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ABSTRACT
Properties of Pareto optimal solutions considering bounded uncertainty are first investigated using an illustra-

tive example of a simple truss. It is shown that the nominal values of the Pareto optimal solutions considering
uncertainty are slightly different from those without considering uncertainty. A hybrid approach of multiobjective
optimization and antioptimization is next presented for force design of tensegrity structures. We maximize the lowest
eigenvalue of the tangent stiffness matrix and minimize the deviation of forces from the specified target distribution.
These objective functions are defined as the worst values due to the possible errors in the fabrication and con-
struction processes. The Pareto optimal solutions are found by solving the two-level optimization-antioptimization
problems using a nonlinear programming approach for the upper optimization problem and enumeration of the
vertices of the uncertain region for the lower antioptimization problem.

1 Introduction
A tensegrity structure consists of cables and struts that can transmit only tensile and compressive forces, respectively [1,

2], which is called stress unilateral property. Tensegrity structures are used as the components of mechanical and aeronautical
structures [3–5] and the models of biomechanical systems [6, 7]. Since the tensegrity structure is unstable in absence of
prestresses, the shape and stability at the self-equilibrium state strongly depend on the member forces that are defined as
the linear combination of the modes of prestress [8–11]. Hence, for a structure consisting of several independent modes of
prestress, the stiffness against external loads is desirable to be maximized by optimization of the coefficients of the prestress
modes.

The process of determination of member forces for the tensegrity structure with given shape is calledforce design[12],
where the prestresses are to be assigned considering the equilibrium conditions and stress unilateral properties. Bounds
for tensile and compressive forces should also be given appropriately to have enough safety against yielding and buckling.
Since these bounds are expressed as linear inequality constraints with respect to the coefficients of the independent modes of
self-equilibrium forces, the set of feasible, or admissible, coefficients is given as a convex region bounded by hyperplanes of
the coefficients.

∗Address all correspondence related to this paper to this author.



In the practical design process, the forces of cables and struts are appropriately measured and controlled so that the
deviations from the nominal values are within the specified bounds. However, the nodal locations are first adjusted by
sacrificing the accuracy of the forces so as to realize the structural shape that is determined to ensure the target function of
the structure. This process is consistent to the fact that the nodal locations are fixed in the process of force design. Therefore,
inevitable error exists in member forces from the nominal values due to errors in fabrication and construction processes.
Although errors also exist in the nodal locations, moderately large errors in nodal locations do not lead to serious deviations
in mechanical properties as demonstrated in the numerical examples. Therefore, in this paper, only uncertainty in member
forces is considered, and the region of uncertainty of the forces is defined as a convex region of the coefficients of the
self-equilibrium force modes.

There have been several optimization approaches developed for force design of tensegrity structures [10,13]. Mechanical
properties such as the lowest eigenvalue of tangent stiffness matrix and the compliance against specified static loads are
considered as objective and/or constraint functions. If we incorporate uncertainty in the variables and parameters, then the
objective and/or constraint functions should be defined as the antioptimal solutions [14] or the worst-case designs, and the
problem turns out to be a hybridoptimization–antioptimizationproblem [15]. Suppose we maximize a concave function of
the coefficients for the self-equilibrium modes. Then, the antioptimal solution thatminimizesthe concave function can be
found by enumerating the vertices of the convex region [16,17].

Another important aspect of practical force design is that multiple performance measures should be considered; hence,
the problem turns out to be a multiobjective programming (MOP) problem [18, 19]. Although numerous works exist for
antioptimization for finding the worst-case design, multiobjective optimization with nonprobabilistic bounded uncertainty
has been mainly investigated in the field of fuzzy-set-based theory [20,21], and no detailed investigation has been made in the
framework of standard nonlinear programming (NLP) problem. Rao [22] defined an M-Pareto optimal solution in the space
of membership functions of fuzzy theory, and proposed an approach that is similar to a goal programming. Loetamonphong
et al. [23] used a genetic algorithm for generating Pareto optimal set. Some applications of the fuzzy-set-based approach are
found for tunneling reinforcement design [24] and planning of water resource system [25].

