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Abstract

Imperfection sensitivity is investigated for a degenerate hilltop branching point, where a degener-
ate bifurcation point exists at a limit point. A degenerate hilltop branching point is important as
it is a byproduct of optimization of shallow shell structures under nonlinear buckling constraints.
A systematic procedure is presented for asymptotic sensitivity analysis based on enumeration of
vertices of a convex region defined by linear inequality constraints on the orders of the variables.
The effectiveness of the proposed method is demonstrated by sensitivity analysis of degener-
ate hilltop branching points, considering minor and major imperfections, corresponding to an
unstable-symmetric or asymmetric bifurcation point at the limit point. It is found that a hilltop
branching point can be imperfection sensitive.

Key words: Asymptotic analysis, Degenerate critical point, Hilltop branching, Imperfection
sensitivity, Vertex enumeration

1 Introduction

It is well known that imperfection sensitivity of nonlinear buckling load of an elastic
conservative system is enhanced as a result of coincidence of critical points [1, 2]. The
imperfection sensitivity is severe for the semi-symmetric bifurcation point, where unstable-
symmetric and asymmetric bifurcation points coincide. A coincident critical point that has
a bifurcation point at a limit point is called a hilltop branching point, or simply a hilltop
point, which was observed in mechanical instability of stressed atomic crystal lattices [3, 4],
steel specimens [5], and structural models [6, 7]. Contrary to coincident bifurcation points,
a hilltop point has less severe piecewise linear law of imperfection sensitivity [8, 9].
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It is known that optimization of a symmetric structure under constraints on nonlin-
ear buckling load factor often engenders a coincident critical point [10]. For a symmetric
structure, an imperfection with some symmetry corresponds to a minor (second-order) im-
perfection, for which the imperfection sensitivity is usually less severe than an asymmetric
major (first-order) imperfection. However, it has been pointed out by the first author that
the minor imperfection sometimes dominates over the major imperfection [11, 12]. For
shallow shell-type structures, the optimal solution often is achieved at a hilltop branching
point [6]. Therefore, imperfection sensitivity of the hilltop branching point has been of
practical interest [7, 9, 13–15].

A degenerate critical point is characterized by vanishing of the derivative of the cor-
responding eigenvalue of the tangent stiffness matrix along the fundamental equilib-
rium path. Sensitivity coefficients of a degenerate bifurcation point were investigated by
Ohsaki [16]. However, a degenerate critical point has somewhat been set aside as a rare
exceptional case that can arise from accidental vanishing of some differential coefficients
of the potential function. Moreover, much care is not paid to this critical point in stability
design, because the point has been believed to have no negative effect on the stability of
the structure; there is no bifurcation path, and the equilibrium path of an imperfect sys-
tem makes only a slight detour around the point [16]. However, it has been demonstrated
in Ref. [6] that the optimal solution of a shallow truss may have a degenerate hilltop
point, which has bifurcation paths and enhances the imperfection sensitivity as a result
of vanishing of some differential coefficients of the potential function.

Characteristics of critical points of imperfect systems have been investigated by asymp-
totic approaches assuming that the imperfection parameters are sufficiently small, e.g. [1,
17]. The asymptotic approaches are applied to imperfection sensitivity analysis of struc-
tures of various types, e.g. [18, 19]. It is rather easy to evaluate in an ad hoc manner the
orders of the load factor and generalized coordinates at a simple critical point with respect
to the imperfection parameter. However, it is very difficult to find consistent orders intu-
itively from the bifurcation equations and the criticality condition of coincident critical
points. Moreover, there is no guarantee that all possible combinations of the orders have
been exhausted. In this paper, imperfection sensitivity is investigated for a degenerate
hilltop point based on asymptotic analysis. A systematic approach to enumeration of the
consistent set of orders of the variables corresponding to the coincident critical points,
especially for degenerate hilltop points, is presented. Although the Newton Polygon [20]
is an established mathematical tool, we present a simple approach consistent with sym-
bolic computation and numerical enumeration method. Minor and major imperfections
are considered for unstable-symmetric and asymmetric bifurcation points at the limit
point. It is pointed out that the degenerate hilltop points often are imperfection sensitive,
unlike the nondegenerate hilltop points that enjoy the piecewise-linear law and are not
imperfection-sensitive.

2 Asymptotic formulation of critical points

We follow a standard formulation of nonlinear bifurcation analysis [9] and offer its brief
summary.
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Consider a finite-dimensional elastic conservative system that is subjected to a set of
loads parameterized by the load factor Λ. The vector of generalized displacements, which
defines the nodal locations after deformation, is denoted by u = (u1, . . . , un)>, where n
is the number of degrees of freedom of the structure. The equilibrium equation is defined
by the stationary condition of the total potential energy Π̂(u, Λ) as

∂Π̂

∂ui

= 0, (i = 1, . . . , n) (1)

The criticality condition is given by using the stability matrix (tangent stiffness matrix)
S as

detS = 0 (2)

where the (i, j) component Sij of S reads

Sij =
∂2Π̂

∂ui∂uj

, (i, j = 1, . . . , n) (3)

For a structure with a large number of degrees of freedom n, the nonlinear governing
equations (1) and (2) defining the critical point involve a large number of independent
variables and nonlinear terms and, hence, are highly complex. In general theory of non-
linear stability [21], to obtain asymptotic general forms of imperfection sensitivity laws,
the nonlinear governing equations were simplified on the basis of the following two steps:

(1) The equilibrium equation is reduced to the bifurcation equation with only a few active
independent variables by the elimination of passive coordinates [22].

(2) Higher-order terms of the bifurcation equation are truncated by an asymptotic as-
sumption.

A formulation based on this reduction is herein called V -formulation [1, 23–27]. The for-
malism of V -formulation is suitable for the classification of critical points and the deriva-
tion of imperfection sensitivity laws.

An imperfection parameter ξ is used for representing errors in nodal locations, member
cross-sectional areas, and so on. The perfect system corresponds to ξ = 0. The critical
load factor Λc is defined as the value of Λ at which an eigenvalue(s) of the stability matrix
vanishes. We suppose the critical point has m-fold zero eigenvalues. The increment of Λ
from Λc is denoted by Λ̃.

The generalized coordinates q = (q1, . . . , qn)> in the direction of eigenmodes of the
tangent stiffness matrix of the perfect system are decomposed into

• active coordinates qa = (q1, . . . , qm)> associated with zero eigenvalues, and
• passive coordinates qp = (qm+1, . . . , qn)> associated with nonzero ones,

namely, q = (qa>,qp>)>.

Then, by the implicit function theorem, qp can be locally expressed as a function of
qa, and the passive coordinates qp are eliminated from the total potential energy, which
is expressed as the functions of qa, Λ̃ and ξ as V (qa, Λ̃, ξ) [9, 28]. Hereafter, qa

i = qi

(i = 1, . . . , m) is used for simplicity.

