
Force Design of Tensegrity Structures by Enumeration

of Vertices of Feasible Region

M. Ohsaki a,∗ J.Y. Zhang a Y. Ohishi b

aDept. of Architecture & Architectural Engineering, Kyoto University, Japan
bComputer Engineering & Consulting, Ltd., 5–1–11, Higashihara, Zama, Kanagawa 228–8567,

Japan

Abstract

An optimization approach is presented for force design of tensegrity structures by enumeration
of the vertices of the feasible region of the prestresses, which is defined as the linear combinations
of the coefficients of the self-equilibrium force vectors. The unilateral properties of the stresses
in cables and struts are taken into consideration. In order to design the stiffest structure against
uncertain external loads as well as specific external loads, a multiobjective optimization problem is
formulated for simultaneous maximization of the lowest eigenvalue of the tangent stiffness matrix
and minimization of the compliance against a specified set of external loads. In the numerical
example, Pareto optimal solutions are found by enumerating the vertices of the feasible region
of prestresses of a tensegrity grid, and the monotonicity properties of the objective functions are
investigated.

Key words: Tensegrity, Force design, Self-equilibrium force, Multiobjective programming,
Vertex enumeration

1 Introduction

Distribution of member forces at the
self-equilibrium state; i.e., prestresses in-
troduced into the members, has great in-
fluence on stiffness and stability of tenseg-
rity structures. Hence, for the structures
consisting of several independent modes
of prestress, the stiffness against external
loads is desirable to be maximized by opti-
mization of the coefficients of the prestress
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modes, since the distribution of member
forces is defined as the linear combination
of these modes. The process of determi-
nation of member forces for the structure
with given shape is called force design.
The purpose of this study is to present
an approach to force design of tensegrity
structures. A technique for enumerating
vertices of a polyhedron defined by linear
equalities and inequalities are successfully
utilized to enumerate the vertices of the
feasible region of the coefficients of the
independent prestress modes.

In the process of force design, the pre-
stresses should be assigned considering the
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stress unilateral property of the members;
i.e., the tensegrity structure consists of ca-
bles and struts that can only transmit ten-
sile and compressive forces, respectively.
In some special cases, e.g., the tensegrity
grid used as example structure in Section
5, a tensegrity structure may have some
bars, which carry no prestress in the self-
equilibrium state.

By the rigorous definition, a tenseg-
rity structure is free-standing without any
support, and the struts are connected by
continuous cables and do not contact with
each other [1,2]. Since the members carry
self-equilibrium forces, every node should
be balanced by these member forces at the
self-equilibrium state. Furthermore, due to
the existence of infinitesimal mechanisms,
tensegrity structures are usually unstable
in the unstressed state, and the mecha-
nisms are stabilized by the prestresses in
the members [3]. Therefore, the shapes and
forces of tensegrity structures are highly
interdependent. These distinct properties
of tensegrity structures compared with
conventional bar-joint structures lead to
difficulties in the determination of the
self-equilibrium shapes and distribution of
prestresses so that the structure is appro-
priately stabilized.

The process of determining shapes and
forces of tensegrity structures is called
form-finding. There have been many ex-
cellent methods proposed for this process,
e.g., see the review paper [4]. In most of the
existing methods, the shape and member
forces of the structure are to be determined
simultaneously to discover novel shapes in
view of aesthetic and mechanical proper-
ties. However, few researches have been
carried out for determination of the force
distribution to appropriately stabilize the
structure with specified shape considering
stress unilateral properties of the cables
and struts.

Since tensegrity structures usually have
several independent modes of member
forces in the self-equilibrium state, the
member forces are defined as the linear
combination of these force modes. The au-
thors presented an approach to force design
of the structures with multiple indepen-
dent force modes by solving a bi-objective
optimization problem for maximizing the
stiffness of the structure as well as min-
imizing the deviation of the forces from
the specified values [5]. Since positive defi-
niteness of the geometrical stiffness matrix
with respect to the infinitesimal mecha-
nisms, also called reduced stiffness matrix,
is the necessary condition for the stability
of tensegrity structures as discussed in [6],
the members of the structure were assumed
to have infinite stiffness so that the struc-
ture can deform only in the directions of
the mechanisms.

