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Abstract Uniqueness and symmetry of solution are
investigated for topology optimization of a symmetric
continuum structure subjected to symmetrically dis-
tributed loads. The structure is discretized into finite
elements, and the compliance is minimized under con-
straint on the structural volume. The design variables
are the densities of materials of elements, and inter-
mediate densities are penalized to prevent convergence
to a gray solution. A path of solution satisfying condi-
tions for local optimality is traced using the continua-
tion method with respect to the penalization parame-
ter. It is shown that the rate form of the solution path
can be formulated from the optimality conditions, and
the uniqueness and bifurcation of the path are related to
eigenvalues and eigenvectors of the Jacobian of the gov-
erning equations. This way, local uniqueness and sym-
metry breaking process of the solution are rigorously
investigated through the bifurcation of a solution path.
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1 Introduction

There have been numerous studies on topology opti-
mization of two-dimensional continua discretized into
finite elements. In most of those studies, the compli-
ance, which is equivalent to the external work against
the specified static loads, is minimized under constraint
on the total structural volume. The topology optimiza-
tion problem is regarded as a combinatorial optimiza-
tion problem using 0–1 variables indicating existence/nonexistence
of elements, which are relaxed to continuous variables
between 0 and 1. However, simple solution of the re-
laxed problem leads to a so called gray solution, in
which the variables may have intermediate values be-
tween 0 and 1.

In order to prevent gray solutions, mainly two ap-
proaches have been developed for optimization of plates
or sheets; namely, homogenization approach (Bendsøe
and Kikuchi, 1988; Suzuki and Kikuchi, 1991) and den-
sity approach with penalization (Bendsøe, 1989). The
former approach has rigorous mathematical background,
but is rather difficult to implement. Therefore, the den-
sity approach has been recently preferred especially for
structures with nonlinear properties. Because simple
application of the density approach in conjunction with
a nonlinear programming algorithm results in a gray
solution, the intermediate density is penalized to have
small stiffness using, e.g., the SIMP (solid isotropic mi-
crostructure with penalty or solid isotropic material with
penalization) approach (Rozvany et al., 1992; Bendsøe
and Sigmund, 2003; Rozvany, 2009), or penalized to
have artificially large structural volume (Bruns, 2005).

Another difficulty in the SIMP approach is the exis-
tence of checkerboard solution, which is avoided using
the penalization in perimeter length (Petersson, 1999b)
or in the gradient of the density (Petersson and Sig-
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mund, 1998). A smoothing filter of the density (Bruns,
2005, 2007) can also be used for regularizing the prob-
lem. Optimal topology can be controlled by varying
the perimeter length or the parameter value of the fil-
ter function. Rietz (2007) obtained various topologies
for different values of the gradient parameter. Recently,
the level set approach has been developed for simulta-
neous shape-topology optimization of plates and sheets
(Allaire et al., 2002, 2004; Wang et al., 2003; Sethian
and Wiegmann, 2000; Yamasaki et al., 2010). Yamada
et al. (2009) utilized the phase field model in conjunc-
tion with the level set approach to control the com-
plexity (number of holes) of optimal topology. However,
in these approaches, the intrinsic properties of optimal
topology cannot be investigated, because the complex-
ity of the solution is artificially controlled through the
penalty terms. Therefore, in this paper, we investigate
the properties of the optimal solution using the SIMP
approach without additional penalty on the perimeter
length or the gradient (slope) of density distribution.
Note that it is important for optimization of a sym-
metric structure that the symmetry property of the so-
lution should be investigated before assigning the types
and parameter values for regularization.

In the SIMP approach, a large penalization param-
eter leads to a 0–1 solution; however, an inappropri-
ate parameter value will restrict symmetry properties
and result in a convergence to a local optimal solution
which is simply denoted by KKT point satisfying the
Karush-Kuhn-Tucker (KKT) conditions. Therefore, a
KKT point is usually traced gradually increasing the
penalization parameter utilizing the so called continu-
ation method (Allgower and Georg, 1993) to select an
appropriate value of the penalization parameter as well
as the parameters for density filter or penalty of gradi-
ents.