The partial differentiation of V with respect to qa
i , Λ̃ and ξ are denoted by subscripts
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as V,i, V,Λ and V,ξ, respectively. Then Π(qa, Λ̃, ξ) is expanded as

V (qa, Λ̃, ξ) = V (0, 0, 0) +
m∑

i=1

V,iqi + V,ΛΛ̃ + V,ξξ

+
1

2

m∑

i=1

m∑

j=1

V,ijqiqj +
m∑

i=1

(V,iΛqiΛ̃ + V,iξqiξ)

+
1

6

m∑

i=1

m∑

j=1

m∑

k=1

V,ijkqiqjqk +
1

2

m∑

i=1

m∑

j=1

(V,ijΛqiqjΛ̃ + V,ijξqiqjξ)

+
1

24

m∑

i=1

m∑

j=1

m∑

k=1

m∑

l=1

V,ijklqiqjqkql + h.o.t. (4)

where h.o.t. denotes higher-order terms. Note that all derivatives with respect to the
generalized coordinates are evaluated with fixed direction of qi at the critical point of the
perfect system.

The stationary condition of V with respect to qi, which is called bifurcation equation,
is expressed as

∂V

∂qi

= V,i = 0, (i = 1, . . . , m) (5)

3 Hilltop branching point

A hilltop branching point has one or more bifurcation point(s) at a limit point. We con-
sider the case where a simple bifurcation point and a limit point coincide; i.e. m = 2, and
assume q1 and q2 correspond to the bifurcation mode and limit-point mode, respectively.
Hence, the derivatives of the potential V at this hilltop point satisfy the conditions

V,1 = V,2 = 0 (6a)

V,11 = V,12 = V,21 = V,22 = 0 (6b)

By the classification of the critical points, we have

V,1Λ = 0, V,2Λ 6= 0, V,222 6= 0 (7)

The imperfection is classified to major imperfection and minor imperfection, which are
also called first-order imperfection and second-order imperfection, respectively [29]. A
major imperfection has a first-order effect on the critical load of the imperfect systems,
and the imperfection sensitivity of a bifurcation load is often unbounded for a major
imperfection. On the contrary, a minor imperfection has a second-order effect, and the
imperfection sensitivity of a bifurcation load is usually expressed as a linear function of an
imperfection parameter [11] except for a special case of degenerate bifurcation point [16]
including a degenerate hilltop point investigated in this paper.

For a hilltop point, minor and major imperfections are characterized by
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• minor (symmetric) imperfection:

V,1ξ = 0, V,12ξ = 0, . . .

V,11ξ, V,2ξ, V,22ξ, · · · : possibly nonzero
(8)

• major (antisymmetric) imperfection:

V,11ξ = 0, V,2ξ = 0, V,22ξ = 0

V,1ξ, V,12ξ, · · · : possibly nonzero
(9)

which means that V,ξ is an even function of q1 for the minor imperfection, and is an odd
function of q1 for the major imperfection; hence, the major imperfection has stronger effect
on the total potential energy than the minor imperfection.

Assume that the perfect system has the trivial solution q1 = 0, namely, the first-order
terms of V with respect to q1 vanish at ξ = 0 as follows:

V,122 = V,12Λ = V,1ΛΛ = · · · = 0 (10)

In the following we assume

V,11Λ 6= 0, V,1122 6= 0 (11)

The total potential energy is expanded at the hilltop point of the perfect system
(q, Λ̃, ξ) = (0, 0, 0) as

V (qa, Λ̃, ξ) = V (0, 0, 0) + V,2Λq2Λ̃ + V,1ξq1ξ + V,2ξq2ξ

+
1

6
V,111(q1)

3 +
1

2
V,112(q1)

2q2 +
1

6
V,222(q2)

3

+
1

2
V,11Λ(q1)

2Λ̃ +
1

2
V,22Λ(q2)

2Λ̃

+
1

2
V,11ξ(q1)

2ξ + V,12ξq1q2ξ +
1

2
V,22ξ(q2)

2ξ

+
1

24
V,1111(q1)

4 +
1

4
V,1122(q1)

2(q2)
2

+
1

6
V,1112(q1)

3q2 +
1

2
V,112Λ(q1)

2q2Λ̃ + h.o.t.

(12)

where the term V,2222 is suppressed in view of the presence of V,222.

4 Perfect behavior of degenerate hilltop point.

The degenerate hilltop point is defined and the perfect behavior (ξ = 0) in the neigh-
borhood of this point is investigated. Higher-order terms, h.o.t., are often suppressed in
the sequel.
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4.1 General formulations

The set of bifurcation equations is obtained as

∂V

∂q1

=
1

2
V,111(q1)

2 + V,112q1q2 + V,11Λq1Λ̃ +
1

6
V,1111(q1)

3

+
1

2
V,1122q1(q2)

2 +
1

2
V,1112(q1)

2q2 + h.o.t. = 0

(13)

∂V

∂q2

= V,2ΛΛ̃ +
1

2
V,112(q1)

2 +
1

2
V,222(q2)

2

+
1

2
V,1122(q1)

2q2 +
1

6
V,1112(q1)

3 + h.o.t. = 0

(14)

Although the terms V,1111, V,1122 and V,1112 seem to be redundant, they are considered in
view of possibility that V,111 and V,112 may vanish. The criticality condition in (2) is given
with the expression of the stability matrix of the bifurcation equation

S(q1, q2, Λ̃) =

(
S11 S12

S21 S22

)
(15)

with

S11 = V,111q1 + V,112q2 + V,11ΛΛ̃ +
1

2
V,1111(q1)

2 +
1

2
V,1122(q2)

2 + V,1112q1q2 + h.o.t.(16a)

S12 = S21 = V,112q1 + V,1122q1q2 +
1

2
V,1112(q1)

2 + V,112Λq1Λ̃ + h.o.t. (16b)

S22 = V,222q2 + V,22ΛΛ̃ +
1

2
V,1122(q1)

2 + h.o.t. (16c)

Note that the coefficients in (16) should be found by twice differentiating V so that
higher-order terms suppressed in (13) and (14) turn out to be the leading-order terms in
(16). Hereafter we carry out leading-order asymptotic analyses and “h.o.t.” is omitted for
simplicity.

4.2 Degenerate hilltop point

Consider the case where an asymmetric bifurcation point exits at the limit point; i.e.
V,111 6= 0. Eq. (13) is factorized as

q1

(1

2
V,111q1 + V,112q2 + V,11ΛΛ̃ +

1

2
V,1122(q2)

2
)

= 0 (17)

Therefore, we have the following two solutions:
• trivial fundamental path:

q1 = 0 (18)

• bifurcation path:

1

2
V,111q1 + V,112q2 + V,11ΛΛ̃ +

1

2
V,1122(q2)

2 = 0 (19)
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Note that the bifurcation path is always existent.
In the following, the path that contains the undeformed initial state is called funda-

mental path; the path bifurcates from the fundamental path is called bifurcation path;
and the path that cannot be reached from the initial state is called an aloof path.