In this paper, we incorporate practical
situation that the members of the structure
have finite stiffnesses. The eigenvalues of
the tangent stiffness matrix and the exter-
nal work against specified external loads,
called compliance, are considered as two
performance measures representing the
stiffness of the structure. The constraints
are given for member forces so that the
cables and struts can transmit only tensile
and compressive forces, respectively. More-
over, the upper and lower bounds are given
for the member forces so that the absolute
values of the stresses are moderately small.
These bound constraints are expressed
as linear inequality constraints with re-
spect to the coefficients of the indepen-
dent modes of the self-equilibrium forces.
Therefore, the feasible, or admissible, coef-
ficients satisfying all the constraints form
a convex region. The monotonicity proper-
ties of the two performance measures with
respect to the member forces are discussed.
The compromise solutions called Pareto
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optimal solutions are found by the enumer-
ation of the vertices of the convex feasible
region defined by linear inequalities. The
effectiveness of the proposed method is dis-
cussed in the example of a tensegrity grid.

2 Basic equations

In this section, we present basic equa-
tions for tensegrity structures for the com-
pleteness of the paper.

2.1 Equilibrium equations

The following properties are assumed for
a tensegrity structure:

(1) Members are connected by pin joints.
(2) Topology (connectivity of nodes and

members) is specified.
(3) Self-weight is neglected, and no ex-

ternal load exists at the initial self-
equilibrium state.

(4) Members are in elastic range, and
buckling or yielding is not considered.

From properties (1) and (3), only axial
forces exist in the members.

Let m and ns denote the numbers of
members and nodes, respectively. If mem-
ber k is connected by nodes i and j (i < j),
the kth row of the connectivity matrix
Cs ∈ Rm×ns

is defined as

Cs
(k,p) =





1 (p = i)

−1 (p = j)

0 (for other cases)

(1)

The nodes are classified to n free nodes
and nf fixed nodes (supports). Thus, ns =
n + nf . Suppose the nodes are numbered
such that the free nodes precede the fixed
nodes. Then Cs is divided to C ∈ Rm×n

and Cf ∈ Rm×nf
corresponding to the free

and fixed nodes, respectively, as

Cs = (C,Cf) (2)

Consider a structure in the d-dimensional
space, where d ∈ {2, 3}. We assume, for
brevity, a tensegrity structure in the three-
dimensional space for presentation of gen-
eral formulations. Let x, y, z (∈ Rn) and
xf , yf , zf (∈ Rnf

) denote the nodal coor-
dinate vectors in x-, y- and z-directions,
respectively, of free and fixed nodes. The
coordinate difference vectors of the mem-
bers are denoted by hx, hy and hz (∈ Rm)
for x-, y- and z-directions, respectively,
which are calculated from

hx = Cx + Cfxf

hy = Cy + Cfyf

hz = Cz + Cfzf

(3)

The coordinate difference matrix Hx, Hy

and Hz (∈ Rm×m) are defined as

Hx = diag(hx)

Hy = diag(hy)

Hz = diag(hz)

(4)

In the following, the components of vectors
and matrices are indicated by subscripts,
e.g., as hx = (hx

i ) and Hx = (Hx
ij), respec-

tively. The length matrix L = (Lij) is a di-
agonal matrix, and its ith diagonal term is
given as

Lii =
√

(Hx
ii)

2 + (Hy
ii)

2 + (Hz
ii)

2,

(i = 1, . . . , m)
(5)

Let s ∈ Rm denote the vector of member
forces. In the state of self-equilibrium, the
self-equilibrium equation is written as [7]

Ds = 0 (6)
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where the equilibrium matrix D ∈ R3n×m

is defined by

D =



C>Hx

C>Hy

C>Hz


 L−1 (7)

with ( · )> denoting the transpose of a ma-
trix or a vector.