It has been shown that the process of gradually in-
creasing the penalization parameter converges to an ap-
proximate local optimal solution for the original 0–1
problem (Mart́ınez, 2005) and an exact local solution
under certain conditions (Rietz, 2001). In the predictor-
corrector continuation method using the Euler predic-
tor, the governing equations are differentiated, and the
solution path is traced along the path (Mittelmann and
Roose, 1990). This process is basically the same as the
parametric programming approach (Gal, 1979; Fiacco,
1983) or the homotopy method (Watson and Haftka,
1989) for tracing KKT points corresponding to the var-
ious parameter values (Nakamura and Ohsaki, 1988).
However, in most of the continuation methods for the
plate (sheet) topology optimization problems (Rozvany
et al., 1994), the governing equations are not differen-
tiated, and the solutions are found consecutively with

increasing value of the penalization parameter. Stolpe
and Svanberg (2001) investigated the trajectory of the
optimal solution with respect to the penalization pa-
rameter for a problem for minimizing the worst value
of compliances under multiple loading conditions.

There have been several papers on topology opti-
mization of shells (Belblidia and Bulman, 2002) includ-
ing the early paper by Maute and Ramm (1997). Moses
et al. (2003) investigated symmetric optimal topologies
of circular plates assigning the symmetry conditions.
However, to the authors’ knowledge, there has been no
investigation on the mechanism of symmetry-braking
process of the optimal topology of an axisymmetric
shell. If the penalization parameter is small and in-
termediate density is allowed, the optimal solution of
an axisymmetric shell subjected to symmetric loads is
highly likely to be axisymmetric. However, if the in-
termediate density is penalized, then some ribs should
be generated to result in a solution with reduced sym-
metry. Although the solution with intermediate density
has no practical meaning, it is important to investigate
the symmetry-breaking process of the KKT point in
view of bifurcation of solution paths. In the same man-
ner as bifurcation theory (Ikeda and Murota, 2002),
the uniqueness of the solution is strongly related to the
symmetry of the solution. Uniqueness and stability of
a local optimal solution have been studied by many re-
searchers. Jog and Haber (1996) derived the conditions
of stability using incremental form of the variational
problem. Petersson (1999a) investigated convergence of
the solution with respect to the mesh size for simple
loading conditions. Kanno et al. (2001) investigated
symmetry properties of optimal solutions of semidefi-
nite programming using group theoretic approach, and
showed that optimal cross-sectional areas of trusses for
maximum eigenvalues are symmetric if the geometry is
fixed and symmetric. Stolpe (2010) showed that opti-
mal truss with symmetric geometry and loading condi-
tions may not be symmetric if cross-sectional areas are
discrete variables. Rozvany (2011) showed that the so-
lution is usually unique and at least one solution must
be symmetric for a symmetric problem with continuous
variables.

The purpose of this paper is to investigate the symmetry-
reduction process of the local optimal solution. A solu-
tion path is defined with respect to the penalization
parameter, and a bifurcation point is detected as a sin-
gular point of the solution path. This process is carried
out without using any filter or penalty for the gradient
in order to investigate the intrinsic symmetry-reduction
process. We first define local nonuniqueness of the KKT
point as a bifurcation of the solution path with respect
to the penalization parameter. The formulation for nu-
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merical continuation with respect to the penalization
parameter is rigorously derived by differentiating the
KKT conditions and the stiffness (equilibrium) equa-
tions. Then, a condition for local uniqueness of the so-
lution is derived as the singularity of the Jacobian of
governing equations (Ohsaki, 2006; Ikeda and Murota,
2002; Ohsaki and Ikeda, 2007). In the numerical ex-
amples, the symmetry-reduction process of the optimal
solution as a function of the penalization parameter is
studied in details. It is shown that a ribbed shell with
reduced symmetry is generated through a bifurcation
process of the solution path.

2 Conditions for bifurcation of solution path
and stability of solution of nonlinear equations

Suppose a set of variables is found as a solution of non-
linear equations defined with a parameter. Then a path
or a curve of the solution is defined parametrically in
the space of the variables and parameter. In this sec-
tion, a basic methodology of bifurcation analysis of so-
lution path of nonlinear equations is summarized for
the completeness of the paper and to clarify the rela-
tion between the stability of iterative solution process
and the bifurcation (nonuniqueness) of solution path
(Golubitsky and Schaegger, 1979).