From (14) and (18), we have the fundamental path parameterized by q2 as

Λ̃ = − V,222

2V,2Λ

(q2)
2 (20)

From (16), the stability matrix S in (15) on this trivial path with q1 = 0 reduces to

S(0, q2, Λ̃) =

(
λα 0
0 λβ

)
(21)

with two eigenvalues (cf., (20))

λα = V,112q2 + V,11ΛΛ̃ +
1

2
V,1122(q2)

2 = V,112q2 + Cα(q2)
2 (22a)

λβ = V,222q2 + V,22ΛΛ̃ = V,222q2 − V,222V,122Λ

2V,2Λ

(q2)
2 (22b)

Here Cα is defined as

Cα =
1

2V,2Λ

(V,2ΛV,1122 − V,222V,11Λ) (23)

and assume

Cα > 0 =⇒ V,1122 >
V,222V,11Λ

V,2Λ

(24)

The eigenvalue λα in (22a) becomes degenerate for V,112 = 0 in the sense that λα is
tangential to the q2-axis at q2 = 0. Hence, the degeneracy of a hilltop point is characterized
by

V,112 = 0, V,1122 6= 0 (25)

From (7), λβ in (22b) simplifies to

λβ = V,222q2 (26)

Consider the most customary case in practice where the system has a rising fundamental
path and becomes unstable at the hilltop point. Then from (20) and (26), we have

V,222 < 0, V,2Λ < 0 (27)

We encounter complex behavior in the vicinity of this degenerate hilltop point due to
vanishing of many differential coefficients. The two eigenvalues λα and λβ in (22a) and
(26), respectively, behave as shown in Fig. 1. The curve of λα is tangential to the q2-axis,
and λα is positive except for the hilltop point. In the presence of a small imperfection, λα

may cease to vanish at the degenerate hilltop point to trigger catastrophic change that
entails difficulties in imperfection sensitivity analysis, including a discontinuity in the
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Degenerate hilltop 

branching point

q
2

λ  ,α λβ

λβ

λ  α

Fig. 1. Variation of the two lowest eigenvalues λα and λβ that vanish at a degenerate hilltop
branching point ◦.
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q
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q 
1 

Fig. 2. Asymptotic behavior of the perfect system in the vicinity of a degenerate hilltop branching
point with asymmetric bifurcation. ◦: hilltop point; V,2Λ = −1.0, V,222 = −0.1, V,11Λ = −0.1,
V,1111 = −0.01, V,1122 = 0.01.

critical point and its unbounded sensitivity coefficient with respect to the imperfection
parameter [16].

From (14) and (19) with V,112 = 0, we have the bifurcation path parameterized by q2 as

Λ̃ = − V,222

2V,2Λ

(q2)
2 ≤ 0 (28a)

q1 = − 2Cα

V,111

(q2)
2 (28b)

Note that (28a) is same as (20) for the fundamental path. The perfect behavior of a
degenerate hilltop point with asymmetric bifurcation is illustrated in Fig. 2.
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Fig. 3. Asymptotic behaviors of the perfect system in the vicinity of a degenerate hilltop branch-
ing point with symmetric bifurcation. ◦: hilltop point; V,2Λ = −1.0, V,222 = −0.1, V,11Λ = −0.1,
V,111 = −0.1, V,1122 = 0.01.

For a hilltop point with symmetric bifurcation with V,111 = 0 and V,1111 6= 0, the two
bifurcation paths are parameterized by q2 as

Λ̃ = − V,222

2V,2Λ

(q2)
2 ≤ 0, (29a)

q1 = ±
(
− 6Cα

V,1111

) 1
2

q2 (29b)

that are conditionally existent for V,1111 < 0, i.e., for a declining bifurcation path.
The perfect behavior of a degenerate hilltop point with unstable-symmetric bifurcation

is illustrated in Fig. 3.

5 Imperfection Sensitivity Laws I: Asymmetric Bifurcation

The imperfection sensitivity laws of degenerate hilltop points with simple asymmetric
bifurcation are derived. It will turn out that S11 = 0 corresponds to a bifurcation point
and S22 to a limit point on the fundamental path. The consistent set of the orders of the
variables at the critical points of imperfect systems is found by the vertex enumeration
of the feasible region of the solutions, where Maple 11 [30] has been used for symbolic
computation. See Appendix 1 for detail.

5.1 General formulation

The bifurcation equations are obtained as

∂V

∂q1

= V,1ξξ +
1

2
V,111(q1)

2 + V,11Λq1Λ̃ + V,11ξq1ξ + V,12ξq2ξ +
1

2
V,1122q1(q2)

2 = 0 (30)
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∂V

∂q2

= V,2ξξ + V,2ΛΛ̃ +
1

2
V,222(q2)

2 + V,12ξq1ξ +
1

2
V,1122(q1)

2q2 = 0 (31)

The components of the stability matrix are given as

S11 = V,111q1 + V,11ΛΛ̃ + V,11ξξ +
1

2
V,1122(q2)

2 (32a)

S12 = S21 = V,12ξξ + V,1122q1q2 +
1

2
V,1112(q1)

2 (32b)

S22 = V,222q2 + V,22ΛΛ̃ + V,22ξξ +
1

2
V,1122(q1)

2 (32c)

5.2 Imperfection sensitivity: minor symmetric

Consider a symmetric minor imperfection and assume

V,1ξ = 0, V,12ξ = 0, V,111 < 0, V,11ξ < 0 (33)

Eq. (30) has the following two solutions:
• trivial fundamental path

q1 = 0 (34)

• bifurcation or aloof path

1

2
V,111q1 + V,11ΛΛ̃ + V,11ξξ +

1

2
V,1122(q2)

2 = 0 (35)

For the trivial fundamental path q1 = 0, (31) reduces to

Λ̃ = − 1

V,2Λ

(
V,2ξξ +

1

2
V,222(q2)

2
)

(36)

Furthermore, from V,12ξ = 0 and q1 = 0, S12 in (32b) vanishes and S11 = 0 or S22 = 0
should hold at a critical point on the fundamental path. From S22 = 0, we obtain the
location of a limit point

Λ̃c
Lim(ξ) = − V,2ξ

V,2Λ

ξ, qc
1 = 0, qc

2 = 0 (37)

where ( · )c denotes a value at a critical point.
From S11 = 0 and (36), we obtain the location of a bifurcation point as

Λ̃c
Bif(ξ) = −V,2ξV,1122 − V,222V,11ξ

2V,2ΛCα

ξ (38)

that is existent for ξ that satisfies

(q2)
2 = βξ > 0 (39)

with

β =
V,2ξV,11Λ − V,2ΛV,11ξ

2V,2ΛCα

(40)
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Fig. 4. Asymptotic behaviors of the imperfect system with a minor imperfection in the vicinity of
a degenerate hilltop branching point with asymmetric bifurcation. ◦: hilltop point; •: limit point;
M: bifurcation point; dashed curve: perfect equilibrium path; solid curve: imperfect equilibrium
path. ξ = ±0.1, V,2ξ = −1.0, V,22ξ = −0.1, V,11ξ = 0.1, V,2Λ = −1.0, V,22Λ = −0.1, V,222 = −0.1,
V,11Λ = −0.1, V,111 = −0.1, V,1122 = 0.01.

For the bifurcation or aloof path (35), the set of equations (31) and (35) yields the
q1 − q2 curve as

(V,11ξV,2Λ − V,11ΛV,2ξ

V,2Λ

)
ξ +

1

2
V,111q1 + Cα(q2)

2 = 0 (41)

In an asymptotic sense, the two terms V,12ξq1ξ and V,1122(q1)
2q2/2 in (31) vanishes as

higher order terms, and (31) reduces to (36); therefore, these paths have the same Λ̃− q2

curve as the fundamental path.

It can be easily confirmed that the bifurcation path intersects with the fundamental
path at the bifurcation points defined by (38) and (39) for βξ > 0.

