different from the Pareto solutions without uncertainty.

We next present a multiobjective hybrid optimization—antioptimization method for force design of tensegrity struc-
tures [26]. The member forces are defined as a linear combinations of the self-equilibrium force modes. The coefficients of
the force modes are optimized for maximization of the lowest eigenvalue of the tangent stiffness matrix and minimization
of the deviation of forces from the target values. In the numerical examples, following an example of a simple tensegrity
structure, a set of Pareto optimal solutions are found for a tensegrity grid that has four self-equilibrium force modes. Since
the lowest eigenvalue is concave and the force deviation is convex with respect to the coefficients for the force modes,
the worst-case solutions are found by enumeration of vertices of the convex region of uncertainty. A hybrid approach is
presented as a combination of NLP and vertex enumeration, respectively, for optimization and antioptimization, where the
linear-weighted-sum approach is used for finding a set of Pareto optimal solutions.

2 Multiobjective hybrid optimization—antioptimization problem

When an MOP problem is solved using an NLP approach, the problem is transformed to a single-objective problem
using a method of scalarization; e.qg., linear-weighted-sum approach, constraint approach, and goal programming [19]. Since
it is not generally possible to find an optimal solution that minimizes all objective functions simultaneously, a compromise
solution is regarded as a solution to an MOP problem. A feasible solution satisfying all the constraints is called Pareto
optimal solution, if there exists no other feasible solution that simultaneously improves all the objective functions [18].
However, it is not straightforward to see if the sets of Pareto optimal solutions obtained using different approaches of MOP
are the same, when uncertainty exists in the variables and/or parameters.

As an illustrative example, consider a problem of minimizing the total structural volume and compliance (external work)
of a truss subjected to static loads. Letlenote the vector of cross-sectional areas of a truss. The lower and upper bounds for
A are denoted bt andAY, respectively. The problem of minimizing the total structural volunid) and the compliance
W(A) is formulated as

Minimize V(A) andW(A) (1a)
subjecttoA- <A <AY (1b)



Suppose we have a parameter vegidior which the range of uncertainty is specified by the interval:
p-<p<p @

The set ofp satisfying (2) is denoted b#. The hybrid MOP problem of minimizing the objective functions corresponding
to the worst parameter values is formulated as follows:

Minimize maxV(A,p) andmaxV(A,p) (3a9)
pe? pe?
subjecttoA- <A <AY (3b)

where the variables for minimization afe
_Since the worst values d andW with respect tgp can be conceived as functionsAbnly, they are denoted with tilde
asV(A) andW(A), respectively. Hence, the problem is rewritten as

Minimize V(A) andW/(A) (4a)
subjecttoA- <A <AY (4b)

Therefore, the hybrid problem can be formally formulated as a standard MOP problem, and the Pareto optimal solutions
can be obtained using any method of scalarization. For example, if we use the constraint approach and linear-weighted-sun
approach, we have the following problems, respectively:

Constraint approach:

P1: Minimize V(A) (5a)
subject toA- <A <AY (5b)
W(A) <wY (5¢)
P2 : Minimize W(A) (6a)
subjecttoAL <A <AY (6b)
V(A) <VY (6¢)
Linear-weighted-sum approach:
P3: Minimize C;V(A) +CoW(A) (7a)
subjecttoAL <A <AY (7b)

whereVY andWV are the upper bounds forandW, respectively, which are the parameters for the constraint approach, and
C1 andC; are the positive weight coefficients.

In the following, the Pareto optimal solutions are found analytically for a 2-bar truss as shown in Fig. 1. For simplicity,
the units are omitted &8= 2.0, P, = P, = 1.0, and the elastic modulusks= 1.0. Consider uncertainty iH defined by an
interval

Ho— AH < H < Hy+AH (8)

where the nominal valuldy and the radius of intervadiH are given a$lp = 1.0 andAH = 0.4, respectively. The compliance
W is defined using the horizontal displaceméntand the vertical displacemedp as

W = PU; + PU>» (9)



Fig. 1. A two-bar truss.

