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Abstract: A new approach is proposed for shape optimization of shells, where the require-
ments on geometrical properties, constructability, and mechanical performance are simulta-
neously considered in the problem formulation. The surface shape is modeled using a trian-
gular Bézier patch to reduce the number of design variables, while the ability of generating 
moderately complex shape is maintained. The strain energy under specified loading condition 
is used to represent the mechanical performance, and the geometrical properties are quantita-
tively defined using algebraic invariants of the parametric surface. The developable surface 
that has high constructability is generated by assigning an appropriate constraint on an alge-
braic invariant. The effectiveness of the proposed approach is demonstrated through several 
numerical examples, and the characteristics of the optimal shapes under various constraints 
are discussed. 
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1. INTRODUCTION 
Advances of computer technologies as well as the developments of structural materials and construc-
tion methods have enabled us to design long-span shell roofs with complex shapes and topologies 
that cannot be categorized into traditional regular shapes. Such shapes are described using parametric 
surfaces, e.g., Bézier surface and non-uniform rational B-spline (NURBS) surface [1], which are de-
veloped in the field of computer-aided geometric design (CAGD) [2]. Complex surfaces defined us-
ing the parametric surfaces are often called free-form surface [3]. The shapes of shell roofs can also 
be defined using parametric surfaces [4], and such shells are called free-form shells [5].  

Using a parametric surface, the number of design variables can be reduced, while the ability of 
generating moderately complex shape is maintained. Therefore, the parametric representation is ef-



 

 

fectively used for shape optimization of surfaces, which has been mainly developed in the fields of 
mechanical engineering and aeronautical engineering [6]. For application to spatial structures, shape 
optimization of shell roofs has been extensively studied since 1990s. Ramm et al. [4] optimized 
shapes of shells under buckling constraints, where Bézier surface is used for modeling the surface. 
However, in those studies, the performance measures that are important in the field of architectural 
engineering are not considered. 

One of the important aspects in design of shell roofs is that their shapes are basically designed 
based on the preference and experience of the architects and structural designers. It may be possible 
for the designer to assign the most desired shape explicitly. However, the mechanical behavior of a 
shell with non-regular shape is complicated, and it is very difficult for an architect to decide a feasi-
ble shape of a real-world structure based on his/her experience and intuition. Furthermore, some 
constraints are given for local geometrical properties such as height, slope, and curvature based on 
requirements in architectural planning, constructability, reduction of wind and snow loads, etc. 
Therefore, it is desirable that the surface shape is defined parametrically, and the optimal shape is 
found in view of a compromise between geometrical property and mechanical rationality. In this 
process, it will be helpful if the local shapes such as cylindrical and spherical shapes can be assigned 
quantitatively in the formulation of optimization problem. 

It should also be noted that simple application of structural shape optimization to shell roofs may 
result in a complex shape with large curvature, non-monotonic variation of gradients, etc. In this re-
spect, qualitative measures for defining fairness such as roundness and planeness may be effectively 
utilized [7]. Ohsaki et al. [8] presented a shape optimization approach for latticed shells defined us-
ing a triangular Bézier patch. Ohsaki and Hayashi [9] defined a roundness metric for shape optimiza-
tion of ribbed shells. Ohsaki et al. [10] developed a multiobjective programming approach to design 
of round arches and shells based on direct assignment of the center of curvature. However, in these 
approaches, only global properties can be controlled, although there are local measures of geometry 
to be considered by the designers.  

The authors developed a new approach to shape optimization of shells modeled using Bézier 
surface [11]. The strain energy is used to represent the mechanical performance, and the local geo-
metrical characteristics are quantified by algebraic invariants of the surface representing curvature, 
convexity, gradient, etc. The requirement for developability of the surface is incorporated as the con-
straints on the principal curvature. However, the effectiveness of the approach was not fully appre-
ciated, because the tensor product Bézier surface was used for a shell with rectangular plan. 

In this paper, we extend the authors’ approach to utilize triangular Bézier patches that can model 
a shell with irregular plan. A new invariant is presented for the roundness of the surface. A multiob-
jective programming problem is solved using the constraint approach to generate a set of Pareto op-
timal solutions as a trade-off between mechanical efficiency and roundness. The effectiveness of the 
proposed approach is demonstrated through several numerical examples, and the characteristics of 
the optimal shapes under various constraints are discussed. 



 

 

  
2. SHAPE REPRESENTATION BY BÉZIER SURFACE 
The Bézier surfaces are classified into tensor product Bézier surface and triangular Bézier surface. 
Since the latter is more suitable for modeling a surface with irregular plan, the shape of shell surface 
is described here using a Bézier surface consisting of triangular Bézier patches, which have control 
polygons with triangular units. The number of variables for optimization can be drastically reduced 
without sacrificing fairness and complexity of the surface using the Bézier surface. Moreover, the 
Bézier surface can be expressed explicitly with respect to the basis functions and the coordinates of 
the control points. This property enables us to carry out sensitivity analysis of the various measures 
of the surface analytically. 

The point ࡿ௡ሺݑ, ,ݔሻ on a triangular Bézier surface in the 3-dimensional space ሺݒ ,ݕ -ሻ is deݖ
fined with parameters ݑ, ݒ א ሾ0,1ሿ ሺݑ ൅ ݒ ൑ 1ሻ as 

,ݑ௡ሺࡿ  ሻݒ ൌ ቌ
,ݑሺݔ ሻݒ
,ݑሺݕ ሻݒ
,ݑሺݖ ሻݒ

ቍ ൌ ෍ ෍ ,ݑ௡,௜௝ሺܤ௜௝ࢗ ሻݒ
௡ି௜

௝ୀ଴

௡

௜ୀ଴

 (1) 

,ݑ௡,௜௝ሺܤ  ሻݒ ൌ
݊!