In this paper, the properties of Pareto optimal solutions considering worst-case scenario are first investigated in detail
for a simple truss subjected to static loads. The design variables are the cross-sectional area, and the uncertain region of the
height is defined as an interval. It is shown through the optimality conditions that the same set of Pareto optimal solutions
is obtained using the linear-weighted-sum approach and the constraint approach in the similar manner as the case without
uncertainty in the parameters. It is important to note here that the nominal values of Pareto optimal solutions considering
uncertainty are different from the Pareto solutions without uncertainty.

We next present a multiobjective hybrid optimization–antioptimization method for force design of tensegrity struc-
tures [26]. The member forces are defined as a linear combinations of the self-equilibrium force modes. The coefficients of
the force modes are optimized for maximization of the lowest eigenvalue of the tangent stiffness matrix and minimization
of the deviation of forces from the target values. In the numerical examples, following an example of a simple tensegrity
structure, a set of Pareto optimal solutions are found for a tensegrity grid that has four self-equilibrium force modes. Since
the lowest eigenvalue is concave and the force deviation is convex with respect to the coefficients for the force modes,
the worst-case solutions are found by enumeration of vertices of the convex region of uncertainty. A hybrid approach is
presented as a combination of NLP and vertex enumeration, respectively, for optimization and antioptimization, where the
linear-weighted-sum approach is used for finding a set of Pareto optimal solutions.

2 Multiobjective hybrid optimization–antioptimization problem
When an MOP problem is solved using an NLP approach, the problem is transformed to a single-objective problem

using a method of scalarization; e.g., linear-weighted-sum approach, constraint approach, and goal programming [19]. Since
it is not generally possible to find an optimal solution that minimizes all objective functions simultaneously, a compromise
solution is regarded as a solution to an MOP problem. A feasible solution satisfying all the constraints is called Pareto
optimal solution, if there exists no other feasible solution that simultaneously improves all the objective functions [18].
However, it is not straightforward to see if the sets of Pareto optimal solutions obtained using different approaches of MOP
are the same, when uncertainty exists in the variables and/or parameters.

As an illustrative example, consider a problem of minimizing the total structural volume and compliance (external work)
of a truss subjected to static loads. LetA denote the vector of cross-sectional areas of a truss. The lower and upper bounds for
A are denoted byAL andAU, respectively. The problem of minimizing the total structural volumeV(A) and the compliance
W(A) is formulated as

Minimize V(A) andW(A) (1a)

subject toAL ≤ A ≤ AU (1b)



Suppose we have a parameter vectorp, for which the range of uncertainty is specified by the interval:

pL ≤ p ≤ pU (2)

The set ofp satisfying (2) is denoted byP . The hybrid MOP problem of minimizing the objective functions corresponding
to the worst parameter values is formulated as follows:

Minimize max
p∈P

V(A,p) andmax
p∈P

W(A,p) (3a)

subject toAL ≤ A ≤ AU (3b)

where the variables for minimization areA.
Since the worst values ofV andW with respect top can be conceived as functions ofA only, they are denoted with tilde

asṼ(A) andW̃(A), respectively. Hence, the problem is rewritten as

Minimize Ṽ(A) andW̃(A) (4a)

subject toAL ≤ A ≤ AU (4b)

Therefore, the hybrid problem can be formally formulated as a standard MOP problem, and the Pareto optimal solutions
can be obtained using any method of scalarization. For example, if we use the constraint approach and linear-weighted-sum
approach, we have the following problems, respectively:

Constraint approach:

P1 : Minimize Ṽ(A) (5a)

subject toAL ≤ A ≤ AU (5b)

W̃(A) ≤WU (5c)

P2 : Minimize W̃(A) (6a)

subject toAL ≤ A ≤ AU (6b)

Ṽ(A) ≤VU (6c)

Linear-weighted-sum approach:

P3 : Minimize C1Ṽ(A)+C2W̃(A) (7a)

subject toAL ≤ A ≤ AU (7b)

whereVU andWU are the upper bounds forV andW, respectively, which are the parameters for the constraint approach, and
C1 andC2 are the positive weight coefficients.