The design variables ar = (A;,A), and the components & andAY are supposed to be sufficiently small and
large, respectively. Hence, the bound constraitits< A < AY are inactive at the optimal solution, i.e., they are satisfied
with strict inequality. Accordingly, the constraints (5¢) and (6c¢) are satisfied with equality at the optimal solutions, which
generally holds becaus&A) andW(A) are increasing and nonincreasing functions, respectively, of

In the following, analytical expressions are derived using a symbolic computation package Maple 13 [27]. The displace-
mentsU; andU, are written explicitly with respect to the cross-sectional areas with paraeter

_aH

Ur=— [b(4+H?) +2c] (10a)

U, = a[b(4+4H + H?) + 4cH] (10b)
_ (44H2)32

a= TBAAHE (10c)

b=A1+A, C=A1— A, (10d)

As verified below, the worst (maximum) value bf is attained aH = Hp — AH. In contrastV obviously has the worst
(maximum) value aH = Hp+ AH. Therefore, the antioptimal solutions for maximizi#g andV, respectively, can be
obtained analytically as functions Af hence, the worst valu&¥ andV are written as the explicit functions 8§ Then, for
P1 and P2A; can be eliminated using the constraints (5c¢) and (6c), respectively, which are to be satisfied with equality at
the optimal solution. The optimal solutions are found from the stationary conditions of the objective functions with respect
to A;. For P3, the optimal solutions are found from the stationary conditions of the objective function with regpeahtb
As.

This way, the optimal solutions for problems P1, P2, and P3 are obtained explicitly as follows:

P1:A; =88511WY, Ay =16.44/WY,
vV =6174/WY, w=wV

P2: A;=0.1434/Y, Ay =0.2663/,
VvV =VvY w=6174/vY

P3: Ay =1.127,/C,/Cy, A; =2.092,/C,/Cy,
V =7.857,/C;/C;, W = 7.857,/C,/Cy

(11)

Although the expressions of the solutions are different, three solutions lead to the same set of Pareto optimal solutions
satisfying

Ap =1.857A;, WV =6174 (12)

This result is justified from the fact that three problems have the same optimality conditiopsarieht denote the Lagrange
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Fig. 2. Relation between H and W for the design A1 = 1.0and Ao = 1.857.
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Fig. 3. Relations between W and V of Pareto optimal solutions; dotted line: solutions without uncertainty, solid line: solutions with uncer-
tainty, dashed line: nominal values of the solutions with uncertainty.

multipliers. The optimality conditions for P1, P2, and P3 are written as

N W
oA Hom T
oW oV :
3 TVaa =0 (=12 (13b)

o oW ,
P1:Crgp+Cogp =0 (i=12) (13¢)

P1: 0, (i=12) (13a)

P2:

These equations are identical if the multipliers are found as

1 C1
m Y C2 (14)

Fig. 2 shows the relation betwe#handH for the desigrmA; = 1.0 andA; = 1.857, which verifies thatV is a decreasing
function ofH, and, accordingly, has the worst (maximum) valuélat H — AH. The solid line in Fig. 3 shows the relation
between the worst values W andV of the Pareto optimal solutions. The relation between the nominal vall&saofdV
of the Pareto optimal solutions is plotted in the dashed line in Fig. 3, which satisfies the réfatien26.10, which is much
smaller than the worst value 61.74 in (12). Furthermore, if uncertainty is not considered, the relation h&tamedy of
the Pareto optimal solutions is as plotted in the dotted line, which satisfies the réMtiea 25.00. Therefore, even the
nominal values oV andV of the Pareto solutions increase due to the existence of uncertainty. This fact can be theoretically
justified from the fact that the solution of P1 (or P2) is a feasible solution of the problem without uncertainty for specified
value ofwV (orVY), and does not always satisfy the optimality conditions of the problem without uncertainty. Therefore,
optimization without uncertainty does not provide any information on optimization with uncertainty.