11



By the vertex enumeration of the feasible region of solutions, we obtain the two feasible
set of orders to the set of equations (30), (31) and detS = 0 with (32). These two sets are
called vertices 1 and 4 in Table A.1. The vertex 1 corresponds to the limit point on the
fundamental path in (37). From the vertex 4, we obtain the location of a limit point on
the bifurcation or aloof path as

qc
1(ξ) =

2(V,11ΛV,2ξ − V,2ΛV,11ξ)

V,111V,2Λ

ξ (42a)

qc
2(ξ) =

V,22ΛV,2ξ − V,2ΛV,22ξ

V,222V,2Λ

ξ (42b)

Λ̃c(ξ) = − V,2ξ

V,2Λ

ξ (42c)

The equilibrium paths and the critical points are shown in Fig. 4 with the associated
equation number.

5.3 Imperfection sensitivity: major antisymmetric

Consider an antisymmetric major imperfection and assume

V,11ξ = 0, V,2ξ = 0, V,22ξ = 0, V,111 < 0, V,1ξ < 0 (43)

From (30), (31) and (43), we obtain the q1 − q2 curve as

V,1ξξ +
1

2
V,111(q1)

2 + Cαq1(q2)
2 = 0 (44)

in which higher-order terms are suppressed, and Λ̃ is expressed with respect to q2 as

Λ̃ = − V,222

2V,2Λ

(q2)
2 +

V,1122V,1ξ

N,2ΛV,111

q2ξ (45)

As shown in Table A.2 in Appendix 1, the set of equations (30), (31) and detS = 0
with (32) has two solutions of different orders

I) Λ̃ = O(ξ
1
2 ), q1 = O(ξ

1
2 ), q2 = O(ξ

1
4 ) (46)

II) Λ̃ = O(ξ
3
2 ), q1 = O(ξ

1
2 ), q2 = O(ξ) (47)

5.3.1 Type I solution

For Type I solution in (46), the set of equations (30), (31) and detS = 0 with (32) re-
duces to (A.13)–(A.15) in Appendix 2, where the higher-order terms have been suppressed
and S12 = 0 holds.

The solutions of the set of equations (A.13)–(A.15) give the locations of two limit points
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of an imperfect system as

qc
1(ξ) = − sgn(V,111)

(
2V,1ξξ

V,111

) 1
2

(48a)

qc
2(ξ) = ±(2V,111V,1ξξ)

1
4

(Cα)
1
2

(48b)

Λ̃c(ξ) = − V,222

2V,2ΛCα

(2V,111V,1ξξ)
1
2 < 0 (48c)

where sgn(V,111) is the sign of V,111, and the solutions (48a)–(48c) exist for

V,111V,1ξξ > 0 (49)

5.3.2 Type II solution

For Type II solution in (47), the set of equations (30), (31) and detS = 0 with (32)
reduces to (A.16)–(A.18) in Appendix 2.

The solutions of the set of equations (A.16)–(A.18) give the locations of two limit points
of an imperfect system as

qc
1(ξ) = ±

(
− 2V,1ξξ

V,111

) 1
2

(50a)

qc
2(ξ) =

V,1122V,1ξ

V,111V,222

ξ (50b)

Λ̃c(ξ) = ∓sgn(ξ)V,12ξ

V,2Λ

(
− 2 sgn(ξ)V,1ξ

V,111

) 1
2 |ξ| 32 (50c)

that are existent for

V,111V,1ξξ < 0 (51)

Here the double signs take the same order. One of these solutions corresponds to the limit
point on an imperfect fundamental path, and the other to that on an aloof path.

The imperfect equilibrium paths and the critical points are shown in Fig. 5.

6 Imperfection Sensitivity Laws II: Unstable-Symmetric Bifurcation

The imperfection sensitivity laws of degenerate hilltop points with simple unstable-
symmetric bifurcation are derived.

6.1 General formulation

We consider a degenerate hilltop point with simple unstable-symmetric bifurcation with

V,111 = V,112 = 0, V,1122 6= 0 (52)
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Fig. 5. Asymptotic behaviors of the imperfect system with a major imperfection in the vicinity
of a degenerate hilltop branching point with asymmetric bifurcation. ◦: hilltop point; •: limit
point; dashed curve: perfect equilibrium path; solid curve: imperfect equilibrium path. ξ = ±0.01,
V,1ξ = −1.0, V,12ξ = −0.1, V,2Λ = −1.0, V,222 = −0.1, V,11Λ = −0.1, V,111 = −0.1, V,1122 = 0.01.

and focus on the most customary case in practice where the system has a rising fun-
damental path and becomes unstable at the hilltop point. Then we have (cf., (23) and
(27))

V,2Λ < 0, V,222 < 0, V,1111 < 0, V,22Λ < 0 (53)

Cα =
1

2V,2Λ

(V,2ΛV,1122 − V,222V,11Λ) > 0 (54)
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With the use of (52), the bifurcation equations become

∂V

∂q1

= V,1ξξ + V,11Λq1Λ̃ + V,11ξq1ξ + V,12ξq2ξ +
1

6
V,1111(q1)

3 +
1

2
V,1122q1(q2)

2 = 0 (55)

∂V

∂q2

= V,2ΛΛ̃ + V,2ξξ +
1

2
V,222(q2)

2 + V,22Λq2Λ̃ + V,12ξq1ξ +
1

2
V,1122(q1)

2q2 = 0 (56)

and the components of the stability matrix are written as

S11 = V,11ξξ + V,11ΛΛ̃ +
1

2
V,1111(q1)

2 +
1

2
V,1122(q2)

2 (57a)

S12 = S21 = V,12ξξ + V,1122q1q2 (57b)

S22 = V,222q2 + V,22ΛΛ̃ + V,22ξξ +
1

2
V,1122(q1)

2 (57c)

6.2 Imperfection sensitivity: minor symmetric

Consider a symmetric minor imperfection and assume

V,1ξ = 0, V,12ξ = 0, V,111 < 0, V,11ξ < 0 (58)

From (55) and (56), we obtain the equilibrium path as

V,11ξV,2Λ − V,11ΛV,2ξ

V,2Λ

ξ +
1

6
V,1111(q1)

2 + Cα(q2)
2 = 0 (59)

where higher-order terms have been removed.
Eq. (55) has two solutions:

• trivial fundamental path:
q1 = 0 (60)

• bifurcation or aloof path:

V,11ΛΛ̃ + V,11ξξ +
1

6
V,1111(q1)

2 +
1

2
V,1122(q2)

2 = 0 (61)

For the trivial fundamental path q1 = 0, (56) leads to

Λ̃ = − 1

V,2Λ

(
V,2ξξ +

1

2
V,222(q2)

2
)

(62)

The limit point load is given for q2 = 0 as

Λ̃c
Lim(ξ) = − V,2ξ

V,2Λ

ξ (63)

By the vertex enumeration of the feasible region of solutions, we obtain the feasible set
of solutions to the set of equations (55), (56) and detS = 0 with (57).

Eq. (63) splits into two solutions q2 = 0 and q2 6= 0. The vertex 3 in Table A.3 cor-
responds to the limit point on the fundamental path. From the vertex 1 in Table A.3,
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Eqs. (55)–(57) are reduced to the following equations (A.19)–(A.21) in Appendix 2 for
the bifurcation or aloof path (61).