2.2 Self-equilibrium forces

Let r denote the rank of D. Then the
equilibrium equation (6) has q = m−r self-
equilibrium modes, which are found, as fol-
lows, by the singular value decomposition
of D.

The non-zero eigenvalues of D>D are de-
noted by ωi (i = 1, . . . , r). Then the sin-
gular value decomposition of D is written
as [8]

Ω = S>DR (8)

where

Ω =

(
diag(ω1, . . . , ωr) O

O O

)
(9)

with O being null matrix, and the diago-
nal terms of Ω ∈ R3n×m are called singular
values of D. The matrices R ∈ Rm×m and
S ∈ R3n×3n satisfy the following orthogo-
nality conditions:

R>R = RR> = Im

S>S = SS> = I3n

(10)

where Im ∈ Rm×m and In ∈ R3n×3n are the
identity matrices.

By premultiplying S to (8) and using
(10), we obtain

DR = SΩ (11)

The column vectors Ri (i = r + 1, r +
2, . . . , m) of R corresponding to zero sin-

gular value satisfy the condition of self-
equilibrium force mode as

DRi = 0 (12)

By denoting gi = Ri+r (i = 1, . . . , q),
the self-equilibrium force vector s ∈ Rm

satisfying Ds = 0 is given as the linear
combination of gi as

s = α1g1 + · · ·+ αqgq

= Gα
(13)

where α = (α1, . . . , αq)
> is the coefficient

vector, and G = (g1, . . . ,gq) is the matrix
of the self-equilibrium forces.

Let b>i denote the ith row of G. The com-
ponents of s are written as

si = b>i α, (i = 1, . . . , m) (14)

The self-equilibrium equation with re-
spect to member forces s in (6) can be
rewritten in the following form with respect
to the nodal coordinates x, y and z [9]:

Ex + Efxf = 0

Ey + Efyf = 0

Ez + Efzf = 0

(15)

where E is called force density matrix, and
E and Ef are given as

E = C> diag(L−1s)C

Ef = C> diag(L−1s)Cf
(16)

2.3 Tangent stiffness matrix and re-
sponses to external loads

The tangent stiffness matrix K for a d-
dimensional structure is expressed as the
sum of the linear stiffness matrix KE and
the geometrical stiffness matrix KG as [9]

K = KE + KG (17)
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where

KE = DK̄D>, KG = Id ⊗ E (18)

Here Id ∈ Rd×d is the identity matrix, and
the ith diagonal entry K̄ii of the diagonal
matrix K̄ is the stiffness of the ith mem-
ber; i.e., K̄ii = AiEi/Lii where Ai, Ei and
Lii are the cross-sectional area, the elastic
modulus and the length of member i, re-
spectively.

In the following discussions on stiffness
of the structure, the rigid-body motions are
assumed to be constrained. Let λr (λ1 ≤
λ2 ≤ · · · ≤ λ3n) and Φr denote the rth
eigenvalue and eigenvector of K, respec-
tively, which are defined by

KΦr = λrΦr, (r = 1, . . . , 3n) (19)

The eigenvector Φr is ortho-normalized by

Φ>
r Φs = δrs, (r, s = 1, . . . , 3n) (20)

where δrs is the Kronecker delta. When the
external loads applied to a structure are
unknown, the best way to strengthen the
structure may be to increase its stiffness
in the weakest direction. Hence, the lowest
eigenvalue λmin (= λ1) after constraining
the rigid-body motions is maximized as the
performance measure in the optimization
problem defined in the next section.