3 Equilibrium and stiffness of tensegrity structures

In the numerical examples, Pareto optimal solutions are found for the coefficients of self-equilibrium forces of a tenseg-
rity grid. The members, including struts and cables, are connected by pin joints, and the self-weight is neglected; hence,
only axial forces exist in the members. We assume that all members are in elastic range, and neither buckling nor yielding is
considered.

Let mandn denote the numbers of members and degrees of freedom, respectivelyxThequilibrium matrixD is
constructed using the standard approach for 3-dimensional bar-joint structures. The vector of member forces is denoted by
s. In the state of self-equilibrium, the equilibrium equation is written as

Ds=0 (15)

Let k denote the rank oD. The equilibrium equation (15) hapg= m— Kk self-equilibrium modes, which are found, as
follows, by using the singular value decompositiorDof

The non-zero eigenvalues Bf' D are denoted by (i = 1,...,k). The singular value decomposition Bfis written
as [28]

Q=S'DR (16)

where

o— (diag(wl(,). ., 0X) 8) 17)

with O being null matrix, and the diagonal terms@fare called singular values BX. The column vector®; (i =K+ 1,K+
2,...,m) of R corresponding to zero singular value satisfy the condition of self-equilibrium force mode as

DR; =0 (18)

By denotinggi = Ri;« (i=1,...,q), the self-equilibrium force vectarsatisfyingDs = O is given as the linear combi-
nation ofg; as

S= Glgl+'-'+dng

G (29)

wherea = (ay,...,0q) " is the coefficient vector, an@ = (ga, ..., dq) is the matrix of the self-equilibrium force modes. Let
b, denote théth row of G. The components afare written as

s=b'a, (i=1,...,m) (20)

The tangent stiffness matrkk of a tensegrity structure is expressed as the sum of the linear stiffness Katixd the
geometrical stiffness matrik ¢ as [12]

K=Keg+Kg (21)

Note thatk g depends on the stiffnesses of members,l@gdiepends on the member forces.
In the following discussions on stiffness of the structure, the rigid-body motions are assumed to be constraikied. Let
(A1 < A2 <--- <Ay andd; denote theth eigenvalue and eigenvectorf respectively, which are defined by

Kd =Ad;, (i=1,...,n) (22)

When the external loads applied to a structure are unknown, the best way to strengthen the structure may be to increase it:
stiffness in the weakest direction. Hence, the lowest eigenvaliseafter constraining the rigid-body motions is maximized
as the performance measure in the optimization problem defined in the next section.



4 Multiobjective hybrid optimization—antioptimization problem
The upper and lower bounds for the forces ofithemember are denoted I8 ands-, respectively. The conditions for
the member forces are written as

s<s<g (i=1...,m (23)

For a cables” is given as the yield force divided by the associated safety factor, while a small positivesvasiugiven for
preventing slackening. In contrast, for a stsitis given as the Euler buckling force, which is negative, divided by the safety
factor, whiles’ may be zero or a negative value with sufficiently small absolute value.

In the process of force design, the geometry (nodal locations) and the topology of the structure are specified. Therefore,
the design variables are the coefficieatfor the self-equilibrium modes. By using the relation (20), the constraints for the
optimization problems are given with respecttas

§ <bla<g’, (i=1,...,m) (24)

Let s* denote the target values of the member forces, which can be specified based on the yield forces of cables and
buckling forces of struts, or, alternatively, we can use any optimization approaches for dsfiliaged on other design
criteria. In the following antioptimization problem, the deviateof the forces frons" is chosen as one of the performance
measures, which is defined as follows as a convex functien of

e=(s"—Ga)' (s"—Ga)