The bifurcation point is obtained from (A.19)–(A.21) with q2 6= 0 as

Λ̃c
Bif(ξ) = −V,2ξV,1122 − V,222V,11ξ

2V,2ΛCα

ξ (64)

that is existent for

(q2)
2 = βξ > 0 (65)

otherwise no bifurcation point exists.
To sum up,

Λ̃c(ξ) =





Λ̃c
Lim(ξ) : for βξ < 0

Λ̃c
Bif(ξ) : for βξ > 0

(66)

The limit point on the aloof path is obtained from (A.19)–(A.21) with q2 = 0 as

Λ̃c(ξ) = − V,2ξ

V,2Λ

ξ (67)

which exists for

(q1)
2 =

6(V,11ΛV,2ξ − V,2ΛV,11ξ)

V,2ΛV,1111

ξ > 0 (68)

Note that

Λ̃c
Lim − Λ̃c

Bif =
V,222

2V,2Λ

βξ > 0 (69)

The imperfect equilibrium paths and the critical points are shown in Fig. 6, where the
equation numbers are also indicated.

6.3 Imperfection sensitivity: major antisymmetric

Consider an antisymmetric major imperfection and assume

V,11ξ = 0, V,2ξ = 0, V,22ξ = 0, V,1111 < 0, V,1ξ < 0 (70)

From (55), (56) and (70), we obtain the following equilibrium path:

V,1ξξ +
1

6
V,1111(q1)

3 + Cαq1(q2)
2 = 0 (71)

where the higher-order terms have been removed.
By the vertex enumeration of the feasible region of solutions, we obtain the feasible set

of solutions to the set of equations (55), (56) and detS = 0 with (57). From the vertices
2 and 7 in Table A.4, we have two solutions of different orders as

I) Λ̃ = O(ξ
2
3 ), q1 = O(ξ

1
3 ), q2 = O(ξ

1
3 ) (72)

II) Λ̃ = O(ξ
4
3 ), q1 = O(ξ

1
3 ), q2 = O(ξ

2
3 ) (73)
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Fig. 6. Asymptotic behaviors of the imperfect system with a minor imperfection in the vicinity of
a degenerate hilltop branching point with symmetric bifurcation. ◦: hilltop point; •: limit point;
M: unstable-symmetric bifurcation point; dashed curve: perfect equilibrium path; solid curve:
imperfect equilibrium path. ξ = ±0.01, V,2ξ = −1.0, V,2Λ = −1.0, V,222 = −0.1, V,11Λ = −0.1,
V,1111 = −0.01, V,1122 = 0.01.

6.3.1 Type I solution
For the Type I solution in (72), the bifurcation equations (55), (56) and the criticality

condition reduce to (A.22)–(A.24) in Appendix 2.
The solutions of the set of equations (A.22)–(A.24) give the locations of two limit points

of an imperfect system as

qc
1(ξ) =

(
3

V,1111

) 1
3

(V,1ξξ)
1
3 (74a)

(qc
2(ξ))

2 = −3
2
3 (V,1111)

1
3

2Cα

(V,1ξξ)
2
3 (74b)

Λ̃c(ξ) =
3

2
3 V,222(V,1111)

1
3

4V,2ΛCα

(V,1ξξ)
2
3 < 0 (74c)
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One of these solutions corresponds to the limit point on an imperfect fundamental path,
and the other to that on an aloof path.

6.3.2 Type II solution
For the Type II solution in (73), the bifurcation equations (55), (56) and the criticality

condition reduce to (A.25)–(A.27) in Appendix 2.
The solution of the set of equations (A.25)–(A.27) gives the locations of a limit point

of an imperfect system as

qc
1(ξ) = −

(
6V,1ξξ

V,1111

) 1
3

(75a)

qc
2(ξ) =

V,1122

2V,222

(
6V,1ξξ

V,1111

) 2
3

(75b)

Λ̃c(ξ) =
[
− (V,1122)

2

8V,2ΛV,222

(
6V,1ξ

V,1111

) 4
3

+
1

V,2Λ

(
6V,1ξ

V,1111

) 1
3

V,12ξ

]
ξ

4
3 (75c)

This solution corresponds to the limit point on an aloof path.
The imperfect equilibrium paths and the critical points are shown in Fig. 7.

7 Numerical examples

Consider the four-bar truss tent as shown in Fig. 8 subjected to a proportional vertical
load with P = 1000.0 N, where L = 1000 mm. In the following, the units of length and
force are omitted for brevity. The four members are composed of linear elastic material
with elastic modulus E = 200.0. The cross-sectional areas are 1000.0 for all members.

The length of each member at the deformed state is computed exactly from the deformed
nodal locations to obtain the engineering strain as the elongation divided by the member
length at the undeformed state. Therefore, the member strains are expressed as explicit
functions of nodal displacements, and the differential coefficients of V are easily computed
using the symbolic computation package Maple 11 [30]. See, e.g., [31] for details.

The force F and extension d of spring 1 have a nonlinear relation with parameters K2

and K3 as
F = K2d

2 + K3d
3 (76)

Spring 2 has linear extensional stiffness 10.0. As demonstrated in Ref. [10], the truss has a
degenerate hilltop branching point if H = 1541.10, where the critical load factor is 153.96.

Let Φ = (Φx, Φy, Φz)
> denote the buckling mode, where Φx, Φy and Φz are the dis-

placements in x-, y- and z-directions, respectively, of the top node. The limit point mode
ΦL and the bifurcation mode ΦB are obtained as

ΦL = (0, 0, 1)>, ΦB = (1, 0, 0)> (77)

The imperfection in the location of the top node is considered. The variation of nodal
coordinates in the directions of ΦL and ΦB correspond to minor and major imperfections,
respectively.
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Fig. 7. Asymptotic behaviors of the imperfect system with a major imperfection in the vicinity
of a degenerate hilltop branching point with symmetric bifurcation. ◦: hilltop point; •: limit
point; dashed curve: perfect equilibrium path; solid curve: imperfect equilibrium path. ξ = ±0.1,
V,1ξ = −1.0, V,2Λ = −1.0, V,22Λ = −0.1, V,222 = −0.1, V,11Λ = −0.1, V,111 = −0.1, V,1122 = 0.01.

In the following, imperfection sensitivity of the first critical point along the fundamental
path is computed by path-tracing analysis for verification of the asymptotic equations.

7.1 Asymmetric bifurcation

Consider an asymmetric bifurcation with K2 = 1.0 and K3 = 0.0. The coefficients at
the hilltop point of the perfect system are computed as

V,111 = −2.0, V,222 = −0.61564, V,112 = −9.7752× 10−5 ' 0,

V,122 = 0, V,11Λ = 0, V,1111 = 1.4495× 10−4,

V,2222 = −5.8122× 10−4, V,1122 = 2.9025× 10−3, V,2Λ = −1000.0

(78)
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and
Cα = 1.4512× 10−4 > 0 (79)

The coefficients for the minor imperfection in the direction of ΦL are obtained as

V,2ξ = 140.46, V,11ξ = −0.20071 (80)

The limit point load and bifurcation load of the fundamental path of imperfect systems
are obtained from (37) and (38), respectively, as

Λ̃c
Lim = 0.14046ξ, (βξ < 0) (81a)

Λ̃c
Bif = −0.28526ξ, (βξ > 0) (81b)

where
β = 691.51 > 0 (82)

The asymptotic relations for Type I solution are plotted in solid lines in Fig. 9, which
show good agreement with the results by path-tracing analysis indicated by ‘+’ marks.