Suppose small external loads P ∈ R3n

are applied to the structure. The nodal dis-
placements U ∈ R3n are linearly estimated
by the tangent stiffness matrix as

KU = P (21)

In the field of structural optimization, the
external work, which is called compliance
is often used as the performance measure.
The compliance W , defined as follows, is to
be minimized to obtain the stiffest design

against the specified loads:

W = U>P (22)

3 Optimization problem

Suppose, for brevity, the members
1, . . . , t correspond to the struts, and the
members t + 1, . . . , m to cables. The up-
per bound and lower bound for the forces
of the cables and struts, respectively, are
denoted by sU (> 0) and sL (< 0). Then
the conditions for the member forces are
written as

sL ≤ si ≤ 0, (i = 1, . . . , t) (23a)

0 ≤ si ≤ sU, (i = t + 1, . . . , m) (23b)

In the process of force design, the geom-
etry (nodal locations) and the topology of
the structure are specified. Therefore, the
design variables are the coefficients α for
the self-equilibrium modes. Note that KG

depends on α, while KE is independent
of α. By using the relation (14), the con-
straints for the optimization problems are
given with respect to α as

sL ≤ b>i α ≤ 0, (i = 1, . . . , t) (24a)

0 ≤ b>i α ≤ sU, (i = t + 1, . . . , m) (24b)

The lowest eigenvalue λmin after con-
straining the rigid-body motions is used
as the global measure of stiffness and sta-
bility of the structure. The optimization
problem is formulated as

minimize − λmin(α) (25a)

subject to (24a) and (24b) (25b)

The compliance W is next considered as
the performance measure representing the
stiffness of the structure against the spec-
ified external loads P. The optimization
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problem is formulated as

minimize W (α) (26a)

subject to (24a) and (24b) (26b)

Note that the numbers of constraints are 2t
in (24a) and 2(m−t) in (24b), because each
line of the equations have two inequalities.

The constraints (24a) and (24b) are com-
bined to the following form:

Hi(α) ≤ 0, (i = 1, . . . , 2m) (27)

The conditions for local optimality of Prob-
lem (25) is written as

− ∂λmin

∂αi

+
∑

j∈A
βλ

j

∂Hj

∂αi

= 0, (28a)

(i = 1, . . . , q)

βλ
j ≥ 0 for (j ∈ Aλ), (28b)

βλ
j = 0 for (j /∈ Aλ) (28c)

where βλ
j is the Lagrange multiplier for the

jth constraint, and Aλ is the set of ac-
tive constraints. Computation of the gradi-
ents (sensitivity coefficients) of the objec-
tive functions is presented in Section 4.

The conditions for local optimality of
Problem (26) is written as

∂W

∂αi

+
∑

j∈A
βW

j

∂Hj

∂αi

= 0, (29a)

(i = 1, . . . , q)

βW
j ≥ 0 for (j ∈ AW), (29b)

βW
j = 0 for (j /∈ AW) (29c)

where βW
j is the Lagrange multiplier for the

jth constraint, and AW is the set of active
constraints.

Finally, we consider the problem of si-
multaneously minimizing the two objective
functions −λmin(α) and W (α). This prob-
lem is formulated as a multiobjective pro-

gramming problem as

minimize − λmin(α), W (α) (30a)

subject to (24a) and (24b) (30b)

Since it is not generally possible to find
an optimal solution that minimizes the two
objectives simultaneously, a compromise
solution is selected as a solution to a mul-
tiobjective optimization problem. A feasi-
ble solution satisfying all the constraints
is called Pareto optimal solution, if there
exists no feasible solution in its neighbor-
hood that simultaneously improves the
two objective functions [10].

If we assume the monotonicity of the ob-
jective functions −λmin(α) and W (α) with
respect to α, we can generate a set of Pareto
optimal solutions by enumeration of ver-
tices of the convex feasible region of α de-
fined by (24) [11,12].