݅! ݆! ሺ݊ െ ݅ െ ݆ሻ! ௝ሺ1ݒ௜ݑ െ ݑ െ ,ሻ௡ି௜ି௝ݒ ሺ0଴ ൌ 0! ൌ 1ሻ (2) 

where ࢗ௜௝ ൌ ൫ݍ௫,௜௝, ,௬,௜௝ݍ ௭,௜௝൯Tݍ
 is the location vector of the control point, ܤ௡,௜௝ሺݑ, -ሻ is the bivaݒ

riate Bernstein basis function, and ݊ is the order of the surface. The vectors consisting of ݕ ,-ݔ-, 
and ݖ-coordinates of all control points are denoted by ࢗ௫, ࢗ௬, and ࢗ௭, respectively; e.g., ࢗ௫ is 
defined as 

௫ࢗ  ൌ ൫ݍ௫,଴଴, ڮ , ,௫,௡଴ݍ ڮ , ,௫,଴௜ݍ ڮ , ,௫,ሺ௡ି௜ሻ௜ݍ ڮ , ௫,଴௡൯Tݍ
 (3) 

 
3. ALGEBRAIC INVARIANTS 
3.1 Definition of tensors and vectors 
The local properties of the surface can be defined using the vertical coordinate, curvature, gradient, 
etc. However, it is important that these properties are quantitatively evaluated using the functions 
that are independent of the parameterization of surface. Such quantities are said to be intrinsic in the 
field of CAGD [7], while they are said to be invariant in the field of tensor algebra. We use the six 
algebraic invariants ߚ଴,  ߚଵ, ߚଶ, ߛଵ, ߛଶ, and ߛଷ proposed by Iri et al. [12] for representing the 
geographical properties. Here, we regard the z-coordinate of the Bézier surface as the altitude of the 
geographical representation.  

In the following, the vectors and tensors of a parametric surface are presented for the complete-
ness of the paper. See Appendix for basics of tensor algebra of differential geometry. For a curved 
surface defined by non-orthogonal curved coordinates, the properties of the surface is defined using 
the covariant and contravariant components, which are indicated by the subscript and superscript, 



 

 

respectively, of the vectors and tensors. The components of the covariant gradient ࢠ  of the 
z-coordinate, the covariant Hessian ࢎ of the z-coordinate, and the covariant metric tensor ࢍ of the 

surface ࡿ௡ሺݑ,  ሻ are defined asݒ

ࢠ  ൌ ቀ
௨ݖ
௩ݖ

ቁ,       ࢎ ൌ ൬݄௨௨ ݄௨௩
݄௩௨ ݄௩௩

൰, ࢍ ൌ ቀ
݃௨௨ ݃௨௩
݃௩௨ ݃௩௩

ቁ (4) 

which are obtained from 

௨ݖ  ൌ
,ݑሺݖ߲ ሻݒ

ݑ߲ , ௩ݖ ൌ
,ݑሺݖ߲ ሻݒ

ݒ߲  (5) 

 ݄௨௨ ൌ
߲ଶݖሺݑ, ሻݒ

߲ଶݑ , ݄௩௩ ൌ
߲ଶݖሺݑ, ሻݒ

߲ଶݒ , ݄௨௩ ൌ ݄௩௨ ൌ
߲ଶݖሺݑ, ሻݒ

ݒ߲ݑ߲  (6) 

 
݃௨௨ ൌ

,ݑ௡ሺࡿ߲ ሻTݒ

ݑ߲
,ݑ௡ሺࡿ߲ ሻݒ

ݑ߲ , ݃௩௩ ൌ
,ݑ௡ሺࡿ߲ ሻTݒ

ݒ߲
,ݑ௡ሺࡿ߲ ሻݒ

ݒ߲

݃௨௩ ൌ ݃௩௨ ൌ
,ݑ௡ሺࡿ߲ ሻTݒ

ݑ߲
,ݑ௡ሺࡿ߲ ሻݒ

ݒ߲

 (7) 

Let ࢠ and ࢍ denote the contravariant gradient of the z-coordinate and the contravariant metric ten-
sor, respectively. Then the following relations hold: 
ࢍ  ൌ ,ଵିࢍ ࢠ ൌ ,ࢠࢍ ࢠ ൌ  (8) ࢠࢍ
Furthermore, we define the following contravariant vector ࢠ෤ and tensor ࡱ෩: 

෤ࢠ  ൌ ቀ̃ݖ௨

௩ቁݖ̃ ൌ ,ࢠ෩ࡱ ෩ࡱ ൌ ൬ܧ෨௨௨ ෨௨௩ܧ

෨௩௨ܧ ෨௩௩൰ܧ ൌ ቀ 0 1
െ1 1ቁ (9) 

The inner product of a covariant vector and a contravariant vector as well as the bilinear form with 
respect to a second order covariant/contravariant tensor and a contravariant/covariant vector are in-
variant with respect to the definition of the parameter of the surface. Hence, ߚ- and ߛ-invariants are 
defined as follows [12]: 

଴ߚ  ൌ ෍ ෍ ݃కఒݖకݖఒ ൌ ෍ కݖకݖ
కୀ௨,௩ఒୀ௨,௩కୀ௨,௩

 (10) 