In the following, the Pareto optimal solutions are found analytically for a 2-bar truss as shown in Fig. 1. For simplicity,
the units are omitted asS= 2.0, P1 = P2 = 1.0, and the elastic modulus isE = 1.0. Consider uncertainty inH defined by an
interval

H0−∆H ≤ H ≤ H0 +∆H (8)

where the nominal valueH0 and the radius of interval∆H are given asH0 = 1.0 and∆H = 0.4, respectively. The compliance
W is defined using the horizontal displacementU1 and the vertical displacementU2 as

W = P1U1 +P2U2 (9)
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Fig. 1. A two-bar truss.

The design variables areA = (A1,A2), and the components ofAL andAU are supposed to be sufficiently small and
large, respectively. Hence, the bound constraintsAL ≤ A ≤ AU are inactive at the optimal solution, i.e., they are satisfied
with strict inequality. Accordingly, the constraints (5c) and (6c) are satisfied with equality at the optimal solutions, which
generally holds becausẽV(A) andW̃(A) are increasing and nonincreasing functions, respectively, ofA.

In the following, analytical expressions are derived using a symbolic computation package Maple 13 [27]. The displace-
mentsU1 andU2 are written explicitly with respect to the cross-sectional areas with parameterH as

U1 =
aH
2

[
b(4+H2)+2c

]
(10a)

U2 = a
[
b(4+4H +H3)+4cH

]
(10b)

a =
(4+H2)3/2

8A1A2H2 (10c)

b = A1 +A2, c = A1−A2 (10d)

As verified below, the worst (maximum) value ofW is attained atH = H0 −∆H. In contrast,V obviously has the worst
(maximum) value atH = H0 + ∆H. Therefore, the antioptimal solutions for maximizingW andV, respectively, can be
obtained analytically as functions ofA; hence, the worst values̃W andṼ are written as the explicit functions ofA. Then, for
P1 and P2,A2 can be eliminated using the constraints (5c) and (6c), respectively, which are to be satisfied with equality at
the optimal solution. The optimal solutions are found from the stationary conditions of the objective functions with respect
to A1. For P3, the optimal solutions are found from the stationary conditions of the objective function with respect toA1 and
A2.

This way, the optimal solutions for problems P1, P2, and P3 are obtained explicitly as follows:

P1 : A1 = 8.8511/WU, A2 = 16.44/WU,

V = 61.74/WU, W = WU

P2 : A1 = 0.1434VU, A2 = 0.2663VU,

V = VU, W = 61.74/VU

P3 : A1 = 1.127
√

C2/C1, A2 = 2.092
√

C2/C1,

V = 7.857
√

C2/C1, W = 7.857
√

C2/C1

(11)

Although the expressions of the solutions are different, three solutions lead to the same set of Pareto optimal solutions
satisfying

A2 = 1.857A1, WV = 61.74 (12)

This result is justified from the fact that three problems have the same optimality conditions. Letµ andν denote the Lagrange
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Fig. 2. Relation between H and W for the design A1 = 1.0 and A2 = 1.857.
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Fig. 3. Relations between W and V of Pareto optimal solutions; dotted line: solutions without uncertainty, solid line: solutions with uncer-

tainty, dashed line: nominal values of the solutions with uncertainty.

multipliers. The optimality conditions for P1, P2, and P3 are written as

P1 :
∂Ṽ
∂Ai

+µ
∂W̃
∂Ai

= 0, (i = 1,2) (13a)

P2 :
∂W̃
∂Ai

+ν
∂Ṽ
∂Ai

= 0, (i = 1,2) (13b)

P1 : C1
∂Ṽ
∂Ai

+C2
∂W̃
∂Ai

= 0, (i = 1,2) (13c)

These equations are identical if the multipliers are found as

1
µ

= ν =
C1

C2
(14)