(25)
=s''s'—25""Ga+a' G'Ga

Furthermore, the lowest eigenvaldg, of K after constraining the rigid-body motions is maximized, iz€\nin iS mini-

mized, as the global measure of stiffness and stability of the structure. Note in (2K)dhkspends linearly oa, while Kg

is independent aofi; henceAmin is a concave function af [29]. Then, the MOP problem is formulated as

Minimize — Amin(a) ande(a) (26a)
subjecttos <b/a<s’, (i=1,....m) (26b)

Consider uncertainty in member forces at the self-equilibrium state due to the errors in unstressed (initial) lengths of
members or variation in member lengths resulting from relaxation of cables after construction. In the process of designing
tensegrity structures, the errors exist also in the nodal locations. However, the locations of nodes are usually adjusted by
sacrificing the accuracy of member forces, which means that the small dislocation of nodes and/or small error in member
length leads to variation of mechanical properties only through errors in the member forces. Therefore, in this paper, only
uncertainty in member forces is considered.

Since the member force vectsshould satisfy the self-equilibrium equation (15), the errors éannot be distributed
independently. The equilibrium matrDX is fixed, because we do not consider the errors in nodal locations. Therefore, the
vectorsg; of the self-equilibrium force modes are fixed, and the variation of the member forces is investigated in the space
of the coefficient vectoa.

To describe the realistic situation, we assign the range of uncertaistyodn interval

¥ —-As <s < +As (27)
wheres? = (# ...,$2)T is the vector of nominal values, add; is the maximum possible increase or decrease. dflote
that the range is given for the forcgs although the independent parameters for the forcea afidhe inequalities (27) can
be rewritten using the incremefitr from the nominal values as

—As <b/Aa<As, (i=1,...,m) (28)
The worst values are obtained by solving the following antioptimization problems:
Find Xmin(a) = rEin)\mm(or,Aa) (29a)
a

subjectto —As <bAa <As, (i=1,...,m) (29b)



Find €a) = rrgaxe(a,Aa) (30a)
a

subjectto —As <b/Aa <As, (i=1,...,m) (30b)
Finally, the MOP problem considering the worst values of the performance measures is formulated as

Minimize —Xmin(a) and€(a) (31a)
subjecttoss <b/a<g’, (i=1,...,m (31b)

It is widely recognized that the constraint approach is superior to the linear-weighted-sum approach, because the con-
straint approach can find Pareto optimal solutions even when they exist along the nonconvex boundary of feasible region
in the objective function space. However, the location of vertex that has the worst value of an objective function in the
antioptimization problem may vary discontinuously with variation of the design variablasd it is very difficult to satisfy
the constraints strictly for a problem with discontinuous sensitivity coefficients. Therefore, we use the linear-weighted-sum
approach in the following examples, and confirm that the Pareto optimal solutions exist along the convex boundary of feasi-
ble region. Optimal solutions are first found for single-objective problems for minimizkgn(a) and€(a), respectively.

The objective functiorf (a) for the linear-weighted-sum approach is given as

F(a) = ——Amin(0) + ——=&(a1) (32)

whered, andde are the range &tmin ande; respectively, obtained from the optimal values of the single-objective problems,
and 0< C < 1 is the weight coefficient.

Since Amin and e are concave and convex functions, respectively, the worst valugs dhat minimizesAni, and
maximizese exist at the vertices of the region of uncertainty defined by (28). In the following numerical examples, the
vertices of the feasible region are enumerated using the software cdd+ [30, 31] based on the efficient procedure called
reverse searcli32]. cdd+ can enumerate the vertices and the associated active constraints of the region defined by linear
inequality and equality constraints. Finally, the optimization problem (31) is solved using an NLP approach. The algorithm
of multiobjective hybrid optimization and antioptimization is summarized as follows:

Step 1 Specify the geometry, topology, and material property of the tensegrity structure. Assign the uppesbandd
lower bounds- of the forces, and the radids of uncertainty.