ଵߚ  ൌ ෍ ෍ ݄కఒ݃కఒ

ఒୀ௨,௩కୀ௨,௩

 (11) 

ଶߚ  ൌ
1

2 det ቚࢍቚ
෍ ෍ ෍ ෍ ݄ఓక݄ఔఒܧ෨కఒܧ෨ఓఔ

ఔୀ௨,௩ఓୀ௨,௩ఒୀ௨,௩కୀ௨,௩

 (12) 

ଵߛ  ൌ ෍ ෍ ݄కఒݖకݖఒ

ఒୀ௨,௩కୀ௨,௩

 (13) 

 γଶ ൌ ෍ ෍ ݄కఒ̃ݖకݖఒ ൌ ෍ ෍ ݄ఒకݖక̃ݖఒ

ఒୀ௨,௩కୀ௨,௩ఒୀ௨,௩కୀ௨,௩

 (14) 

ଷߛ  ൌ
1

det ቚࢍቚ
෍ ෍ ݄కఒ̃ݖక̃ݖఒ

ఒୀ௨,௩కୀ௨,௩

 (15) 



 

 

The geometrical significance of these invariants is described in Sec. 3.3. 
 
3.2 Relation between algebraic invariants and principal curvatures 
The principal curvatures are defined as the eigenvalues ߢଵ and  ߢଶ ሺߢଵ ൒ -ଶሻ of the following geߢ
neralized eigenvalue problem consisting of the metric tensor and the Hessian of the z- coordinate. 
ഥ࣐௜ࢎ  ൌ ,ഥ࣐௜ࢍ௜ߢ ሺ݅ ൌ 1,2ሻ (16) 

The components of eigenvectors are denoted by ഥ࣐ଵ ൌ ሺ߮ଵ
௨, ߮ଵ

௩ሻT ,  ࣐ଵ ൌ ሺ߮ଵ,௨, ߮ଵ,௩ሻT ൌ ഥ࣐ଵࢍ , 

ഥ࣐ଶ ൌ ሺ߮ଶ
௨, ߮ଶ

௩ሻT , and  ࣐ଶ ൌ ሺ߮ଶ,௨, ߮ଶ,௩ሻT ൌ ഥ࣐ଶࢍ , which are autho-normalized as ࣐ଵ
T ഥ࣐ଵ ൌ 1 , 

࣐ଶ
T ഥ࣐ଶ ൌ 1, ࣐ଵ

T ഥ࣐ଶ ൌ ࣐ଶ
T ഥ࣐ଵ ൌ 0. The Hessian is expressed as the spectral decomposition using the 

eigenvectors as 

 
ࢎ ൌ ଵ࣐ଵ࣐ଵߢ

T ൅ ଶ࣐ଶ࣐ଶߢ
T

ൌ ቆ
ଵ߮ଵ,௨ߢ

ଶ ൅ ଶ߮ଶ,௨ߢ
ଶ ଵ߮ଵ,௨߮ଵ,௩ߢ ൅ ଶ߮ଶ,௨߮ଶ,௩ߢ

ଵ߮ଵ,௨߮ଵ,௩ߢ ൅ ଶ߮ଶ,௨߮ଶ,௩ߢ ଵ߮ଵ,௩ߢ
ଶ ൅ ଶ߮ଶ,௩ߢ

ଶ ቇ 
(17) 

The covariant and contravariant gradients are expressed using the eigenvectors as 
 
 

ࢠ ൌ ܿଵ ቀ
߮ଵ,௨
߮ଵ,௩

ቁ ൅ ܿଶ ቀ
߮ଶ,௨
߮ଶ,௩

ቁ , ࢠ ൌ ܿଵ ൬߮ଵ
௨

߮ଵ
௩൰ ൅ ܿଶ ൬߮ଶ

௨

߮ଶ
௩൰ (18) 

 
where ܿଵ and  ܿଶ are the coefficients. Therefore, using Eqs. (17), (18), and the ortho-normalization 
conditions, ߚ- and ߛ-invariants can be written as follows: 
଴ߚ  ൌ ܿଵ

ଶ ൅ ܿଶ
ଶ, ଵߚ ൌ ଵߢ ൅ ,ଶߢ ଶߚ ൌ ଵߢ  ଶ (19)ߢ

ଵߛ  ൌ ܿଵ
ଶߢଵ ൅ ܿଶ

ଶߢଶ, ଶߛ  ൌ ටdet ቚࢍቚ ܿଵܿଶሺߢଵ െ ,ଶሻߢ ଷߛ ൌ ܿଵ
ଶߢଶ ൅ ܿଶ

ଶߢଵ (20) 

It is seen from Eq. (19) that ߚଵ and  ߚଶ correspond to the twice the mean curvature and the Gaus-
sian curvature, respectively. 
 
3.3 Surface properties based on six algebraic invariants 
The six algebraic invariants ߚ଴,  ߚଵ,  ߚଶ, ߛଵ,  ߛଶ, and  ߛଷ defined using the vectors and tensors 
given in Sec.3.1 are used for quantitative evaluation of the surface properties. The local properties in 
the neighborhood of a point P on the surface are characterized by the invariants as follows: 

ଶߚ ൐ 0 The contours in the neighborhood of P are coaxial (part of) similar ellipses. The shape is 
locally concave if ߚଵ ൐ 0 (example: (A) in Figure 1), and locally convex if ߚଵ ൏ 0 ((B) 
in Figure 1). 