For the major imperfection in the direction of bifurcation mode ΦB, the coefficient is
computed as

V,1ξ = 64.513 (83)

Λp  

L L 

H 

L 

L 

z 

x 

y 

x 

L L 

1

2

Fig. 8. Four-bar truss tent with nonlinear spring.
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Fig. 9. Imperfection sensitivity for symmetric minor imperfections: asymmetric bifurcation.
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Fig. 10. Imperfection sensitivity for major imperfections: asymmetric bifurcation.

The Type I and II solutions are obtained from (48c) and (50c), respectively, as

Type I : Λ̃c = −34.073(−ξ)
1
2 , (ξ < 0) (84a)

Type II : Λ̃c = −7.8281× 10−7ξ
3
2 , (ξ > 0) (84b)

The asymptotic relations are plotted in solid lines in Fig. 10, which show good agreement
with the results by path-tracing analysis indicated by ‘+’ marks.

7.2 Unstable symmetric bifurcation

Consider an unstable symmetric bifurcation point with K2 = 0 and K3 = −0.01. The
coefficients at the hilltop point of the perfect system are computed as

V,111 = 0, V,112 = −9.8849× 10−5 ' 0

V,1111 = −5.9855× 10−2 (85)

The values of other parameters are the same as the case of asymmetric bifurcation.

The critical points on the fundamental path for minor imperfection is the same as the
case of the asymmetric bifurcation as shown in Fig. 9. For the major imperfection in the
direction of bifurcation mode ΦB, the coefficient is computed as

V,1ξ = 64.513 (86)

The Type I and II solutions are obtained from (74c) and (75c), respectively, as

Type I : Λ̃c = −13.880ξ
2
3 (87a)

Type II : Λ̃c = −2.2468× 10−7ξ
4
3 (87b)

Note that only Type I solution has practical importance, because Type II solution exists
on an aloof path. The asymptotic relations are plotted in solid lines in Fig. 11, which show
good agreement with the results by path-tracing analysis indicated by ‘+’ marks.
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Fig. 11. Imperfection sensitivity for major imperfections: unstable-symmetric bifurcation.

8 Conclusions

Imperfection sensitivity has been investigated for a degenerate hilltop point, where
a degenerate bifurcation point exists at a limit point. The degenerate hilltop point is
first defined on the basis of the coefficients of the asymptotic expansion of the total
potential energy with respect to the active coordinates and the load factor. The degenerate
hilltop point is characterized as the coincident critical point such that the derivative of the
eigenvalue corresponding to the bifurcation point vanishes along the fundamental path of
the perfect system.

Imperfect behaviors are next investigated considering minor and major imperfections
for unstable-symmetric and asymmetric bifurcation points. By means of the power series
expansion method with the assist of the concept of the order of a solution that is a strong
and insightful tool, imperfection sensitivity laws of coincident critical points, including
degenerate hilltop branching points, have successfully been derived.

A systematic procedure has been presented for asymptotic sensitivity analysis based on
enumeration of vertices of a convex region defined by linear inequality constraints on the
orders of the generalized coordinates and the load factor with respect to the imperfection
parameter. The symbolic computation package has emerged as a powerful and robust tool
for derivation of the inequality constraints. The enumeration method presented in this
paper can be effectively applied to any coincident critical points, where the consistent set
of orders cannot be enumerated by intuition.

Appendix 1: Enumeration of feasible set of orders for asymptotic expansion

A method is presented below for enumerating the feasible set of orders for asymptotic
expansion.

Imperfection sensitivity laws defining the relations among q1, q2 and Λ̃ at the critical
points of imperfect systems can be derived from the bifurcation equations and the crit-
icality condition detS = 0. For example, these equations are derived as (30), (31) and
detS = 0 with (32) for a hilltop point with asymmetric bifurcation. As is seen, these
equations form a set of two quadratic polynomials and one fourth-order polynomial that
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cannot be solved analytically.
Therefore, in the standard approaches developed so far, the solution set is estimated by

assuming the orders of q1, q2 and Λ̃ with respect to ξ. However, it is still difficult to find
all the possible and consistent set of orders by an intuitive approach. In this section, we
present a systematic approach for enumerating all the consistent sets of orders.

The bifurcation equations and the criticality condition are symbolically written as

A(q1, q2, Λ̃, ξ) ≡ ∂V

∂q1

= 0 (A.1a)

B(q1, q2, Λ̃, ξ) ≡ ∂V

∂q2

= 0 (A.1b)

D(q1, q2, Λ̃, ξ) ≡ detS = 0 (A.1c)

which are polynomials of q1, q2, Λ̃ and ξ.
The orders of q1, q2 and Λ̃ expressed in terms of the powers of ξ are denoted by H1, H2

and HΛ, respectively; i.e.,

q1 = O(ξH1), q2 = O(ξH2), Λ̃ = O(ξHΛ) (A.2)

where O( · ) denotes the order of the term in the parentheses.
Let RA, RB and RD denote the lowest orders relative to ξ of the terms in A, B and

D, respectively. For example, the order of V,11Λq1Λ̃ for q1 = O(ξ
1
2 ) and Λ̃ = O(ξ

3
2 ) is

1/2 + 3/2 = 2. The sets of orders of the power of (ξ, q1, q2, Λ̃) in the ith term of the poly-
nomials A, B and D, respectively, are denoted by (Ai

ξ, A
i
1, A

i
2, A

i
Λ), (Bi

ξ, B
i
1, B

i
2, B

i
Λ) and

(Di
ξ, D

i
1, D

i
2, D

i
Λ). For example, the term 1

2
V,1122(q1)

2q2 in (31) leads to (Bi
ξ, B

i
1, B

i
2, B

i
Λ) =

(0, 2, 1, 0).
Then the feasible solutions are characterized by the following inequalities:

Ai
ξ + Ai

1H1 + Ai
2H2 + Ai

ΛHΛ ≥ RA, (i = 1, . . . , NA) (A.3a)

Bi
ξ + Bi

1H1 + Bi
2H2 + Bi

ΛHΛ ≥ RB, (i = 1, . . . , NB) (A.3b)

Di
ξ + Di

1H1 + Di
2H2 + Di

ΛHΛ ≥ RD, (i = 1, . . . , ND) (A.3c)

where NA, NB and ND are the numbers of terms in A, B and D, respectively. The
inequalities (A.3) are automatically generated by a symbolic computation package Maple
11 [30].

For example, consider a simple symmetric bifurcation point governed by the bifurcation
equation and criticality condition as

V,ξξ + V,11Λq1Λ̃ + V,1ΛΛΛ̃2 + V,1111(q1)
3 = 0 (A.4a)

V,11ΛΛ̃ + 3V,1111(q1)
2 = 0 (A.4b)

In this case, NA = 4, NB = 0, ND = 2, and (A.3a) and (A.3c) are written as

1 ≥ RA, H1 + HΛ ≥ RA, 2HΛ ≥ RA, 3H1 ≥ RA (A.5a)

HΛ ≥ RD, 2H1 ≥ RD (A.5b)
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Table A.1. Vertices of the feasible region of the orders for minor imperfection to hilltop point
with asymmetric bifurcation.

vertex H1 H2 HΛ MA MB MD

1 1 1/2 1 4 3 4 accept
2 1/4 1/2 1 1 4 2 reject because MA = 1
3 1/2 1 1 1 2 4 reject because MA = 1
4 1 1 1 3 2 8 accept

in which (A.3b) is nonexistent. From (A.5), the two sets (H1, HΛ, RA, RD) = (1/3, 2/3, 1, 2/3)
and (1/2, 1/2, 1, 1/2) are obtained by the vertex enumeration of the convex region defined
by the linear inequalities. However, the latter leads to Λ̃ = 0 by (A.4b), and is not
physically feasible. Therefore, from (H1, HΛ) = (1/3, 2/3) in the first set, we obtain the
following well-known relation for the two-third power law:

qc
1 = O(ξ

1
3 ), Λ̃c = O(ξ

2
3 ) (A.6)

This result agrees with the well-known formula [22] and the result by Newton-Polygon
approach in [28].