Fig. 2 shows the relation betweenW andH for the designA1 = 1.0 andA2 = 1.857, which verifies thatW is a decreasing
function ofH, and, accordingly, has the worst (maximum) value atH = H −∆H. The solid line in Fig. 3 shows the relation
between the worst values ofW andV of the Pareto optimal solutions. The relation between the nominal values ofW andV
of the Pareto optimal solutions is plotted in the dashed line in Fig. 3, which satisfies the relationWV = 26.10, which is much
smaller than the worst value 61.74 in (12). Furthermore, if uncertainty is not considered, the relation betweenW andV of
the Pareto optimal solutions is as plotted in the dotted line, which satisfies the relationWV = 25.00. Therefore, even the
nominal values ofW andV of the Pareto solutions increase due to the existence of uncertainty. This fact can be theoretically
justified from the fact that the solution of P1 (or P2) is a feasible solution of the problem without uncertainty for specified
value ofWU (or VU), and does not always satisfy the optimality conditions of the problem without uncertainty. Therefore,
optimization without uncertainty does not provide any information on optimization with uncertainty.



3 Equilibrium and stiffness of tensegrity structures
In the numerical examples, Pareto optimal solutions are found for the coefficients of self-equilibrium forces of a tenseg-

rity grid. The members, including struts and cables, are connected by pin joints, and the self-weight is neglected; hence,
only axial forces exist in the members. We assume that all members are in elastic range, and neither buckling nor yielding is
considered.

Let m andn denote the numbers of members and degrees of freedom, respectively. Then×m equilibrium matrixD is
constructed using the standard approach for 3-dimensional bar-joint structures. The vector of member forces is denoted by
s. In the state of self-equilibrium, the equilibrium equation is written as

Ds= 0 (15)

Let κ denote the rank ofD. The equilibrium equation (15) hasq = m− κ self-equilibrium modes, which are found, as
follows, by using the singular value decomposition ofD.

The non-zero eigenvalues ofD>D are denoted byωi (i = 1, . . . ,κ). The singular value decomposition ofD is written
as [28]

Ω = S>DR (16)

where

Ω =
(

diag(ω1, . . . ,ωκ) O
O O

)
(17)

with O being null matrix, and the diagonal terms ofΩ are called singular values ofD. The column vectorsRi (i = κ+1,κ+
2, . . . ,m) of R corresponding to zero singular value satisfy the condition of self-equilibrium force mode as

DRi = 0 (18)

By denotinggi = Ri+κ (i = 1, . . . ,q), the self-equilibrium force vectors satisfyingDs= 0 is given as the linear combi-
nation ofgi as

s= α1g1 + · · ·+αqgq

= Gα
(19)

whereα = (α1, . . . ,αq)> is the coefficient vector, andG = (g1, . . . ,gq) is the matrix of the self-equilibrium force modes. Let
b>

i denote theith row ofG. The components ofs are written as

si = b>
i α, (i = 1, . . . ,m) (20)

The tangent stiffness matrixK of a tensegrity structure is expressed as the sum of the linear stiffness matrixKE and the
geometrical stiffness matrixKG as [12]

K = KE +KG (21)

Note thatKE depends on the stiffnesses of members, andKG depends on the member forces.
In the following discussions on stiffness of the structure, the rigid-body motions are assumed to be constrained. Letλr

(λ1 ≤ λ2 ≤ ·· · ≤ λn) andΦi denote theith eigenvalue and eigenvector ofK , respectively, which are defined by

KΦi = λiΦi , (i = 1, . . . ,n) (22)

When the external loads applied to a structure are unknown, the best way to strengthen the structure may be to increase its
stiffness in the weakest direction. Hence, the lowest eigenvalueλmin after constraining the rigid-body motions is maximized
as the performance measure in the optimization problem defined in the next section.



4 Multiobjective hybrid optimization–antioptimization problem
The upper and lower bounds for the forces of theith member are denoted bysU

i andsL
i , respectively. The conditions for

the member forces are written as

sL
i ≤ si ≤ sU

i , (i = 1, . . . ,m) (23)

For a cable,sU
i is given as the yield force divided by the associated safety factor, while a small positive valuesL

i is given for
preventing slackening. In contrast, for a strut,sL

i is given as the Euler buckling force, which is negative, divided by the safety
factor, whilesU

i may be zero or a negative value with sufficiently small absolute value.
In the process of force design, the geometry (nodal locations) and the topology of the structure are specified. Therefore,

the design variables are the coefficientsα for the self-equilibrium modes. By using the relation (20), the constraints for the
optimization problems are given with respect toα as

sL
i ≤ b>

i α ≤ sU
i , (i = 1, . . . ,m) (24)