ଶߚ ൏ 0 The contours in the neighborhood of P are (part of) coaxial hyperbolas. Locally, the sur-
face is convex in some directions and concave in others. There are special directions in 



 

 

which the contour lines are straight ((C) in Figure 1). 
ଶߚ ൌ 0 One of the principal curvatures is 0. Furthermore, the other principal curvature is positive 

if ߚଵ ൐ 0 ((E) in Figure 2), negative if ߚଵ ൏ 0 ((F) in Figure 2), and 0 if ߚଵ ൌ 0 that 
means a locally flat surface ((G) in Figure 2). 

଴ߚ ൌ 0 P is a critical point (local maximum/minimum of z-coordinate ((D) in Figure 1)). 
ଶߛ ൌ 0 Direction of the gradient coincides with one of the principal direction, and the surface near 

P is locally cylindrical and concave in one principal direction if |ߛଵ| ൏ ଷߛ ଷ| andߛ| ൐ 0
((H) in Figure 3); whereas it is locally cylindrical and convex in one principal direction if
|ଵߛ| ൏ ଷߛ ଷ| andߛ| ൏ 0 ((I) in Figure 3). 

Moreover, ߛଵ/ߚ଴ is the curvature in the steepest descent direction, and ߛଷ/ߚ଴ is the curvature in its 
perpendicular direction.  
 
 
 
 
 
 
 
 
 
 
               (a)                                     (b) 
Figure 1. Illustration of a surface with several ridges and valleys; (a) diagonal view, (b) contour lines. 
 
 
 
 
 
 
 
 
 
               (a)                                     (b) 
Figure 2. Illustration of a locally flat surface; (a) diagonal view, (b) contour lines. 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
               (a)                                     (b) 
Figure 3. Illustration of a locally cylindrical surface; (a) diagonal view, (b) contour lines. 
 

In view of constructability, it is desirable that the surface can be developed to a plane without 
expansion or contraction. Such surface is called developable surface, which is characterized by va-
nishing Gaussian curvature. Therefore, to generate a developable surface, the constraint ߚଶ ൌ 0 
should be satisfied at any point on the surface. 

We define an additional invariant for characterizing roundness of the surface. The geodesic tor-

sion ܶሺߠሻ of the curve on the surface in the direction of ߠ measured from a principal direction ࣐ଵ 

is given as 

 ܶሺߠሻ ൌ െ
1
2

ሺߢଵ െ  (21) ߠଶሻsin2ߢ

The square of maximum ߙ of the geodesic torsion, defined as follows, characterizes the roundness 
of the surface: 

ߙ  ൌ ൜max
ఏ

ฬെ
1
2

ሺߢଵ െ ฬൠߠଶሻsin2ߢ
ଶ

ൌ
1
4

ሺߢଵ െ  ଶሻଶ (22)ߢ

As is seen, ߙ turns out to be proportional to the square of the difference of the principal curvatures; 
therefore, a small value of ߙ coresponds to a locally spherical surface. Although spherical surface 
can be generated by minimizing ߙ, the values of ߢଵ and  ߢଶ are not restricted to be the same, re-
spectively, throughout the surface. 
 
4. SENSITIVITY ANALYSIS 
In the following numerical examples, the sequential quadratic programming, which is categorized as 
a gradient-based method and available from a software library in SNOPT [13], is used for optimiza-
tion. Therefore, sensitivity coefficients of the invariants are needed with respect to the locations of 
the control points. For instance, for obtaining sensitivity coefficients of the algebraic invariants with 
respect to the z-coordinates ࢗ௭ of the control points, those of the gradient, Hessian, and the metric 
tensor are needed. Owing to the representation of the surface using triangular Bézier patch, these 



 

 

sensitivity coefficients can be derived explicitly as follows: 

 
 

ࢠ߲
௭,௜௝ݍ߲

ൌ

ۉ

ۈ
ۇ

௨ݖ߲

௭,௜௝ݍ߲
௩ݖ߲

ی௭,௜௝ݍ߲

ۋ
ۊ

ൌ ൮

,ݑ௡,௜௝ሺܤ߲ ሻݒ
ݑ߲

,ݑ௡,௜௝ሺܤ߲ ሻݒ
ݒ߲

൲ (23) 
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ۇ
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௭,௜௝ݍ߲

߲݄௨௩
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ۉ

ۇ

߲ଶܤ௡,௜௝ሺݑ, ሻݒ
ଶݑ߲
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ݒ߲ݑ߲
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ݒ߲ݒ߲

߲ଶܤ௡,௜௝ሺݑ, ሻݒ
ଶݒ߲ ی
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௭,௜௝ݍ߲

ൌ

ۉ

ۈ
ۇ

௨ݖ2
௨ݖ߲

௭,௜௝ݍ߲

௨ݖ߲

௭,௜௝ݍ߲
௩ݖ ൅ ௨ݖ

௨ݖ߲

௭,௜௝ݍ߲
௨ݖ߲

௭,௜௝ݍ߲
௩ݖ ൅ ௨ݖ

௨ݖ߲

௭,௜௝ݍ߲
௩ݖ2

௩ݖ߲

௭,௜௝ݍ߲ ی

ۋ
ۊ

 (25) 

The basis functions are explicitly differentiated with respect to ݑ and ݒ, and the sensitivity coeffi-
cients of the algebraic invariants can be obtained simply by differentiating their definitions. This way, 
optimization can be carried out with small computational cost. 
 