Consider a problem of finding the solution x ∈ Rq

of the nonlinear equations

F(x, t) = 0 (1)

where t is the problem parameter, and F(x, t) ∈ Rq

is continuously differentiable with respect to x and t.
Since the solution is defined by (1) for each specified
value of t, it is regarded as a function of t, and is de-
noted by x̃(t). Suppose we have a solution x̃(t0) for
t = t0. Then the solution for t = t0+∆t with a specified
increment ∆t of t can be estimated using the following
linear approximation of the governing equations (1):

J
[
x̃(t0 + ∆t)− x̃(t0)

]
+

∂F
∂t

∆t = 0 (2)

where J ∈ Rq×q is the Jacobian of F, for which the
(i, j)-component Jij is defined as

Jij =
∂Fi

∂xj
, (i, j = 1, . . . , q) (3)

If J is nonsingular, then the solution path can be uniquely
found using an incremental-iterative method for the
governing equations (1) in a similar manner as the arc-
length method for geometrically nonlinear equilibrium
analysis. In contrast, if J is singular, then bifurcation of

the solution path exists and the solution cannot be de-
termined uniquely at the bifurcation point (Ikeda and
Murota, 2002; Ohsaki and Ikeda, 2007).

We next consider a process of finding the solution
of (1) for a fixed value of t at t0 from an arbitrary
initial solution using Newton iteration. Let F0 denote
the current value of F in the iterative process. Then the
equation for finding the increment ∆x of x for satisfying
(1) with linear approximation is written as

F0 + J∆x = 0 (4)

Therefore, if J is singular, then the solution of (1) can-
not be determined uniquely using (4). Furthermore, if F
is the governing equation of a reciprocal system that has
a potential function, then F is defined as the gradient of
the potential, and J is a symmetric matrix. Therefore,
for a reciprocal system, the Newton iteration using (4)
diverges if J is singular. Hence, the solution process is
unstable at the bifurcation point of the solution path.

Jog and Haber (1996) derived the conditions of sta-
bility using an incremental form of the variational prob-
lem for a min-max optimization problem. However, our
approach for investigation of uniqueness of the optimal
solution based on continuation method is applicable to
any type of nonlinear programming problem.

3 Optimization problem and optimality
conditions

Consider a symmetric plate or shell discretized into fi-
nite elements. The number of elements and the number
of degrees of freedom are denoted by m and n, respec-
tively. Let dj denote the density of the jth element, for
which the upper and lower bounds are assigned as

0 ≤ dj ≤ 1, (j = 1, . . . , m) (5)

The design variable vector is given as d = (d1, . . . , dm)>.
Let P ∈ Rn denote the specified nodal load vector.

The stiffness matrix is denoted by K ∈ Rn×n. Then the
nodal displacement vector U ∈ Rn is obtained from the
following stiffness (equilibrium) equation:

K(d)U(d) = P (6)

The objective function to be minimized is the compli-
ance W (d) defined as

W (d) = P>U(d) (7)

We use the SIMP approach to prevent gray solutions
by penalizing the stiffness of an element with interme-
diate density. The stiffness matrix K is defined with the
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matrix Ki ∈ Rn×n corresponding to the unit density of
the ith element and the penalization parameter p as

K =
m∑

i=1

{ε + (1− ε)dp
i }Ki (8)

where ε is a sufficiently small positive value for prevent-
ing numerical instability. The volume of the ith element
is expressed as a product of the area Ai, thickness hi,
and density di. Then the problem of minimizing the
compliance under a constraint on the total structural
volume is formulated with respect to the variable vector
d as

minimize W (d) = P>U(d) (9a)

subject to
m∑

i=1

Aihi[ε + (1− ε)di]− V̄ ≤ 0 (9b)

0 ≤ di ≤ 1, (i = 1, . . . , m) (9c)

where V̄ is the specified upper bound of the total struc-
tural volume.

The Lagrangian of Problem (9) is formulated as

L(d, λ, µU,µL) = W (d)

+ λ

(
m∑

i=1

Aihi[ε + (1− ε)di]− V̄

)

+
m∑

i=1

µU
i (di − 1) +

m∑

i=1

µL
i (−di)

(10)

where λ, µU
i , and µL

i are the Lagrange multipliers that
have nonnegative values at the optimal solution. By
differentiating (10) with respect to di and using (6)–
(8), we have

∂L

∂di
= −(1− ε)pdp−1

i U>KiU

+ λAihi(1− ε) + µU
i − µL

i

(11)

where the standard approach of sensitivity analysis of
compliance has been used (Choi and Kim, 2004). Define
Gi(d) as

Gi(d) = −(1− ε)pdp−1
i U>KiU + λAihi(1− ε) (12)

Then the first-order optimality conditions (KKT con-
ditions) are derived as

Gi(d)





= 0 for 0 < di < 1
≤ 0 for di = 1
≥ 0 for di = 0

(13)

The set of indices of elements satisfying 0 < di < 1,
and accordingly Gi(d) = 0, is denoted by I; i.e.,

I = {i | 0 < di < 1} (14)

and we define s by s = |I|.