Let MA, MB and MD denote the numbers of inequalities satisfied in equality for (A.3a),
(A.3b) and (A.3c), respectively. For the consistent set of orders, at least two inequalities
should be satisfied in equality for each of (A.3a), (A.3b) and (A.3c); i.e., MA, MB and
MD should not be less than two, because some of q1, q2, Λ̃ and ξ may vanish if only one
inequality is satisfied in equality and only one term remains in (A.1a), (A.1b) or (A.1c) as
the lowest-order term. For example, if 1 > RA, H1 + HΛ = RA, 2HΛ > RA and 3H1 > RA

in (A.5a), only the second term remains as the lowest-order term in (A.4a), and q1 or Λ̃
should vanish by (A.4a).

Therefore, we have at least six equations for six variables RA, RB, RD, H1, H2 and HΛ.
Since all inequalities in (A.3) are linear with respect to the variables, the solutions exist at
the vertices of the feasible region, and the solutions can be found by vertex enumeration
of the region defined by linear inequalities.

In the following, we use the library cdd+ Ver. 0.76 [32, 33] for the vertex enumeration.
Then the vertices that do not have a vanishing variable are chosen as the asymptotic
solutions.

For the bifurcation path of the imperfect systems corresponding to minor imperfection,
the inequalities (A.3) for the feasible region of the orders H1, H2 and HΛ of q1, q2 and Λ̃
at the critical points are generated, respectively, from (30), (31) and detS = 0 with (32)
as

2H1 ≥ RA, H1 + HΛ ≥ RA, 1 + H1 ≥ RA, H1 + 2H2 ≥ RA (A.7)

1 ≥ RB, HΛ ≥ RB, 2H2 ≥ RB, 2H1 + H2 ≥ RB (A.8)




H1 + H2 ≥ RD, H1 + HΛ ≥ RD, 1 + H1 ≥ RD, 3H1 ≥ RD,
H2 + HΛ ≥ RD, 2HΛ ≥ RD, 1 + HΛ ≥ RD, 2H1 + HΛ ≥ RD,
1 + H2 ≥ RD, 2 ≥ RD, 1 + 2H1 ≥ RD, 3H2 ≥ RD,
2H2 + HΛ ≥ RD, 1 + 2H2 ≥ RD, 2H1 + H2 + HΛ ≥ RD, 3H1 + H2 ≥ RD,
2H1 + 2HΛ ≥ RD, 3H1 + HΛ ≥ RD, 4H1 ≥ RD, 2H1 + 2H2 ≥ RD

(A.9)
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Table A.2. Vertices of the feasible region of the orders for major imperfection to hilltop point
with asymmetric bifurcation.

vertex H1 H2 HΛ MA MB MD

1 1/2 1 1 2 1 3 reject because Λ̃ = 0
2 1/2 1/2 1/2 3 1 4 reject because Λ̃ = 0
3 1/2 1/4 1/2 4 2 3 accept
4 1/2 3/4 3/2 2 3 1 reject because MD = 1
5 1/2 1 3/2 3 2 2 accept
6 1/3 2/3 4/3 1 4 2 reject because ξ = 0
7 1 1 1 1 1 5 reject because ξ = 0
8 4/3 2/3 4/3 1 2 4 reject because ξ = 0
9 2/3 4/3 4/3 1 1 4 reject because ξ = 0
10 2/3 4/3 5/3 1 2 3 reject because ξ = 0

Table A.3. Vertices of the feasible region of the orders for minor imperfection to hilltop point
with unstable-symmetric bifurcation.

vertex H1 H2 HΛ MA MB MD

1 1/2 1/2 1 4 3 4 accept
2 1/4 1/2 1 1 4 2 reject because MA = 1
3 1/2 1 1 3 2 8 accept

The enumerated vertices are listed in Table A.1. The first vertex (H1, H2, HΛ) =
(1, 1/2, 1) corresponds to the bifurcation point at the intersection with the fundamen-
tal path. From the fourth set (H1, H2, HΛ) = (1, 1, 1), we have the location of a limit
point on the bifurcation or aloof path as (42). The second and third vertices are rejected,
because MA = 1 that leads to q1 = 0.

For major imperfection, the inequalities (A.3) for the feasible region of the orders H1,
H2 and HΛ of q1, q2 and Λ̃ are generated, respectively, from (30), (31) and detS = 0 with
(32) as

1 ≥ RA, 2H1 ≥ RA, H1 + HΛ ≥ RA, H1 + 2H2 ≥ RA (A.10)

HΛ ≥ RB, 2H2 ≥ RB, 1 + H1 ≥ RB, 2H1 + H2 ≥ RB (A.11)





H1 + H2 ≥ RD, H1 + HΛ ≥ RD, 3H1 ≥ RD, H2 + HΛ ≥ RD,
2HΛ ≥ RD, 2H1 + HΛ ≥ RD, 3H2 ≥ RD, 2H2 + HΛ ≥ RD,
2 ≥ RD, 1 + H1 + H2 ≥ RD, 1 + H1 + HΛ ≥ RD, 1 + 2H1 ≥ RD,
2H1 + H2 + HΛ ≥ RD, 3H1 + H2 ≥ RD, 2H1 + 2HΛ ≥ RD,
3H1 + HΛ ≥ RD, 4H1 ≥ RD, 2H1 + 2H2 ≥ RD

(A.12)

Then the vertices of the feasible region are found as shown in Table A.2.

The vertices are also enumerated for hilltop point with unstable-symmetric bifurcation
in the similar manner as the case with asymmetric bifurcation. The vertices for minor
imperfection and major imperfection are listed in Tables A.3 and A.4, respectively.
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Table A.4. Vertices of the feasible region of the orders for major imperfection to hilltop point
with unstable-symmetric bifurcation.

vertex H1 H2 HΛ MA MB MD

1 1/3 2/3 2/3 3 1 5 reject because MB = 1
2 1/3 1/3 2/3 4 2 3 accept
3 3/5 4/5 8/5 1 3 2 reject because MA = 1
4 1/2 1 2/3 1 2 3 reject because MA = 1
5 1/2 1 1 1 1 6 reject because MA = 1
6 2/3 2/3 4/3 1 2 4 reject because MA = 1
7 1/3 2/3 4/3 2 4 2 accept

Appendix 2: Details of bifurcation equations and criticality conditions

The detailed expressions are presented below for the bifurcation equations and the
criticality condition for each specific case in Sections 5 and 6.