5. BÉZIER SURFACE WITH TRIANGULAR PLAN 
Consider first a shell surface with triangular plan (Model 1) that consists of a Bézier surface with 
triangular plan as shown in Figure 4. The shell is pin-supported at the three corners; however, there 
exist two supports at each corner, as shown in blank circles in Figure 4, to prevent stress concentra-
tion. The span length is 30 m and the radius of curvature is 17.06 m, which result in the rise of 4.84 
m. The middle surface of shell is modeled using the triangular Bézier patch of order 4. The 
z-coordinates of all the 15 control points, as shown in filled circles, are chosen as variables, while the 
locations of the supports are fixed by assigning the constraints. The shell is discretized to triangular 
finite elements for static analysis. The constant-strain element [14] is used for in-plane deformation, 
and the non-conforming triangular element by Zienkiewicz et al. [15] is used for out-of-plane de-
formation. Each node has six degrees of freedom, and the two elements are coupled with respect to 
the translational displacements. The number of elements for static analysis is 253. The shell has the 
uniform thickness of 0.1 m and is subjected to self-weight, which is supposed to be sufficiently small 
so that the deformation is small and the shell remains in the elastic range. The material of is sup-
posed to be concrete with Young’s modulus 21.0 kN/mm2, Poisson’s ratio 0.17, and weight density 
24.0 kN/m3. 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 4. Shell surface with triangular plan (Model 1); (a) plan and diagonal view, (b) Bézier patch 

and control points. 
 

In each of the optimization problem formulated below, the total number of degrees of freedom, 
nodal displacement vector, linear stiffness matrix, total middle-surface area, and vector consisting of 
z-coordinates of the supports are denoted by ݉, ࢊ א ܴ௠, ࡷ א ܴ௠ൈ௠, ܵ, and ࢘כ א ܴ଺, respectively. 
The value of initial shape is denoted by the subscript 0. The design variables are the z-coordinates 
௭ࢗ  of the control points, because various shapes can be successfully represented by varying 
z-coordinates only. Optimization is carried out on a PC with Core 2 duo with 2GB RAM. 
 
Minimization of strain energy without constraints on algebraic invariants 
We first find the optimal shape without constraint on an algebraic invariant. The strain energy is mi-
nimized as follows under upper-bound constraint on the area: 



 

 

 
minimize ݂ሺࢗ௭ሻ ൌ

1
2 ࢊࡷTࢊ

subject to ൜ ܵሺࢗ௭ሻ െ ܵ଴ ൌ 0
௭ሻࢗሺכ࢘ െ ࢘଴

כ ൌ 0

 (26) 

The initial and optimal shapes are shown in Figures 5 and 6, respectively, and their mechanical per-
formances are listed in the second and third columns of Table 1. Linear buckling analysis has been 
carried out for computing the buckling load factor against the self-weight. The elapsed computational 
time for optimization is also shown in Table 1. It can be confirmed from the optimization result that 
the bending and tensile stresses are reduced and the shape is optimized so that the shell resists the 
self-weight mainly with compression. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Initial shape of Model 1. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Optimal shape of Problem (26). 
 
 
 



 

 

Table 1. Mechanical properties of initial and optimal shapes of Model 1. 
 

 Initial 
(Fig. 5) 

Without 
invariants 
(Fig. 6) 

ߚ ൌ െ0.1
(Fig. 8) 

ߚ ൌ െ0.2
(Fig. 9) 

ߛ ൌ 0.004 
(Fig. 10) 

ߛ ൌ 0.006
(Fig. 11) 

Strain energy 
 (kNm) 

5.733 0.669 0.860 1.650 0.737 1.504 

Max. vertical disp. 
(mm) 

59.88 3.432 6.931 13.00 4.236 9.925 

Max. compressive 
stress (N/mm2) 

3.600 2.613 2.926 4.129 2.978 5.780 

Max. tensile 
stress (N/mm2) 

0.917 0.114 0.077 0.197 0.176 0.789 

Max. bending 
stress (N/mm2) 

6.927 0.585 0.843 2.333 0.673 1.787 

Linear buckling 
load factor 

4.263 7.000 4.135 4.758 11.26 9.588 

Time for 
optimization (sec) 

 19.75 4.891 7.047 25.69 5.796 

 
Minimization of strain energy under constraints on ߚ invariants 
We next consider the following optimization problem by introducing the constraints on ߚ-invariants 
to obtain a locally convex surface: 

 

minimize ݂ሺࢗ௭ሻ ൌ
1
2 ࢊࡷTࢊ

subject to

ە
ۖ
۔

ۖ
ۓ ܵሺࢗ௭ሻ െ ܵ଴ ൌ 0

௭ሻࢗሺכ࢘ െ ࢘଴
כ ൌ 0      

ଶߚ
௖ሺࢗ௭ሻ ൒ 0 

ଵߚ
௖ሺࢗ௭ሻ ൌ ߚ ሺ൏ 0ሻ 

 (27) 

where ߚ ൏ 0 ensures convexity around the point indicated by the filled square in Figure 7. The 
values of the constrained point are denoted by the superscript ܿ. Figures 8 and 9 show the optimiza-
tion results for ߚ ൌ െ0.1 and −0.2, respectively. The mechanical properties are listed in the fourth 
and fifth columns of Table 1. As is seen, the maximum values of displacement, compressive stress, 
and bending stress increase as a result of assigning requirement of local convexity. The maximum 
displacement and stresses also increase as the absolute value of ߚଵ

௖ is increased to generate more 
locally convex surface. 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Point at which invariants are constrained; filled square: ߚ-invariants in Problem (27), filled 
circle: ߛ-invariants in Problem (28). 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Optimal shape of Problem (27) (ߚ ൌ െ0.1). 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
Figure 9. Optimal shape of Problem (27) (ߚ ൌ െ0.2). 
  