4 Sensitivity of optimal solution with respect
to penalization parameter

Equations for computing the sensitivity coefficients with
respect to p, which are called parametric sensitivity co-
efficients for brevity, of the optimal solutions are derived
below, where (·)′ indicates differentiation with respect
to p. For this purpose, the vector of state variables U
and the Lagrange multiplier λ are also regarded as func-
tions of p.

By differentiating (6) with respect to p and using
(8), we have

−KU′ −
m∑

i=1

(1− ε)pdp−1
i d′iKiU

= (1− ε)
m∑

i=1

dp
i ln diKiU

(15)

By differentiating the volume constraint (9b) and mul-
tiplying 1/2, we obtain

1
2

m∑

i=1

(1− ε)Aihid
′
i = 0 (16)

Suppose the active side constraints remain active at
the KKT point corresponding to the parameter value
in the neighborhood of the current value; i.e., µU

i > 0
and µL

i > 0 are satisfied for di = 1 and di = 0, re-
spectively. Furthermore, transition of an inactive side
constraint to be active is not considered, because we
increase the parameter discretely and find the solution
for each specified value of the parameter. Therefore,
we can assume that the solution is generally a regu-
lar KKT point. Bifurcation at a degenerate point may
be investigated similarly using directional derivative of
the solution. However, it is shown in the numerical ex-
amples that this simple continuation method is practi-
cally effective for obtaining a symmetric optimal topol-
ogy. Hence, for the elements i ∈ I, differentiation of
Gi(d) = 0 with respect to p leads to

− (1− ε)pdp−1
i U>KiU′

− 1
2
(1− ε)p(p− 1)dp−2

i d′iU
>KiU

+
1
2
(1− ε)Aihiλ

′

=
1
2
(1− ε)pdp−1

i ln diU>KiU

+
1
2
(1− ε)dp−1

i U>KiU, (i ∈ I)

(17)

For i /∈ I, we have d′i = 0. Therefore, there are n +
s + 1 linear equations (15), (16), and (17) for n + s + 1
variables U′, d′i (i ∈ I), and λ′.
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The indices of elements are rearranged so that I =
{1, . . . , s}, and define d0 = (d1, . . . , ds)>. Then the lin-
ear equations for computing the parametric sensitivity
coefficients of the KKT point are written in the follow-
ing form using the notations defined below:



−K B12 0

B12> B22 B23

0> B23> 0







U′

d′0
λ′


 =




b1

b2

0


 (18)

which is simply written as

BX′ = b (19)

Let Hi = U>KiU and b2 = (b2
1, . . . , b

2
s)
>. The (i, j)-

components of B12 ∈ Rn×s, B22 ∈ Rs×s, and the ith
component of B23 ∈ Rs are denoted by B12

ij , B22
ij , and

B23
i , respectively. The jth column of Ki is denoted

by kij ∈ Rn. Then the components of the symmetric
matrix B ∈ R(n+s+1)×(n+s+1) and the constant vector
b ∈ Rn+s+1 are given as

B12
ij = −(1− ε)pdp−1

j k>jiU (20a)

B22
ii = −1

2
(1− ε)p(p− 1)dp−2

i Hi,

B22
ij = 0 for i 6= j (20b)

B23
i =

1
2
(1− ε)Aihi (20c)

b1 = (1− ε)
m∑

i=1

dp
i ln diKiU (20d)

b2
i =

1
2
(1− ε)(1 + p ln di)d

p−1
i Hi (20e)

The path of the optimal solutions can be traced succes-
sively solving (19) (Ohsaki and Nakamura, 1996). Since
B is symmetric, the stability of solution is detected from
the eigenvalues or the condition number of the matrix.