Step 2 Construct the equilibrium matri® and compute the self-equilibrium force mod®s. .., gq by using the singular
value decomposition (16).

Step 3 Assign bound constraints (23) for the self-equilibrium forces and solve the optimization problem of forces using an
NLP as follows:

3.1 Setinitial value ofa, and assign parameters for NLP.

3.2 Compute the sensitivity coefficients of the objective functions using a finite difference approach, and update the vari-
ablea based on the algorithm of NLP, where the worst values,gf ande are obtained using vertex enumeration
at every trial that results in modification of variables.

3.3 Go to 3.2 if convergence criteria of NLP are not satisfied.

We use SNOPT Ver. 7.2 [33] that utilizes the sequential quadratic programming for the upper-level optimization prob-
lem. In the following examples, optimization is carried out from ten different random initial solutions, and the best solution
is chosen as the optimal solution.

5 Numerical examples
5.1 Parameters for numerical examples

We first present an illustrative example of a simple tensegrity structure with two self-equilibrium modes to graphically
present the optimization process. A numerical example of a tensegrity grid is then presented for demonstrating applicability
of the proposed method to general tensegrity structures.

The elastic modulus is 200DN/mn? for all members. The cross-sectional areas are 58 fomstruts including the
bars without prestress, and 5 rhffior cables. The radius of uncertaindg for member force is 0.5 N for all members. In
the following, the units of length and force are mm and N, respectively, which are omitted for simplicity.
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Fig. 5. Feasible region of the coefficients of self-equilibrium force vectors of the small tensegrity structure.

5.2 lllustrative example

Consider a simple tensegrity structure as shown in Fig. 4, which has eight cables, one vertical strut, and two horizontal
struts. The thick and thin lines in Fig. 4 indicate struts and cables, respectively. Note that the struts are not connected with
each other at their centers. The numbers with and without parentheses are the node (support) numbers and member number
respectively. Thex,y,z)-coordinates of the nodes 1-6 gre100,0,0), (0,—100,0), (0,100,0), (100,0,0), (0,0,40), and
(0,0,—40), respectively. The structure is supported in three directions at supportztiiection at support 2, ix- and
z-directions at support 3, and ja andz-directions at support 4. This way, all the rigid-body displacements are suppressed.
The boundgs-,s”) for the axial forces of the cables and struts @rel00) and(—100 —20), respectively.

The matrixG of the self-equilibrium forces is obtained as follows with an appropriate normalization:

—0.2626 —0.2626\

—0.6565 Q0
0.0 —0.6565
0.3536 ~0.0
0.3536 ~0.0
G=| 0.3536 —0.0 (33)
0.3536 —0.0
0.0 0.3536
0.0 0.3536
0.0 0.3536
0.0 0.3536

Therefore, we have two self-equilibrium force vectors that have non-zero prestresses in the members in two vertical planes,
respectively, and there is an interaction only in the vertical strut indicated as member 1. The feasible rag®gieén
by the five verticegai,a,) = (3.04654.5697), (4.5697,3.0465), (15.232,3.0465), (15.232,15.232), and (3.0465,15,232) as
illustrated in Fig. 5. Itis supposed that the target axial force vesstisrdefined by the coefficient vectar = (10.0,10.0) 7.

First, we find the Pareto optimal solutions without uncertainty in the member forces. The vallgg o) for the single
objective optimization problems for maximizing,in and minimizinge, respectively, ar¢0.1497958.534) and(9.8392x
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Fig. 6. Pareto optimal solutions for C = 0.5 and the region of uncertainty; ‘+': Pareto optimal solution with uncertainty, ‘X ': Pareto optimal
solution without uncertainty.

400

300

y 200

100

0 100 200 300

(a) diagonal view (b) plan view
Fig. 7. Tensegrity grid constructed by assembling the unit cell shown in Fig. 8 in X- and Y-directions.