Minimization of strain energy under constraints on ߛ invariants 
We next solve the following problem with constraints on ߛ-invariants to obtain locally cylindrical 
and cocave surface: 

 

minimize ݂ሺࢗ௭ሻ ൌ
1
2 ࢊࡷTࢊ

subject to

ە
ۖ
۔

ۖ
ۓ

ܵሺࢗ௭ሻ െ ܵ଴ ൌ 0                            
௭ሻࢗሺכ࢘ െ ࢘଴

כ ൌ 0                                   
ଶߛ

௖௜ሺࢗ௭ሻ ൌ 0 ሺ݅ ൌ 1,2ሻ                    
ଷߛ  

௖௜మሺࢗ௭ሻ െ ଵߛ
௖௜మሺࢗ௭ሻ ൒ 0 ሺ݅ ൌ 1,2ሻ

ଷߛ
௖௜ሺࢗ௭ሻ ൌ ௖௜ߛ ሺ൐ 0ሻ ሺ݅ ൌ 1,2ሻ

 (28) 

where the constraints on the invariants are given at points ܿ݅ ሺ݅ ൌ 1,2ሻ indicated by the filled circles 
in Figure 7. Figures 10 and 11 show the optimization results for ߛ௖௜ ൌ 0.004 and 0.006, respec-
tively. It can be confirmed that a locally cylindrical and concave surface has been successfully ob-
tained by introducing the constraints on the ߛ-invariants. The maximum displacement and stresses 
listed in the last two columns of Table 1 also increase as the value of ߛ௖௜ is increased to generate 
more locally cylindrical and concave surface. It is seen from the results of linear buckling analysis in 
Table 1 that there is no strong correlation between the values of invariants and linear buckling load 
factors. 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
Figure 10. Optimal shape of Problem (28) (ߛ ൌ 0.004). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Optimal shape of Problem (28) (ߛ ൌ 0.006). 
 
Minimization of ߙ-invariant and strain energy 
Finally, we consider the following multiobjective optimization problem for minimizing the strain 
energy and sum of α-invariants at the 15 points indicated by filled square in Figure 12: 

 
minimize

ە
ۖ
۔

ۖ
௭ሻࢗሺ݂ۓ ൌ

1
2 ࢊࡷTࢊ

݃ሺࢗ௭ሻ ൌ ෍ ௖௜ߙ
ଵହ

୧ୀଵ

   
 

subject to ൜ ܵሺࢗ௭ሻ െ ܵ଴ ൌ 0
௭ሻࢗሺכ࢘ െ ࢘଴

כ ൌ 0

 (29) 

To solve this problem using the constraint method for multiobjective programming, we convert the 
problem to the following two single-objective optimization problems: 

 

minimize ݂ሺࢗ௭ሻ

subject to ቐ
ܵሺࢗ௭ሻ െ ܵ଴ ൌ 0
௭ሻࢗሺכ࢘ െ ࢘଴

כ ൌ 0
݃ሺࢗ௭ሻ െ ҧ݃ ൑ 0

 (30) 



 

 

 

minimize ݃ሺࢗ௭ሻ

subject to ቐ
ܵሺࢗ௭ሻ െ ܵ଴ ൌ 0
௭ሻࢗሺכ࢘ െ ࢘଴

כ ൌ 0
݂ሺࢗ௭ሻ െ ݂ҧ ൑ 0

 (31) 

where ҧ݃ and ݂ҧ are the upper bounds of the sum of ߙ-invariants and the strain energy, respectively. 
The Pareto optimal solutions are found parametrically by solving Problem (30) for the region of 
large strain energy and Problem (31) for the region of large ߙ-invariants, where the upper bound are 
parametrically varied. Figure 13 shows Pareto front and its mechanical properties, and Figures 14-16 
show several Pareto optimal solutions with contour lines. The mechanical quantities are also shown 
Table 2. As is seen from these figures, the shell surface approaches a spherical surface as ݃ሺࢗ௭ሻ is 
decreased. Although the shape of optimal solution for ݂ҧ ൌ 1.0 is almost similar to the initial shape 
that has an almost spherical surface, the stiffness of the optimal shape is much larger than that of the 
initial shape. This way, a mechanically efficient surface consisting of truncated spherical surface can 
be generated by optimization. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Points at which α-invariants are mesured. 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Pareto front and its mechanical properties 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 

(a)                                       (b) 
Figure 14. Optimal shape of Problem (30) (݃ ൌ 0.02); (a) elevation and diagonal view, (b) contour 
line of vertical coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                   (b) 
Figure 15. Optimal shape of Problem (31) (݂ ൌ 0.76); (a) elevation and diagonal view, (b) contour 
line of vertical coordinates. 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 

(a)                                  (b) 
Figure 16. Optimal shape of Problem (31) (݂ ൌ 1.00); (a) elevation and diagonal view, (b) contour 
line of vertical coordinates. 
 
 
Table 2. Mechanical properties of several Pareto optimal solutions considering ߙ-invariants and 
strain energy. 