Asymmetric bifurcation

Tyle I) solution for major imperfection

V,1ξξ +
1

2
V,111(q1)

2 + V,11Λq1Λ̃ +
1

2
V,1122q1(q2)

2 = 0 (A.13)

V,2ΛΛ̃ +
1

2
V,222(q2)

2 = 0 (A.14)

V,111q1 + V,11ΛΛ̃ +
1

2
V,1122(q2)

2 = 0 (A.15)

Tyle II) solution for major imperfection

V,1ξξ +
1

2
V,111(q1)

2 = 0 (A.16)

V,2ΛΛ̃ + V,12ξq1ξ = 0 (A.17)

V,222q2 +
1

2
V,1122(q1)

2 = 0 (A.18)

Unstable-symmetric bifurcation

Minor imperfection

V,11ΛΛ̃ + V,11ξξ +
1

6
V,1111(q1)

2 +
1

2
V,1122(q2)

2 = 0 (A.19)

V,2ΛΛ̃ + V,2ξξ +
1

2
V,222(q2)

2 = 0 (A.20)

V,222q2

(
V,11ΛΛ̃ + V,11ξξ +

1

2
V,1111(q1)

2 +
1

2
V,1122(q2)

2
)

= 0 (A.21)

26



Tyle I) solution for major imperfection

V,1ξξ + V,11Λq1Λ̃ +
1

6
V,1111(q1)

3 +
1

2
V,1122q1(q2)

2 = 0 (A.22)

V,2ΛΛ̃ +
1

2
V,222(q2)

2 = 0 (A.23)

V,11ΛΛ̃ +
1

2
V,1111(q1)

2 +
1

2
V,1122(q2)

2 = 0 (A.24)

Tyle II) solution for major imperfection

V,1ξξ +
1

6
V,1111(q1)

3 = 0 (A.25)

V,2ΛΛ̃ +
1

2
V,222(q2)

2 + V,12ξq1ξ +
1

2
V,1122(q1)

2q2 = 0 (A.26)

V,222q2 +
1

2
V,1122(q1)

2 = 0 (A.27)
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[4] K. Ikeda, P. Providéncia, and G. W. Hunt. Multiple equilibria for unlinked and weakly-linked
cellular forms. Int. J. Solids Struct., 30(3):371–384, 1993.

[5] A. Needleman. A numerical study of necking in circular cylindrical bars. J. Mech. Phys.
Solids, 20(2):111–127, 1972.

[6] M. Ohsaki. Optimization of geometrically nonlinear symmetric systems with coincident
critical points. Int. J. Numer. Meth. Engng., 48:1345–1357, 2000.

[7] M. Ohsaki. Sensitivity analysis of an optimized bar-spring model with hill-top branching.
Archive of Applied Mechanics, 73:241–251, 2003.

[8] J. M. T. Thompson. Instabilities and Catastrophes in Science and Engineering. John Wiley
& Sons, Chichester, U.K., 1982.

[9] M. Ohsaki and K. Ikeda. Stability and Optimization of Structures: Generalized Sensitivity
Analysis. Mechanical Engineering Series. Springer, New York, 2007.

[10] M. Ohsaki. Design sensitivity analysis and optimization for nonlinear buckling of finite-
dimensional elastic conservative structures. Comp. Meth. Appl. Mech. Engng., 194:3331–
3358, 2005.

[11] M. Ohsaki. Sensitivity analysis of coincident critical loads with respect to minor
imperfection. Int. J. Solids Struct., 38:4571–4583, 2001.

27



[12] M. Ohsaki. Structural optimization for specified nonlinear buckling load factor. Japan J. of
Industrial and Appl. Math., 19(2):163–179, 2002.

[13] K. Ikeda, K. Oide, and K. Terada. Imperfection sensitive strength variation of critical loads
at hilltop bifurcation point. Int. J. Eng. Sci., 40:743–772, 2002.

[14] K. Ikeda, M. Ohsaki, and Y. Kanno. Imperfection sensitivity of hilltop branching points of
systems with dihedral group symmetry. Int. J. Nonlinear Mech., 40:755–774, 2005.

[15] M. Ohsaki and K. Ikeda. Imperfection sensitivity analysis of hill-top branching with many
symmetric bifurcation points. Int. J. Solids Struct., 43(16):4704–4719, 2006.

[16] M. Ohsaki. Sensitivity analysis and optimization corresponding to a degenerate critical
point. Int. J. Solids Struct., 38:4955–4967, 2001.

[17] M. Pignataro, N. Rizzi, and A. Luongo. Stability, Bifurcation and Postcritical Behaviour of
Elastic Structures, volume 39 of Dev. Civil Eng. Elsevier, Amsterdam, 1991.

[18] Z. P. Bažant and Y. Xiang. Postcritical imperfection-sensitive buckling and optimal bracing
of large regular frames. J. Struct. Engng., ASCE, 123(4):513–522, 1997.

[19] A. Andrade and D. Camotim. Lateral-torsional buckling of singly symmetric tapered beams:
Theory and application. J. Engng. Mech., ASCE, 131(6):568–597, 2005.

[20] M. M. Vainberg and V. A. Trenogin. Theory of Branching of Solutions of Non-Linear
Equations. Leyden, 1974.

[21] W. T. Koiter. On the Stability of Elastic Equilibrium. Ph.D. dissertation, Dept. of
Mechanical Engineering, Delft University of Technology, Delft, The Netherlands, 1945.
(English Translation, NASA, TTF-10833, 1967).

[22] J. M. T. Thompson and G. W. Hunt. A General Theory of Elastic Stability. John Wiley &
Sons, New York, NY, 1973.

[23] D. Ho. Buckling load of nonlinear systems with multiple eigenvalues. Int. J. Solids Struct.,
10:1315–1330, 1974.

[24] K. C. Johns. Imperfection sensitivity of coincident buckling systems. Int. J. Non-Linear
Mech., 9:1–21, 1974.

[25] J. M. T. Thompson, J. K. Y. Tan, and K. C. Lim. On the topological classification of
postbuckling phenomena. J. Struct. Mech., 6:383–414, 1978.

[26] P. Samuels. Bifurcation and limit point instability of dual eigenvalue third order system.
Int. J. Solids Struct., 16(8):743–756, 1980.

[27] X. Lignos, G. Ioannidis, and A. N. Kounadis. Interaction of the joint and of the lateral
bracing stiffnesses for the optimum design of unbraced frames. Acta Mechanica, 47:247–262,
2003.

[28] K. Ikeda and K. Murota. Imperfect Bifurcation Phenomena in Structures and Materials
– An Engineering Use of Group-theoretic Bifurcation Theory. Appl. Math. Sci. Ser. 149.
Springer, New York, NY, 2002.

28



[29] J. Roorda. On the buckling of symmetric structural systems with first and second order
imperfections. Int. J. Solids Struct., 4:1137–1148, 1968.

[30] Maplesoft. Maple 11 Programming Guide. 2007.

[31] K. Ikeda and M. Ohsaki. Generalized sensitivity and probabilistic analysis of buckling loads
of structures. Int. J. Non-Linear Mechanics, 42:733–743, 2007.

[32] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Math., 65(1–
3):21–46, 1996.

[33] K. Fukuda. cdd+ Ver. 0.76 User’s Manual. Technical report, Inst. Operation Res., ETH-
Zentrum, Zurich, Switzerland, 1999.

29