A Pareto optimal solution is character-
ized as an optimal solution of the weighted
sum of the objective functions. Let cλ (> 0)
and cW (> 0) denote the weight coefficients
for the two objective functions −λmin(α)
and W (α), respectively. The set of the ac-
tive constraints at a vertex of the feasible
region is denoted by A. If there exists a set
of Lagrange multipliers β1, . . . , β2m satisfy-
ing the following conditions, then the ver-
tex represents a Pareto optimal solution:

− cλ ∂λmin

∂αi

+ cW ∂W

∂αi

(31a)

+
∑

j∈A
βj

∂Hj

∂αi

= 0, (i = 1, . . . , q)

βj ≥ 0 for (j ∈ A), (31b)

βj = 0 for (j /∈ A) (31c)

The algorithm of force design by vertex
enumeration of the feasible region is sum-
marized as follows:

Step 1 Specify the geometry, topology
and material property of the structure.
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Step 2 Construct the equilibrium ma-
trix D from (7), and compute the self-
equilibrium modes g1, . . . ,gq by the
singular value decomposition (11).

Step 3 Assign the bound constraints (24)
for the axial forces.

Step 4 Generate the list of vertices of the
feasible region of the coefficients α.

Step 5 Assign the support conditions and
the external loads.

Step 6 Compute the tangent stiffness ma-
trix K from (17) at each vertex.

Step 6 Compute the lowest eigenvalue
λmin from (19) and the compliance W
from (21) and (22).

Step 7 Compute the sensitivity coeffi-
cients of λmin and W with respect to αi.

Step 8 Evaluate the property of the vertex
based on the optimality conditions.

4 Sensitivity analysis

In this section, formulations of sensitiv-
ity analysis are presented to compute the
gradients of the static responses and the
eigenvalues of the tangent stiffness matrix.

Differentiation of (19) and (20) with re-
spect to the design variable αi leads to

∂K

∂αi

Φr + K
∂Φr

∂αi

=
∂λr

∂αi

+ λr
∂Φr

∂αi

(32)

2Φ>
r

∂Φr

∂αi

= 0 (33)

By premultiplying Φ>
r to both sides of (32)

and using (19) and (20), we obtain

∂λr

∂αi

= Φ>
r

∂K

∂αi

Φr (34)

Incorporation of (17) into (34) leads to

∂λr

∂αi

= Φ>
r

∂(KE + KG)

∂αi

Φr (35)

Since KE is independent of αi, we obtain

∂λr

∂αi

= Φ>
r

∂KG

∂αi

Φr (36)

From (13), (16) and (18), the following re-
lation is derived:

∂KG

∂αi

= C> diag(L−1gi)C (37)

From (21) and (22), the external work W
depends on α explicitly through K(α) and
implicitly through U(α). Therefore, W is
reformulated as

W = U>(α)P

= U>(α)K(α)U(α)

= 2
(
U>(α)P− 1

2
U>(α)K(α)U(α)

)

(38)

and the sensitivity coefficient of W with
respect to αi is obtained as

∂W

∂αi

= −U>∂K

∂αi

U + 2(P−KU)>
∂U

∂αi

= −U>∂K

∂αi

U

= −U>∂KG

∂αi

U

(39)

where (17) and (21) have been used.
Since KG is a linear function of α,

∂KG/∂αi is a constant matrix as seen in
(37). Therefore, if Φmin corresponding to
λmin and U are almost constant in the feasi-
ble region, then λmin and W are monotonic
functions of α.

5 Numerical examples

The tensegrity grid as shown in Fig. 1
is used as the example structure [13]. The
structure is constructed by consecutively
assembling the unit cell as shown in Fig. 2
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Fig. 1. Tensegrity grid constructed by assembling the unit cell shown in Fig. 2 in x- and
y-directions. This example structure consists of three rows and two columns of struts.

Fig. 2. Unit cell for the tensegrity grid.

in x- and y-directions. The thick and thin
lines in the figures are struts and cables
(or bars), respectively. Note that the mem-
bers in thin lines that are connected to the
boundary nodes do not carry any prestress
at the self-equilibrium state; these mem-
bers are called bars and assumed to have
stiffness in both of compression and tension
in the structural analysis.