Let s∗ denote the target values of the member forces, which can be specified based on the yield forces of cables and
buckling forces of struts, or, alternatively, we can use any optimization approaches for definings∗ based on other design
criteria. In the following antioptimization problem, the deviationeof the forces froms∗ is chosen as one of the performance
measures, which is defined as follows as a convex function ofα:

e= (s∗−Gα)>(s∗−Gα)

= s∗>s∗−2s∗>Gα+α>G>Gα
(25)

Furthermore, the lowest eigenvalueλmin of K after constraining the rigid-body motions is maximized, i.e.,−λmin is mini-
mized, as the global measure of stiffness and stability of the structure. Note in (21) thatKG depends linearly onα, while KE

is independent ofα; hence,λmin is a concave function ofα [29]. Then, the MOP problem is formulated as

Minimize −λmin(α) ande(α) (26a)

subject tosL
i ≤ b>

i α ≤ sU
i , (i = 1, . . . ,m) (26b)

Consider uncertainty in member forces at the self-equilibrium state due to the errors in unstressed (initial) lengths of
members or variation in member lengths resulting from relaxation of cables after construction. In the process of designing
tensegrity structures, the errors exist also in the nodal locations. However, the locations of nodes are usually adjusted by
sacrificing the accuracy of member forces, which means that the small dislocation of nodes and/or small error in member
length leads to variation of mechanical properties only through errors in the member forces. Therefore, in this paper, only
uncertainty in member forces is considered.

Since the member force vectors should satisfy the self-equilibrium equation (15), the errors ins cannot be distributed
independently. The equilibrium matrixD is fixed, because we do not consider the errors in nodal locations. Therefore, the
vectorsgi of the self-equilibrium force modes are fixed, and the variation of the member forces is investigated in the space
of the coefficient vectorα.

To describe the realistic situation, we assign the range of uncertainty ofsas an interval

s0
i −∆si ≤ si ≤ s0

i +∆si (27)

wheres0 = (s0
1, . . . ,s

0
m)> is the vector of nominal values, and∆si is the maximum possible increase or decrease ofsi . Note

that the range is given for the forcessi , although the independent parameters for the forces areα. The inequalities (27) can
be rewritten using the increment∆α from the nominal values as

−∆si ≤ b>
i ∆α ≤ ∆si , (i = 1, . . . ,m) (28)

The worst values are obtained by solving the following antioptimization problems:

Find λ̃min(α) = min
∆α

λmin(α,∆α) (29a)

subject to −∆si ≤ b>
i ∆α ≤ ∆si , (i = 1, . . . ,m) (29b)



Find ẽ(α) = max
∆α

e(α,∆α) (30a)

subject to −∆si ≤ b>
i ∆α ≤ ∆si , (i = 1, . . . ,m) (30b)

Finally, the MOP problem considering the worst values of the performance measures is formulated as

Minimize − λ̃min(α) andẽ(α) (31a)

subject tosL
i ≤ b>

i α ≤ sU
i , (i = 1, . . . ,m) (31b)

It is widely recognized that the constraint approach is superior to the linear-weighted-sum approach, because the con-
straint approach can find Pareto optimal solutions even when they exist along the nonconvex boundary of feasible region
in the objective function space. However, the location of vertex that has the worst value of an objective function in the
antioptimization problem may vary discontinuously with variation of the design variablesα, and it is very difficult to satisfy
the constraints strictly for a problem with discontinuous sensitivity coefficients. Therefore, we use the linear-weighted-sum
approach in the following examples, and confirm that the Pareto optimal solutions exist along the convex boundary of feasi-
ble region. Optimal solutions are first found for single-objective problems for minimizing−λ̃min(α) andẽ(α), respectively.
The objective functionF(α) for the linear-weighted-sum approach is given as

F(α) = − C
δλ

λ̃min(α)+
(1−C)

δe
ẽ(α) (32)

whereδλ andδe are the range of̃λmin andẽ, respectively, obtained from the optimal values of the single-objective problems,
and 0≤C≤ 1 is the weight coefficient.