1072,0.0). Therefore, the range® andd. are defined as) = 5.1468x 10~ andde = 58.534. Then, the Pareto optimal
solution forC = 0.5 in (32) without uncertainty is found to lfe1, o2) = (12.591, 12.591) with (Amin, €) = (0.1238614.359),
which is shown with %’ mark in the design variable space in Fig. 6.

The effect of errors in nodal locations with fixed member forces is investigated using this example; i.e., the partial deriva-
tives with respect to nodal locations are investigated, while the variation of member forces are appropriately incorporated
through uncertainty in the coefficients of the force modes. The valig,afof the deterministic solution witle = 0.5 is
0.12415. Ifz-coordinate of node 5 is increased from 40.0 to 41.0, 42.0, 43.0, 44.0, and 45.8,then0.12394, 0.12372,
0.12350, 0.12328, and 0.12305, respectively, which means that variafigf, @ very small for a moderately large variation
of nodal location.

Therefore, we consider uncertainty only in member forces. The same range parametedvallie$468x 102 and
de = 58534 are used for this case for comparison purpose between the results with and without uncertainty. Then, the
Pareto optimal solution fo€ = 0.5 is found to be(ay,a;) = (12.60512.639) with (Amin, &) = (0.1217115.855), which
is indicated by 4+’ mark in the design variable space in Fig. 6. Thig,, decreases and increases as the result of
considering uncertainty. The values @fnin,€) at the vertices A, B, C, and D of the region of uncertainty in Fig. 6 are
(0.12320,13.654), (0.12171,13.698), (0.12474,15.791), and (0.12325,15.855), respectively. Therefore, the minimum value
of Amin and maximum value o, i.e., the worst values, are attained at different vertices of the uncertain region.

5.3 Example of a tensegrity grid

The tensegrity grid as shown in Fig. 7 [34] is used as the example structure for demonstrating the effectiveness of the
proposed method. The structure is constructed by consecutively assembling the unit cell in Kicai@dyrdirections. The
thick and thin lines in the figures are struts and cables (or bars), respectively. Note that the members in thin lines that are
connected to the boundary nodes do not carry any prestress at the self-equilibrium state; these members are called bars ar



Fig. 8. Unit cell for the tensegrity grid.
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Fig. 9. Pareto optimal solutions in objective function space.
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Fig. 10. Relation between minimum eigenvalue and square-root of force deviation of Pareto optimal solutions.

assumed to have stiffness in both of compression and tension in eigenvalue analysis of the tangent stiffness matrix.

Letr andc denote the numbers of rows (parallelt@xis) and columns (parallel ipaxis) of the struts, respectively;
i.e., there exist 4+ 1 struts in each column ancH- 1 struts in each row. Therefore, the structure has+2r + ¢ struts
andn = 2(rc+r +¢) nodes, and the total number of membermis: 7rc + 5r + 5c — 4. The rank deficiency of the linear
stiffness matrixK g after constraining the six rigid-body motions is equal to 1; i.e., this structure has only one infinitesimal
mechanism.

The structure in Fig. 7 has three and four strutg-iandy-directions, respectively; i.er,= 3 andc = 2. Hence, there
arem = 63 members and = 22 nodes in total. Th& andy-coordinates of the nodes are shown in the plan view of the
structure in Fig. 7(b), and the height of the grid is 100.

The rank of the equilibrium matri® is kK = 59. Therefore, the structure has fogr=€ 63— 59 = 4) force modes at the
self-equilibrium state, which are denoted @y . . .,gs With the coefficientst = (ay,...,04) . The boundgs-,s”) for the
axial forces of the cables and struts &te100) and(—100,—1), respectively. Note that no bound or uncertainty is given for
horizontal bars that have vanishing axial force irrespective of the valoe of



Table 1. Computational cost for enumeration.