5 Uniqueness of local optimal solution for
specified penalization parameter

We can solve the first equation of (18) for U′ as

U′ = −K−1b1 + K−1B12d′0 (21)

which is incorporated into the second and third equa-
tions of (18) to obtain
(

B22∗ B23

B23> 0

)(
d′0
λ′

)
=

(
b2∗

0

)
(22)

b2∗ = b2 + B12>K−1b1,

B22∗ = B22 + B12>K−1B12
(23)

Note that the elements of vector B23 have nonzero val-
ues as seen in (20c).

We can see from (20b) that B22 is a diagonal neg-
ative definite matrix for p > 1, and a null matrix for
p = 1. In contrast, the matrix B12>K−1B12 is posi-
tive definite, because K−1 is positive definite and B12

has full column rank as discussed below. Therefore, the
symmetric matrix B22∗ is positive definite at p = 1, and
its lowest eigenvalue may decrease to 0 as p is increased.
When B22∗ is positive definite, the first equation of (22)
can be solved for d′0 as

d′0 = (B22∗)−1(b2∗ −B23)λ′ (24)

By incorporating this into the second equation of (22)
and using positive definiteness of (B22∗)−1, we obtain

λ′ =
B23>(B22∗)−1b2∗

B23>(B22∗)−1B23
(25)

Hence, λ′ is uniquely determined, and d′0 is also uniquely
found using (24) and (25). Therefore, the parametric
sensitivity coefficients of a KKT point are uniquely de-
termined; accordingly, no bifurcation occurs along a so-
lution path if B22∗ is nonsingular. This way, the con-
ditions for uniqueness of the solution have been de-
rived using a simple and rigorous manner based on the
uniqueness of a solution path.

Note that the matrix K may be nearly singular and
the condition number of K−1 may be very large, if a
small value is assigned for ε. However, singularity of
K leads only to nonuniqueness of the displacements
that may not have any effect on nonuniqueness of the
density variables (Kočvara and Outrata, 2006). In fact,
the large eigenvalue of K−1, if exists, corresponds to
the eigenmode that has large deformation at the nodes
connected by the elements with low density only. Let
fi ∈ Rn denote the vector of equivalent nodal loads
of the ith element with di = 1 corresponding to the
displacement vector U. Using (20a), the ith column of
B12, denoted by Ri ∈ Rn, is given as

Ri = −(1− ε)pdp−1
i fi (26)

Hence, Ri (i = 1, . . . , s) are generally independent, and
B12 has full column rank.

The matrix B12>K−1B12 in (23) is denoted by S ∈
Rs×s. Then, the (i, j)-component Sij of S is written as
follows using the displacement vector Uj ∈ Rn against
Fj :

Sij = U>
j Ri (27)

Therefore, the matrix S = B12>K−1B12 is bounded if
the work in the jth element (j ∈ I) done by the nodal
loads that is proportional to the equivalent nodal loads
of the ith element (i ∈ I) is bounded. This condition is
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41

81

121

161

Fig. 1 A spherical shell model.

(a) p = 1.00, W = 1.4528× 10−5 (b) p = 1.78, W = 1.7819× 10−5 (c) p = 1.80, W = 1.7935× 10−5

(d) p = 1.82, W = 1.7947× 10−5 (e) p = 2.94, W = 2.2391× 10−5 (f) p = 2.96, W = 2.2148× 10−5

Fig. 2 Optimal solutions for various values of parameter p.

usually satisfied because di has moderately large value
for the elements in I.

Suppose there exists a singular point where the low-
est eigenvalue of B22∗ vanishes. The rate form (22) is
converted to an incremental form as follows for the in-
crements δd0 and δλ of d0 and λ, respectively, corre-
sponding to the increment δp of the parameter:

(
B22∗ B23

B23> 0

)(
δd0

δλ

)
= δp

(
b2∗

0

)
(28)

As seen from (20c), the elements of vector B23 has
nonzero values, and B23 has the same symmetry prop-
erty as the solution with uniform density. Let Φ denote
the eigenvector corresponding to the zero eigenvalue of
B22∗; i.e., the kernel of the matrix B22∗ is given as cΦ
with arbitrary coefficient c. If Φ has a lower symme-
try property than B23, then Φ>B23 = 0 and B23 is
included in the range of B22∗. In this case, for the con-
stant parameter value, i.e., δp = 0, there exists a solu-
tion δd0 = βΦ and δλ = 0 with β being an arbitrary
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(c) 2.5 ≤ p ≤ 3

Fig. 3 Eigenvalues of the matrix B22∗.

nonzero value. It is easily observed from (20d), (20e),
and (23) that b2∗ has the same symmetry property as
the current optimal solution. Therefore, if Φ>b2∗ = 0,
i.e., if b2∗ is included in the range of B22∗, then there
exists a particular solution that may have nonzero value
of δp. Hence, bifurcation of solution occurs when B22∗

becomes singular.