Sinceλmin and e are concave and convex functions, respectively, the worst values of∆α that minimizesλmin and
maximizese exist at the vertices of the region of uncertainty defined by (28). In the following numerical examples, the
vertices of the feasible region are enumerated using the software cdd+ [30, 31] based on the efficient procedure called
reverse search[32]. cdd+ can enumerate the vertices and the associated active constraints of the region defined by linear
inequality and equality constraints. Finally, the optimization problem (31) is solved using an NLP approach. The algorithm
of multiobjective hybrid optimization and antioptimization is summarized as follows:

Step 1 Specify the geometry, topology, and material property of the tensegrity structure. Assign the upper boundsU and
lower boundsL of the forces, and the radius∆sof uncertainty.

Step 2 Construct the equilibrium matrixD and compute the self-equilibrium force modesg1, . . . ,gq by using the singular
value decomposition (16).

Step 3 Assign bound constraints (23) for the self-equilibrium forces and solve the optimization problem of forces using an
NLP as follows:

3.1 Set initial value ofα, and assign parameters for NLP.
3.2 Compute the sensitivity coefficients of the objective functions using a finite difference approach, and update the vari-

ableα based on the algorithm of NLP, where the worst values ofλmin andeare obtained using vertex enumeration
at every trial that results in modification of variables.

3.3 Go to 3.2 if convergence criteria of NLP are not satisfied.

We use SNOPT Ver. 7.2 [33] that utilizes the sequential quadratic programming for the upper-level optimization prob-
lem. In the following examples, optimization is carried out from ten different random initial solutions, and the best solution
is chosen as the optimal solution.

5 Numerical examples
5.1 Parameters for numerical examples

We first present an illustrative example of a simple tensegrity structure with two self-equilibrium modes to graphically
present the optimization process. A numerical example of a tensegrity grid is then presented for demonstrating applicability
of the proposed method to general tensegrity structures.

The elastic modulus is 2000.0 N/mm2 for all members. The cross-sectional areas are 50 mm2 for struts including the
bars without prestress, and 5 mm2 for cables. The radius of uncertainty∆si for member force is 0.5 N for all members. In
the following, the units of length and force are mm and N, respectively, which are omitted for simplicity.
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5.2 Illustrative example
Consider a simple tensegrity structure as shown in Fig. 4, which has eight cables, one vertical strut, and two horizontal

struts. The thick and thin lines in Fig. 4 indicate struts and cables, respectively. Note that the struts are not connected with
each other at their centers. The numbers with and without parentheses are the node (support) numbers and member numbers,
respectively. The(x,y,z)-coordinates of the nodes 1–6 are(−100,0,0), (0,−100,0), (0,100,0), (100,0,0), (0,0,40), and
(0,0,−40), respectively. The structure is supported in three directions at support 1, inz-direction at support 2, inx- and
z-directions at support 3, and iny- andz-directions at support 4. This way, all the rigid-body displacements are suppressed.
The bounds(sL

i ,sU
i ) for the axial forces of the cables and struts are(1,100) and(−100,−20), respectively.

The matrixG of the self-equilibrium forces is obtained as follows with an appropriate normalization:

G =



−0.2626 −0.2626
−0.6565 0.0

0.0 −0.6565
0.3536 −0.0
0.3536 −0.0
0.3536 −0.0
0.3536 −0.0

0.0 0.3536
0.0 0.3536
0.0 0.3536
0.0 0.3536


(33)

Therefore, we have two self-equilibrium force vectors that have non-zero prestresses in the members in two vertical planes,
respectively, and there is an interaction only in the vertical strut indicated as member 1. The feasible region ofα is given
by the five vertices(α1,α2) = (3.0465,4.5697), (4.5697,3.0465), (15.232,3.0465), (15.232,15.232), and (3.0465,15,232) as
illustrated in Fig. 5. It is supposed that the target axial force vectors∗ is defined by the coefficient vectorα∗ = (10.0,10.0)>.

First, we find the Pareto optimal solutions without uncertainty in the member forces. The values of(λmin,e) for the single
objective optimization problems for maximizingλmin and minimizinge, respectively, are(0.14979,58.534) and(9.8392×
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Fig. 7. Tensegrity grid constructed by assembling the unit cell shown in Fig. 8 in x- and y-directions.