 ݃ ൌ 0.02
(Fig. 14) 

݂ ൌ 0.76
(Fig. 15) 

݂ ൌ 1.00
(Fig. 16) 

Initial 
(Fig. 5) 

Strain energy 
 (kNm) 

0.672 0.760 1.000 5.733 

Sum of ߙ 
invariants 

0.020 1.6×10-3 4.5×10-4 2.9×10-6 

Max. vertical disp. 
(mm) 

3.419 3.783 11.99 59.88 

Max. compressive 
stress (N/mm2) 

2.593 2.661 2.986 3.600 

Max. tensile 
stress (N/mm2) 

0.118 0.041 0.145 0.917 

Max. bending 
stress (N/mm2) 

0.611 0.404 1.367 6.927 

Linear buckling 
load factor 

5.517 2.938 3.966 4.263 

Time for 
optimization (sec) 

34.14 9.922 3.171  

 
 



 

 

6. BÉZIER SURFACE WITH IRREGULAR PLAN 
So far, we considered a surface with regular triangular plan. In this section, optimal shapes are found 
for the shell surface with irregular plan (Model 2) as shown in Figure 17, in order to demonstrate the 
effectiveness of using the triangular Bézier patch. The geometry of the control net is also shown in 
Figure 17. The shell has the uniform thickness of 0.2 m, the rise is 8.0 m, and other parameters are 
the same as those of Model 1 in Sec. 5. The surface is modeled using six triangular Bézier patches of 
order 4, and the design variables are the z-coordinates ࢗ௭ of 28 control points as shown in the filled 
circle in Figure 17, where the symmetry conditions are utilized and the locations of supports are 
fixed. The continuity of gradient and curvature along the interior boundary between Bézier patches is 
not necessarily satisfied. 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Figure 17. Shell surface with irregular plan (Model 2); (a) Plan and diagonal view, (b) Bézier patches 
and control points. 
 



 

 

 
Minimization of strain energy without constraints on algebraic invariants 
We first find the optimal shape without constraint on an algebraic invariant. The following optimiza-
tion problem is same as Problem (26): 

 minimize ݂ሺࢗ௭ሻ ൌ
1
2 ࢊࡷTࢊ

subject to ܵሺࢗ௭ሻ െ ܵ଴ ൌ 0
 (32) 

The initial and optimal shapes are shown in Figures 18 and 19, respectively. The mechanical quanti-
ties are also shown in the second and third columns of Table 3. It can be confirmed from the optimi-
zation results that the bending and tensile stresses are reduced and the shape is optimized so that the 
shell resists the self-weight mainly with compression in the similar manner as Model 1. However, the 
optimal shape depends on the load patters; therefore, multiple loading conditions should be consi-
dered for practical application. Note that the gradients are not continuous along the internal bounda-
ries between the Bézier patches of the optimal shape. Globally smooth surface can be generated, if 
necessary, by assigning constraints on continuity of tangent vector (G1-continuity) between two ad-
jacent patches [16]. 
 
 
 
 
 
 
 
 
 
 
 
Figure 18. Initial shape of Model 2. 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
Figure 19. Optimal shape of Problem (32). 
 
Minimization of strain energy under developability constraint 
Next, we generate a developable surface by shape optimization. The following problem is to be 
solved so that ߚଶ vanishes at 48 points indicated by the filled squares in Figure 20: 

 
minimize ݂ሺࢗ௭ሻ ൌ

1
2 ࢊࡷTࢊ

subject to ൜
ܵሺࢗ௭ሻ െ ܵ଴ ൌ 0
ଶߚ

௖௜ሺࢗ௭ሻ ൌ 0 ሺ݅ ൌ 1, ڮ ,48ሻ

 (33) 

The optimal shape is shown in Figure. 21(a). Although ߚଶ is not guaranteed to vanish at the point 
where the constraint is not given, the contour lines became almost straight and parallel as shown in 
Figure 21(b), Hence, each of the 1/6 parts of the shell is nearly developable. Furthermore, both of the 
strain energy and maximum vertical displacement have smaller values than the initial shape as shown 
in the last column of Table 3. Note that a developable surface cannot be generated if continuity of 
gradient is assigned along the internal boundaries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. Points at which ߚ-invariants are constrained. 



 

 

 
 
 
 
 
 
 
 
 
 
                    (a)                                      (b) 
Figure 21. Optimal shape of Problem (33); (a) elevation and diagonal view, (b) Contour line of ver-
tical coordinates. 
 
 
Table 3. Mechanical properties of initial and optimal solutions. 
 

 Initial 
(Fig. 18) 

Without 
invariants 
(Fig. 19) 

With deve-
lopable 
condition 
(Fig. 21) 

Strain energy 
 (kNm) 

19.89 5.440 6.287 

Max. vertical disp. 
(mm) 

43.77 3.989 8.571 

Max. compressive 
stress (N/mm2) 

14.32 14.09 14.88 

Max. tensile 
stress (N/mm2) 

2.394 0.423 0.435 

Max. bending 
stress (N/mm2) 

13.38 0.364 1.310 

Linear buckling 
load factor 

4.806 4.742 3.502 

Time for 
optimization (sec) 

 156.2 2427 

 
 
 



 

 

7. CONCLUSIONS 
The local geometrical properties of the shell surface can be explicitly controlled by solving an opti-
mization problem with constraints on the algebraic invariants of the surface. Moreover, a developa-
ble surface can be obtained by assigning the constraint such that the Gaussian curvature vanishes at 
the sufficiently many specified points on the surface. A locally spherical surface can also be obtained 
by minimizing the sum of the difference of principal curvatures at the specified points.  