Jog and Haber (1996) derived the conditions of unique-
ness and stability of the optimal solution based on in-
cremental form of variational problem. They first used
continuum formulation that is reduced to a finite ele-
ment formulation. In the following, we summarize their
results in a matrix-vector form.

The optimization problem is formulated as a max-
min problem:

find max
d

min
U

1
2
U>KU−P>U

−λ

(
m∑

i=1

di − V̄

)
− γ

(
m∑

i=1

di(1− di)

)
(29a)

subject to 0 ≤ dj ≤ 1, (j = 1, . . . , m) (29b)

where γ is the penalty parameter. From the station-
ary conditions of the Lagrangian of Problem (29), we
obtain the equilibrium equation (6) and the optimality
conditions (13) for the elements in I, where Gi(d) in
(13) is to be replaced by

Gi(d) = pdp−1
i U>KiU + 2λ− 2γ(1− 2di) (30)

The incremental equations are derived in the following
form for solving the equilibrium equations and optimal-
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(a) p = 1.78

(b-1) p = 2.94 (b-2) p = 2.94 (b-3) p = 2.94

Fig. 4 Eigenvectors of B22∗ for p = 1.78 and 2.94.

ity conditions using Newton iteration:
(

K B12

B12> B22

)(
δU
δd0

)
=

(
b1

b2

)
(31)

with appropriate modification of matrices and vectors
due to incorporation of the penalty term γdi(1−di) and
the differences in the signs of the strain energy in the
objective function. Note that the increment of λ is not
considered in (31), i.e., λ is fixed for some reason in the
iterative process. Then, the conditions of uniqueness
of the solution are: K is positive definite and B22 is
negative definite.

6 Numerical examples

As a numerical example, uniqueness and symmetry of
optimal solution is investigated for an axisymmetric
shell. The symmetry of the solution is indicated using
the standard notations of group theory (Kettle, 2007).
If the solution does not change after application of re-
flection with respect to one of n different planes con-
taining the axis of symmetry, and also with respect to

rotation of one of n different angles around the axis of
symmetry, then it has the dihedral symmetry Dn.

Consider a spherical shell as shown in Fig. 1 sub-
jected to the vertical concentrated load P at each node
on the top ring. The design domain is discretized to 10
and 20 elements in longitudinal and circumferential di-
rections, respectively, i.e., the total number of elements
is 400. The geometrical parameters are R = 40.0 m,
H = 11.5 m, θ = π/3, and α = π/12. Young’s mod-
ulus is 2.10 × 108 kN/m2, Poisson’s ratio is 0.3, and
P = 1.0 kN. In the following, the units of length and
force are m and kN, respectively, which are omitted for
brevity. However, the objective function is multiplied
by 109 to prevent numerical difficulty. The values in
the figures are those without scaling. The small density
parameter for ε for preventing numerical instability is
1.0× 10−6, the maximum thickness is hi = 0.5 m, and
the upper-bound volume V̄ is 50% of the value of the so-
lution with di = 1 for all elements. Optimization is car-
ried out using SNOPT Ver. 7 (Gill et al., 2002), where
the sequential quadratic programming (SQP) is used.
The default values are used for the parameters except
the strict tolerance 10−12 for feasibility. The tolerance



9

 0.01

 0.1

 1

 1  1.5  2  2.5  3

(a) B22

 1  1.5  2  2.5  3

 1

 100

 1000

 10

(b) B22∗

 10

 100

 1000

 1  1.5  2  2.5  3

(c) B>12B12
 1  1.5  2  2.5  3

 10
8

 10
4

 10
5

 10
6

 10
7

(d) K

Fig. 5 Variations of condition numbers.

of optimality is also small enough so that optimization
is carried out until no improvement is achieved.