10−2,0.0). Therefore, the rangesδλ andδe are defined asδλ = 5.1468×10−2 andδe = 58.534. Then, the Pareto optimal
solution forC= 0.5 in (32) without uncertainty is found to be(α1,α2) = (12.591,12.591) with (λmin,e) = (0.12386,14.359),
which is shown with ‘×’ mark in the design variable space in Fig. 6.

The effect of errors in nodal locations with fixed member forces is investigated using this example; i.e., the partial deriva-
tives with respect to nodal locations are investigated, while the variation of member forces are appropriately incorporated
through uncertainty in the coefficients of the force modes. The value ofλmin of the deterministic solution withC = 0.5 is
0.12415. Ifz-coordinate of node 5 is increased from 40.0 to 41.0, 42.0, 43.0, 44.0, and 45.0, thenλmin = 0.12394, 0.12372,
0.12350, 0.12328, and 0.12305, respectively, which means that variation ofλmin is very small for a moderately large variation
of nodal location.

Therefore, we consider uncertainty only in member forces. The same range parameter valuesδλ = 5.1468×10−2 and
δe = 58.534 are used for this case for comparison purpose between the results with and without uncertainty. Then, the
Pareto optimal solution forC = 0.5 is found to be(α1,α2) = (12.605,12.639) with (λ̃min, ẽ) = (0.12171,15.855), which
is indicated by ‘+’ mark in the design variable space in Fig. 6. Thus,λmin decreases ande increases as the result of
considering uncertainty. The values of(λmin,e) at the vertices A, B, C, and D of the region of uncertainty in Fig. 6 are
(0.12320,13.654), (0.12171,13.698), (0.12474,15.791), and (0.12325,15.855), respectively. Therefore, the minimum value
of λmin and maximum value ofe, i.e., the worst values, are attained at different vertices of the uncertain region.

5.3 Example of a tensegrity grid
The tensegrity grid as shown in Fig. 7 [34] is used as the example structure for demonstrating the effectiveness of the

proposed method. The structure is constructed by consecutively assembling the unit cell in Fig. 8 inx- andy-directions. The
thick and thin lines in the figures are struts and cables (or bars), respectively. Note that the members in thin lines that are
connected to the boundary nodes do not carry any prestress at the self-equilibrium state; these members are called bars and



Fig. 8. Unit cell for the tensegrity grid.
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Fig. 9. Pareto optimal solutions in objective function space.
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Fig. 10. Relation between minimum eigenvalue and square-root of force deviation of Pareto optimal solutions.

assumed to have stiffness in both of compression and tension in eigenvalue analysis of the tangent stiffness matrix.
Let r andc denote the numbers of rows (parallel tox-axis) and columns (parallel toy-axis) of the struts, respectively;

i.e., there existr + 1 struts in each column andc+ 1 struts in each row. Therefore, the structure has 2rc + r + c struts
andn = 2(rc + r + c) nodes, and the total number of members ism= 7rc + 5r + 5c−4. The rank deficiency of the linear
stiffness matrixKE after constraining the six rigid-body motions is equal to 1; i.e., this structure has only one infinitesimal
mechanism.

The structure in Fig. 7 has three and four struts inx- andy-directions, respectively; i.e.,r = 3 andc = 2. Hence, there
arem= 63 members andn = 22 nodes in total. Thex- andy-coordinates of the nodes are shown in the plan view of the
structure in Fig. 7(b), and the height of the grid is 100.

The rank of the equilibrium matrixD is κ = 59. Therefore, the structure has four (q = 63−59= 4) force modes at the
self-equilibrium state, which are denoted byg1, . . . ,g4 with the coefficientsα = (α1, . . . ,α4)>. The bounds(sL

i ,sU
i ) for the

axial forces of the cables and struts are(1,100) and(−100,−1), respectively. Note that no bound or uncertainty is given for
horizontal bars that have vanishing axial force irrespective of the value ofα.



Table 1. Computational cost for enumeration.