Let r and c denote the numbers of rows
(parallel to x-axis) and columns (parallel to
y-axis) of the struts, respectively; i.e., there
exist r + 1 struts in each column and c + 1
struts in each row. Therefore, the structure
has 2rc+ r + c struts and n = 2(rc+ r + c)
nodes, and the total number of members

is m = 7rc + 5r + 5c − 4. The rank defi-
ciency of the linear stiffness matrix KE af-
ter constraining the six rigid-body motions
is equal to 1; i.e., this structures has only
one infinitesimal mechanism.

The structure in Fig. 1 studied in the nu-
merical examples has three and four struts
in x- and y-directions, respectively; i.e., r =
3 and c = 2. Hence, there are m = 63 mem-
bers and n = 22 nodes in total. The x-
and y-coordinates (mm) of the nodes are
shown in the plan view of the structure in
Fig. 1(b), and the height of the grid is 100
mm.

The elastic modulus of all members is
E = 20× 103 N/mm2. The cross-sectional
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Fig. 3. Variation of λmin with respect to α = (α1, . . . , α4)> in the feasible region.

areas are 50 mm2 for struts and bars, and
5 mm2 for cables. In the following, the units
of length and force are mm and N, respec-
tively.

The lower bound sL and the upper bound
sU for the axial forces of the struts and ca-
bles, respectively, are−1000 N and 1000 N;
equivalently, the maximum absolute values
of the strains are 0.1% for the struts and
1% for the cables.

The rank of the equilibrium matrix D

is r = 59. Therefore, the structure has
four (q = 63 − 59 = 4) force modes at
the self-equilibrium state, which are de-
noted by g1, . . . ,g4 with the coefficients
α = (α1, . . . , α4)

>.

We use a software cdd+ [14] for enumer-
ation of vertices of the feasible region de-
fined by linear equality and inequality con-
straints. In this example, there exist 74 ver-
tices of the feasible region for the coeffi-
cients α of the member forces. The min-
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Fig. 4. Minimum eigenvalue λmin and compliance W at the vertices of the feasible region found
by cdd+.

Table 1
Minimum eigenvalue λmin and compliance W at the selected vertices of the feasible region.
Vertex v29 v45 v47 v52 v53 v57 v71 v72 v73
λmin 0.56764 0.56724 0.51779 0.77422 0.75590 0.39945 0.72640 0.56684 0.72634
W 5.9216 5.9154 5.9184 5.9087 5.9085 5.9198 5.9084 5.9127 5.9084

58.373 0.9183 3.7167 0.7372 −2.4937 1.8461 3.2041 −0.0025 3.2037
−35.233 −0.9449 −1.3498 0.7409 0.4044 5.6979 1.2345 −2.8025 3.1873

βλ −0.4622 −5.2854 −0.9318 1.0550 2.0705 −25990 1.9538 1.3107 −2.0713
−0.4622 2.6552 −0.9318 1.0591 3.5252 4591.7 −3.0242 1.3168 −0.9517
2.634 −1.3192 4591.7

−163340 33.549 10.815 18.012 12.808 20.644 5.5460 −25.766 5.5440
94304 9.3980 −19.175 17.789 19.733 −20.103 18.674 −26.954 29.893

βW −26.280 −67.449 −13.808 −5.5720 10.976 −105410 11.225 19.884 −11.900
−26.280 −15.229 −13.808 8.3140 −4, 5100 1.8620 37.490 37.889 15.655
17.916 11.998 18620

imum eigenvalue λmin of K is positive at
all the vertices after constraining the rigid-
body motions. The variations of λmin in fea-
sible region are illustrated in Fig. 3, where
one of the variables α1, . . . , α4 is varied in
each figure starting from the center of the
feasible region.