Size m n q n d CPU(s) CPUmM x10°
(rc)=(2,3) 63 22 66 98 0.064 0.256
(rc)=(2,4 82 28 92 588 0.125 0.227
(rc)=(2,5) 101 34 118 1207 0.256 0.248

)

o O b

The lowest eigenvaludnmin of K is positive at all the vertices after constraining the rigid body motions; i.e., the structure
is stable at any set of self-equilibrium forces in the feasible region. The center of the feasible region is comptited as
(0.41980.58323.2567,0.4294 ", which is supposed to be the coefficient vector corresponding to the target axialorces

The values of(Amin,€) for the single objective problem for maximizingy, and minimizinge, respectively, are
(0.077011.5160x 10*) and (0.054611.2723x 10%). Therefore, the range$, and &, are defined a$, = 0.07701—
0.05461= 0.02240 andbe = 1.5160x 10* — 1.2723x 10* = 0.2437x 10%.

The Pareto optimal solutions are found for the weight coefficients0.1,0.2,...,0.9 in (32), which are plotted in
Fig. 9 in the objective function space. In order to see the distribution more clearly, the relation between minimum eigenvalue
and square-root of force deviation of Pareto optimal solutions is plotted in Fig. 10. As is seen, the Pareto optimal solutions
that form a convex curve in the objective function space have been successfully found using the proposed method.

We next investigate the computational cost for enumeration in the antioptimization process. Computation is carried out
using a PC with Intel Core i7 processor (3.97GHz, 6 Cores) and 12 GB RAM. The lower and upper bounds for the forces
of cables and struts are relaxed to 0.0. Table 1 shows the size and CPU time for the gridsoyith(2,3), (2,4), and
(2,5), wheren. is the number of independent linear inequalities, drslthe number of vertices. As is seen, the number of
inequalitiesn; and the number of variables (force modgsjre proportional to the number of membeisThe CPU time is
approximately proportional to®, which is regarded as practically acceptable. Avis and Fukuda [31] theoretically estimated
the computational cost for vertex enumeration of polyhedra. In Table 1, the number of variables is much smaller than the
number of inequalities, and the computational cost is bounded by the ordef6f. When all vertices are simple (non-
degenerate), i.e., the number of active inequalities is not moredtareach vertex, the order beconps!t!. Note that
there are several degenerate vertices in the examples in Tablgi$.gdfoportional tan, then the order becomes exponential
function of m; however, this is the worst-case estimate of the computational cost. Furthermore, the number of independent
force modes is very small for general tensegrity structures; hence, the proposed method is applicable to practical force desigr
problems.

6 Conclusions

Properties of Pareto optimal solutions considering the worst-case scenario have been first investigated using a small
example of truss optimization for minimum total structural volume and compliance within the framework of NLP. It has
been analytically shown that the same set of Pareto optimal solutions for the hybrid optimization-antioptimization problem
can be obtained using the linear-weighted-sum approach and constraint approach. This result is not obvious for the case
considering the worst-case scenario.

Next, a hybrid approach of multiobjective optimization and antioptimization have been presented for force design of
tensegrity structures. The design variables are the coefficients of the self-equilibrium force modes. The objective functions
are the lowest eigenvalue of the tangent stiffness matrix and the deviation of forces from the specified target distribution,
which are defined as the worst values due to the possible uncertainties in the variables.

The upper-level problem of optimization is solved using an NLP approach, where the sensitivity coefficients are com-
puted by a finite difference approach. The lower-level problems for finding the worst values of objective functions are found
using enumeration of the vertices of the uncertain region of the prestresses, which is defined with linear inequalities of the
variables. It has been shown in the numerical examples that the Pareto optimal solutions can be successfully found for tenseg
rity structures by solving the two-level hybrid optimization-antioptimization problem using vertex enumeration combined
with an NLP approach.

Note that our approach is concerned with the worst case only, and we do not consider any probabilistic uncertainty.
Therefore, statistical evaluation is out-of-scope of the paper. However, our approach is closer philosophically to adopting an
uniform distribution as discussed by Elishakoff and Ohsaki [15].
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