Size m n q nc d CPU (s) CPU/m3×106

(r,c) = (2,3) 63 22 4 66 98 0.064 0.256

(r,c) = (2,4) 82 28 5 92 588 0.125 0.227

(r,c) = (2,5) 101 34 6 118 1207 0.256 0.248

The lowest eigenvalueλmin of K is positive at all the vertices after constraining the rigid body motions; i.e., the structure
is stable at any set of self-equilibrium forces in the feasible region. The center of the feasible region is computed asα∗ =
(0.4198,0.5832,3.2567,0.4294)>, which is supposed to be the coefficient vector corresponding to the target axial forcess∗.

The values of(λmin,e) for the single objective problem for maximizingλmin and minimizinge, respectively, are
(0.07701,1.5160× 104) and (0.05461,1.2723× 104). Therefore, the rangesδλ and δe are defined asδλ = 0.07701−
0.05461= 0.02240 andδe = 1.5160×104−1.2723×104 = 0.2437×104.

The Pareto optimal solutions are found for the weight coefficientsC = 0.1,0.2, . . . ,0.9 in (32), which are plotted in
Fig. 9 in the objective function space. In order to see the distribution more clearly, the relation between minimum eigenvalue
and square-root of force deviation of Pareto optimal solutions is plotted in Fig. 10. As is seen, the Pareto optimal solutions
that form a convex curve in the objective function space have been successfully found using the proposed method.

We next investigate the computational cost for enumeration in the antioptimization process. Computation is carried out
using a PC with Intel Core i7 processor (3.97GHz, 6 Cores) and 12 GB RAM. The lower and upper bounds for the forces
of cables and struts are relaxed to 0.0. Table 1 shows the size and CPU time for the grids with(r,c) = (2,3), (2,4), and
(2,5), wherenc is the number of independent linear inequalities, andd is the number of vertices. As is seen, the number of
inequalitiesnc and the number of variables (force modes)q are proportional to the number of membersm. The CPU time is
approximately proportional tom3, which is regarded as practically acceptable. Avis and Fukuda [31] theoretically estimated
the computational cost for vertex enumeration of polyhedra. In Table 1, the number of variables is much smaller than the
number of inequalities, and the computational cost is bounded by the order ofqmq+2. When all vertices are simple (non-
degenerate), i.e., the number of active inequalities is not more thand at each vertex, the order becomesqmq+1. Note that
there are several degenerate vertices in the examples in Table 1. Ifq is proportional tom, then the order becomes exponential
function ofm; however, this is the worst-case estimate of the computational cost. Furthermore, the number of independent
force modes is very small for general tensegrity structures; hence, the proposed method is applicable to practical force design
problems.

6 Conclusions
Properties of Pareto optimal solutions considering the worst-case scenario have been first investigated using a small

example of truss optimization for minimum total structural volume and compliance within the framework of NLP. It has
been analytically shown that the same set of Pareto optimal solutions for the hybrid optimization-antioptimization problem
can be obtained using the linear-weighted-sum approach and constraint approach. This result is not obvious for the case
considering the worst-case scenario.

Next, a hybrid approach of multiobjective optimization and antioptimization have been presented for force design of
tensegrity structures. The design variables are the coefficients of the self-equilibrium force modes. The objective functions
are the lowest eigenvalue of the tangent stiffness matrix and the deviation of forces from the specified target distribution,
which are defined as the worst values due to the possible uncertainties in the variables.

The upper-level problem of optimization is solved using an NLP approach, where the sensitivity coefficients are com-
puted by a finite difference approach. The lower-level problems for finding the worst values of objective functions are found
using enumeration of the vertices of the uncertain region of the prestresses, which is defined with linear inequalities of the
variables. It has been shown in the numerical examples that the Pareto optimal solutions can be successfully found for tenseg-
rity structures by solving the two-level hybrid optimization-antioptimization problem using vertex enumeration combined
with an NLP approach.

Note that our approach is concerned with the worst case only, and we do not consider any probabilistic uncertainty.
Therefore, statistical evaluation is out-of-scope of the paper. However, our approach is closer philosophically to adopting an
uniform distribution as discussed by Elishakoff and Ohsaki [15].
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