The parametric sensitivity coefficients of optimal
solutions are first verified. For p = 1.0, the optimal
densities of the elements 1, 41, 81, 121, and 161 indi-
cated in Fig. 1 are d1 = d41 = 1.0000, d81 = 0.58805,
d121 = 0.33348, and d161 = 0.21647. The sensitivity co-
efficients are obtained as d′1 = d′41 = 0, d′81 = −0.3232,
d′121 = 0.05138, and d′161 = 0.06652. The sensitivity
coefficients obtained by the forward finite difference
approach with ∆p = 0.01 are d′1 = d′41 = 0, d′81 =
−0.3226, d′121 = 0.05133, and d′161 = 0.06640, which
have good agreement with the analytical results.

Local optimal solutions are found for the parameters
between p = 1.0 and 3.0 with the increment ∆p =
0.02, by tracing a solution path assigning the solution
of p−∆p as the initial solution for the SQP algorithm.
Fig. 2 shows the distributions of di of optimal solutions
for various parameter values in gray scale. The values

of the objective function W are also shown. The same
axisymmetric solution is found from any initial solution
for p = 1.0, because the objective function is convex
and the volume constraint is linear with respect to d.
Optimization in the parameter range 1.00 ≤ p ≤ 1.78
leads to axisymmetric solutions as shown in Fig. 2(a)
and (b), which have D20-symmetry.

For each parameter value, the eigenvalues of B22∗

of the KKT point are plotted in Fig. 3. As seen in
Fig. 3(b), the matrix B22∗ becomes singular with a zero
eigenvalue between p = 1.78 and 1.80. Accordingly, the
symmetry of solution for p = 1.80 in Fig. 2(c) is reduced
to D10, and the difference between the two solutions
for p = 1.78 and 1.80 is proportional to the eigenvector
corresponding to the zero eigenvalue of the optimal so-
lution for p = 1.78, which has D10-symmetry as shown
in Fig. 4(a).

The condition numbers of B22, B22∗, B>
12B12, and

K are plotted in log-scale in Fig. 5. The norm of para-
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Fig. 6 Variations of the norm of parametric sensitivity vector |d′0|, Lagrange multiplier λ, cardinality s of I, and objective
function W .

metric sensitivity vector, Lagrange multiplier, cardinal-
ity s of I, and objective function are plotted in Fig. 6.
As is seen, the condition number of B22∗ and the norm
|d′0| of parametric sensitivity vector drastically increase
around p = 1.78 at which B22∗ has very small positive
eigenvalue. It is also seen from Fig. 5 that the n × s
matrix B12 has full column rank s (< n). The condi-
tion number of K jumps to a very large value at the
singular point of B22∗; however, B22∗ has moderately
small condition number in the range p ≥ 1.80, although
the condition number of K is very large. For p = 2.0,
the condition number of K is 6.913×107, which is very
large; i.e., U is nearly nonunique. By contrast, the con-
dition numbers of B22 and B∗

22 are 0.2469 and 9.413,
respectively, which are sufficiently small. Therefore, in-
stability of the structure, or nonuniqueness of the dis-

placement vector U is not related to the bifurcation of
the optimal solution.

More symmetry-breaking singular points can be found
by further increasing the parameter p. The solution for
p = 1.82 has D5-symmetry as shown in Fig. 2(d), and
the solutions in the parameter range 1.82 ≤ p ≤ 2.94
have the same symmetry property, because B22∗ re-
mains to be positive definite. The lowest eigenvalue of
B22∗ becomes zero between the parameter range 2.94 ≤
p ≤ 2.96, and the symmetry of the solution reduces
from D5 to D2 as shown in Fig. 2(d) and (e). For p =
2.94, the lowest eigenvalues of B22∗ are threefold, for
which the eigenvectors are shown in Fig. 4, where (b-
1) and (b-3) have D5 and D1-symmetry, respectively,
while (b-2) does not have any symmetry property.

There also exist other points at which the lowest
eigenvalue of the matrix B22∗ and the condition num-
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(a)

(b)

Fig. 7 Optimal topology of 15 × 40 model with p = 3; (a)
continuation approach, (b) direct optimization.

bers of the matrix B22 and B22∗ jump discontinuously
due to the variation of the size s of these matrices.

Since the shape is fixed and only the topology is
varied, the mechanism of resisting external loads dis-
tributed around the top ring did not change as an result
of increasing the penalization parameter.