Using the proposed approach, the shell surface can be locally controlled to satisfy requirements 
on architectural planning as well as the architect’s preference without too much sacrificing the me-
chanical properties. The local geometrical properties can be quantitatively defined based on the al-
gebraic invariants. For the concrete shells, ruled surfaces such as HP surface are often used to im-
prove constractability. However, it is more preferable to define the surface as a developed surface, 
because scaffolding for forming concrete surface can be easily made without extension or contrac-
tion from a plate. Although construction of complex surface is possible owing to new technologies of 
computer-aided manufacturing, it is still beneficial to design a shell as an assemblage of developable 
surfaces if mechanical properties are not strongly deteriorated. It has been shown that a surface with 
irregular plan, which is very difficult to represent using a tensor product Bézier surface, can be mod-
eled as an assemblage of triangular Bézier patches. 
Only strain energy has been incorporated as a mechanical property in the objective function, because 
the main purpose of this paper is to show effectiveness of using algebraic invariants for representing 
geometrical properties of shells with irregular plan modeled using triangular Bézier patches. It is also 
important to note that bending deformation is avoided and a shell resisting external load through 
compressive stresses is successfully generated by minimizing the strain energy. The loading condi-
tion is also restricted to self-weight only. Linear buckling analysis has been carried out for the op-
timal shapes, and no strong correlation has been found between the strain energy (stiffness) and 
strength (buckling load). Other mechanical properties such as maximum equivalent stresses and dis-
placements under several loading conditions may be incorporated in the future study. The reinforce-
ments by steel bars, material nonlinearity, and optimal shape with variable thickness may also be 
considered. 

It may be concluded that the algebraic invariants are effective indices representing the local 
geometrical properties of the surface, and the optimal shell shape considering the geometrical cha-
racteristics, constructability, and mechanical rationality can be generated using the proposed ap-
proach at the early design stage. 
 
APPENDIX 
Basic terminologies of tensor algebra are given below for the completeness of the paper. 

Let ࢇ denote an arbitrary vector defined in a coordinate system ݔ௜ ሺ݅ ൌ 1,2,3ሻ. The vector is 
also defined in a different coordinate system ܺ௜ ሺ݅ ൌ 1,2,3ሻ. The vector ࢇ is called a contravariant 
vector if its components ሺܽଵ, ܽଶ, ܽଷሻT in ݔ௜ are converted to ሺܣଵ, ,ଶܣ  ଷሻT in ܺ௜ asܣ



 

 

௜ܣ  ൌ ෍
߲ܺ௜

௞ݔ߲ ܽ௞
ଷ

௞ୀଵ

 (34) 

By contrast, ࢇ  is a covariant vector if its components ሺܽଵ, ܽଶ, ܽଷሻT  in ݔ௜  are converted to 
ሺܣଵ, ,ଶܣ  ଷሻT in ܺ௜ asܣ

௜ܣ  ൌ ෍
௜ݔ߲

߲ܺ௞ ܽ௞

ଷ

௞ୀଵ

 (35) 

A second-order contravariant tensor ࢈ is also defined by the transformation to ࡮ 

௜௝ܤ  ൌ ෍ ෍
߲ܺ௜

௞ݔ߲
߲ܺ௝

௟ݔ߲ ܾ௞௟
ଷ

௟ୀଵ

ଷ

௞ୀଵ

 (36) 

A second-order covariant tensor ࢈ is defined by 

 

 

௜௝ܤ ൌ ෍ ෍
௞ݔ߲

߲ܺ௜
௟ݔ߲

߲ܺ௝ ܾ௞௟

ଷ

௟ୀଵ

ଷ

௞ୀଵ

 
(37) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-1. Covariant basis vectors and contravariant components of a vector. 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-2. Contravariant basis vector and covariant components of a vector. 

 
 
For example, consider a two-dimensional covariant basis vectors ࢋ௜ and contravariant basis 

vectors ࢋ௜ as shown in Figures A-1 and A-2, respectively. The components of the location vector ࡼ 
with respect to ࢋ௜ are contravariant components denoted as ܲ௜, whereas the components with re-
spect to ࢋ௜ are contravariant components ௜ܲ. Since the vector is independent of the coordinate sys-
tem, the following equalities hold: 

ࡼ  ൌ ෍ ܲ௜ࢋ௜

ଷ

௜ୀଵ

ൌ ෍ ௜ܲࢋ௜
ଷ

௜ୀଵ

 (38) 

which means that the summation of the products of covariant and contravariant components are in-
variant on the coordinate system. The algebraic invariants are defined based on this property. 
   The metric tensors are defined using the inner products of the basis vectors as 
 ݃௜௝ ൌ ௜ࢋ · ௝ࢋ ݃௜௝ ൌ ௜ࢋ ·  ௝ (39)ࢋ
which are used for transformation of vectors and tensors as well as the definition of length ݀ݏ of a 
vector ݀࢘ as shown in Figure A-3 as 

ଶݏ݀  ൌ ݀࢘ · ݀࢘ ൌ ൭෍ ௜ࢋ௜ݔ݀

ଷ

௜ୀଵ

൱ · ቌ෍ ௝ࢋ௝ݔ݀

ଷ

௝ୀଵ

ቍ ൌ ෍ ෍ ௜݃௝ݔ௜ݔ௝
ଷ

௝ୀଵ

ଷ

௜ୀଵ

 (40) 



 

 

 
 
Figure A-3. A line segment. 
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