The value of λmin at the center is 0.04812,
and the quadratic forms Φ>

minKEΦmin and
Φ>

minKGΦmin are 0.00163 and 0.64649, re-

spectively; i.e., contribution of the linear
stiffness is much smaller than that of the
geometrical stiffness, because Φmin is close
to the direction of the infinitesimal mech-
anism of the structure. This indicates the
great influence of the prestress on stiffness
of the structure, and shows the importance
of force design for a structure with de-
sired stiffness. Furthermore, as is seen from
Fig. 3, λmin is an approximately linear and
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Table 2
Active constraints for forces at vertices v52, v53 and v71; ‘+’: si = 1000 N, ‘−’: si = −1000 N,
0: si = 0.
Member (node 1:node 2) 7:8 8:9 12:13 20:21 3:16 7:13 8:17 9:21

v52 − − + +
v53 − − − − +
v71 − − − − + +

Fig. 5. Member forces at v71; red: compression, blue: tension.

monotonic function of α.

The compliance W under static loads
is next investigated. The vertical loads 10
N are given asymmetrically in the nega-
tive direction of z-axis at nodes 3, 12 and
20 indicated in Fig. 1(a). To exclude the
rigid-body motions of the structure, the
displacements are constrained at nodes 11
and 19 in x-direction, at nodes 6 and 11
in y-direction, and at nodes 6, 10, 11, 18
and 19 in z-direction. Note again that the
loads are assumed to be sufficiently small
to investigate the stiffness against small
disturbance by linear analysis. It has been
confirmed that the compliance is also a
monotonic function of α in the feasible
region.

The values of λmin and W at the selected
vertices of the feasible region are listed in
Table 1 and plotted in Fig. 4. The coeffi-
cients βλ

j and βW
j for expanding the gra-

dients of λmin and W , respectively, by the
gradients of the active constraints as in (28)
and (29) are also listed. Note that the active
constraints are degenerate (redundant) due
to symmetry, if the number of active con-
straints is greater than four. For example,
the vertex v29 has five active constraints,
and the third and fourth constraints are de-
generate. As can be seen from Table 1 and
Fig. 4, −λmin is minimized (λmin is maxi-
mized) at vertex v52, and W is minimized
at vertex v71. They are the optimal solu-
tions for the two single objective functions,
respectively.

It is confirmed in Table 1 that all the
coefficients βλ

j and βW
j are positive at v52

and v71, respectively. Moreover, the vertex
v53 is a Pareto optimal solution. This can
be verified from Table 1 that the condition
βj ≥ 0 in (31) for the active constraints is
satisfied for 1.9570 ≤ cW/cλ ≤ 7.8164. It is
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also seen from Fig. 4 that there is no vertex
that improves the two objectives simulta-
neously from v53.

The active force constraints are listed in
Table 2 for vertices v52, v53 and v71, where
each member is indicated by the node num-
bers at both ends shown in Fig. 1. ‘+’ de-
notes a cable with tensile force equal to the
upper bound, and ‘−’ denotes a strut with
compressive force equal to the lower bound.
The member forces at v71 are plotted in
Fig. 5, where the width of each member
is proportional to the absolute value of its
force, and the red and blue members are
in compressive and tensile states, respec-
tively.

6 Conclusions.

A force design method has been pre-
sented for tensegrity structures by enu-
meration of the vertices of feasible region
of the prestresses in self-equilibrium state.
Constraints are given for member forces
so that the unilateral properties of the
stresses in cables and struts are satisfied.

A multiobjective optimization problem
is formulated to simultaneously maximize
the lowest eigenvalue of the tangent stiff-
ness matrix and minimize the compliance
(external work) against a specified set of
external loads. The conditions for Pareto
optimal solutions have been explicitly de-
rived by using the gradients of the objective
functions and the constraints.

In the numerical examples, the mono-
tonicity of the objective functions is inves-
tigated for a tensegrity structure that has
only one infinitesimal mechanism. Pareto
optimal solutions have been found by enu-
merating the vertices of the feasible region.

Although a simple case with only two
objective functions has been investigated
in this paper, the proposed method is very

effective for the case where many perfor-
mance measures satisfying monotonicity
property are to be investigated in the force
design of tensegrity structures.
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