Finally, optimal topologies are found for a finer mesh
with 15 and 40 elements in longitudinal and circumfer-
ential directions, respectively, i.e., the total number of
elements is 600. Starting with the uniform initial de-
sign di = 0.5 for all elements with p = 1.0, the pa-
rameter p is increased to 3.0 with the increment 0.01.
The optimal topology obtained in this continuation ap-
proach is shown in Fig. 7(a). As is seen, a topology
with D10-symmetry has been obtained; however, some

Fig. 8 Optimal topology of 15×40 model with p = 4; direct
optimization.

gray elements exist near the boundary. In contrast, if
we optimize directly for p = 3.0 from the uniform ini-
tial solution, then the topology as shown in Fig. 7(b) is
obtained. As is seen, no clear symmetry is observed.

The optimal topology for p = 4.0 using continuation
approach is shown in Fig. 8(a). An almost clear 0–1
solution has been found with di = 1.0 for 341 elements,
0.966 ≤ di ≤ 0.968 for 10 elements, and di = 0.0 for 249
elements. The number of elements with di ' 1.0 is not
equal to the half of the total number elements, because
the elements around the boundary have larger area than
those around the center. If we optimize directly for p =
4.0 from the uniform initial solution, then the topology
is obtained as shown in Fig. 8(b), which has no clear
symmetry.

7 Conclusions

A simple formulation has been presented for investigat-
ing the path of the first-order optimal solution of an
axisymmetric shell that minimizes the compliance un-
der specified load and the total structural volume. The
conditions of nonuniqueness of the solution are derived
based on a bifurcation of the solution path with respect
to the penalization parameter of the SIMP approach.
The formulation for numerical continuation with re-
spect to the penalization parameter is rigorously de-
rived by differentiating the KKT conditions, stiffness
(equilibrium) equations, and volume constraint.

The main results are summarized as follows:

1. The symmetry reduction process of the KKT point
can be defined as an bifurcation of solution path
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with respect to the penalization parameter of SIMP
approach.

2. Convergence of optimization algorithm and unique-
ness of solution path are defined by the same con-
dition of the singularity of a matrix similarly to ge-
ometrically nonlinear analysis of structures.

3. Nonuniqueness of displacement does not have any
effect on nonuniqueness of the KKT point.

4. It has been shown quantitatively that symmetry of
KKT point reduces through bifurcation to the crit-
ical eigenvector of the Jacobian of the governing
equations in the continuation process of KKT point
using SIMP approach.

5. A procedure has been developed for detecting bifur-
cation of the solution and the direction of reduction
of symmetry using eigenvalue analysis of the Jaco-
bian of the governing equations. A procedure has
also been developed for condensing Jacobian to re-
move the derivatives of displacements and separate
the nonuniqueness properties of displacements and
design variables.

Thus, a unified approach has been presented for in-
vestigation of uniqueness and bifurcation (symmetry-
breaking process) of KKT point. A local optimal solu-
tion with appropriate symmetry can be found through
investigation of symmetry using continuation approach.
Note that the symmetry properties without filter can be
used for appropriately setting the parameters for filters
and other regularization.

The numerical example of an axisymmetric shell
shows that a solution path of an axisymmetric shell has
a bifurcation point where the Jacobian of the governing
equations is singular. The KKT point is nonunique at
the bifurcation point, and a symmetry-breaking bifur-
cation path exists in the direction of the eigenvector cor-
responding to the zero eigenvalue analyses of the Jaco-
bian. This way, the symmetry-reduction process of the
KKT point is characterized as a bifurcation process of
a solution path with respect to the penalization param-
eter. Although the solution with intermediate density
has no practical meaning, it is important to investigate
the symmetry breaking process of the KKT point on
the basis of bifurcation of a solution path.

The condition numbers of the matrix for comput-
ing the sensitivity coefficients of the KKT points, and
the corresponding sub-matrices, have been computed
to show that nearly singular stiffness matrix does not
lead to nonuniqueness of the KKT point.

Note that the proposed method is effective for any
problem with symmetry including a circular disc sub-
jected to a twisting force at the center circle, which is
often used as an example of Michell structure. We used
a shell structure, because it has high symmetry. Fur-

thermore, the method proposed in this paper can also
be used for the case where a filter is used, and it can be
applied to a large-scale problem without any difficulty,
because the eigenvalue analysis should be carried out
for the matrix of the size equal to the variables that
have intermediate values.
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