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Abstract

A numerical method is presented for stability analysis of cable–bar structures. An optimization
problem is formulated to find the minimum value of the incremental total potential energy
that depends on the direction of the incremental displacements. The penalty method with slack
variables is used for representing the discontinuity in member stiffness. The tangent stiffness
matrix is shifted to be positive definite so that the minimum of its quadratic form is found by
the inverse-power method. It is shown in the numerical examples that the minimum value of
the incremental potential energy and the associated displacement increments can be found with
good accuracy in about 10 steps of iteration.
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1 Introduction

Stability analysis of elastic structures is a rather established field of research, and there
have been numerous number of papers on numerical techniques for detecting instability
of finite dimensional structures (e.g., Riks (1998); Wriggers and Simo (1990)).

Based on Liapunov’s direct method (Salle and Lefscetz, 1961; Pignataro et al., 1991),
stability of an elastic conservative system is defined by isolated local minimum of the
total potential energy. For cases in which the potential energy is twice differentiable with
respect to the displacements, the stability of a given equilibrium state in finite defor-
mation is defined by the positive definiteness of the tangent stiffness matrix (stability
matrix) (Thompson and Hunt, 1973).

A cable–bar structure consists of the cable members that can transmit tensile forces only
and the bars that can transmit both compressive and tensile forces. A bar that transmits
compressive force only is called a strut. A structure that consists of cables and struts is
called a tensegrity structure. Since the cable member has no flexural stiffness, tensegrity
structures are usually stabilized by introducing prestresses to maintain self-equilibrium
state. In this paper, we assume that a bar can transmit both tensile and compressive
forces.

Inability of the cable to transmit compressive force leads to discontinuity of the tangent
stiffness matrix (Panagiotopoulos, 1976). The authors investigated the minimum comple-
mentary principle for cable networks undergoing large deformation (Kanno and Ohsaki,
2003). The first author presented stability conditions for cable-bar structures (Ohsaki and
Zhang, 2006; Zhang and Ohsaki, 2007).

Discontinuity in tangent stiffness matrix is also observed in contact problems and elasto-
plastic material models. For an elastoplastic structure, the uniqueness of equilibrium state
is defined by the positive definiteness of the inloading tangent stiffness matrix (Hill, 1958),
while its stability is defined based on the directional stability (Bigoni, 2000). For frictional
contact problem with a non-associated friction law, for which a potential energy cannot
be defined, a method has been developed for stability analysis also based on directional
stability (Costa et al., 2004).

Choong and Hangai (1993) presented an iterative approach for bifurcation analysis of
beams and arches with unilateral supports. Tschöpe et al. (2003) developed an iterative
approach to direct computation of the critical point involving frictionless contact condi-
tions. Villagio (1979) formulated the buckling analysis problem of a beam with unilateral
supports by minimization of the Rayleigh quotient, but did not present a numerical algo-
rithm.

In this paper, we present a numerical method for stability analysis of cable–bar struc-
tures. The total potential energy is a smooth function of the nodal displacements, but
is not twice differentiable; i.e., the tangent stiffness matrix depends on the direction of
the displacement increment. However, the total potential energy satisfies the assumption
for the stability theorem by Liapunov, and the stability of the given equilibrium state is
defined by the isolated local minimum of the total potential energy.

This paper is organized as follows. Stability conditions are briefly summarized in Sec-
tion 2. In Section 3, an optimization problem is formulated to find the minimum of the
quadratic form of the tangent stiffness matrix that depends on the direction of the incre-
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mental displacements. A slack variable is used for representing the discontinuity in member
stiffness. In Section 4, the tangent stiffness matrix is shifted to be positive definite and
the constraints are incorporated by penalty approach so that its minimum incremental
potential energy is found by the inverse-power method. This way, the difficulty due to
nonconvexity of the potential energy at an unstable equilibrium state is successfully over-
come. The conditions satisfied by the optimal solution and the convergence property are
investigated in Section 5. It is shown in the numerical examples in Section 6 that the
minimum incremental potential energy and the associated displacement increments can
be found with good accuracy in about 10 steps of iteration.

2 Stability conditions

Consider a cable–bar structure consisting of cable members that transmit tensile forces
only, and the bars that can transmit both compressive and tensile forces. We use the
assumption of small strain, and the deformation before reaching the equilibrium state for
which the stability is investigated is assumed to be small.

Let u ∈ Rn denote an admissible incremental displacement vector satisfying the kine-
matic boundary conditions, where n is the number of degrees of freedom of displacements.
We assume, for simplicity, that all the boundary conditions are homogeneous, and the com-
ponents corresponding to fixed degree-of-freedom have been removed before constructing
u; i.e., any vector u ∈ Rn is kinematically admissible. The vector of incremental member
extensions is denoted by d ∈ Rs, where s is the number of members including cables and
bars. Note that the slack cables are excluded a priori, because they have no effect on the
structural properties under infinitesimal incremental displacements. The relation between
u and d is defined by using the constant matrix H ∈ Rs×n as

d = Hu (1)

In the following, all vectors are column vectors and the component is indicated by a
subscript.

Let ki denote the extensional stiffness of the ith member. If the ith member is a bar,
it has a linear force-extension relation with the stiffness ki. If the ith member is a cable,
ki is the stiffness in tensile state. The set of indices of the cables that has zero extension
at the equilibrium state is denoted by I. The ith component of d is denoted by di. The
relation between di and the incremental force qi is written as

qi =

{
0 for i ∈ I and di < 0

diki for other cases
(2)

where the axial force and extension are defined to be positive in tensile state.
The stability of a static equilibrium state is defined with the use of dynamical system

based on Liapunov’s direct method (Salle and Lefscetz, 1961; Pignataro et al., 1991). Let
u̇ denote the velocity vector and define the state variable vector x by x = (u>, u̇>)>. The
total energy R(x), which is the sum of the potential energy and the kinetic energy, can
be chosen as the Liapunov function satisfying
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C1: R(x) and its first derivative are continuous functions of x.
C2: R(0) = 0.
C3: R(0) is an isolated minimum of R(x).
For a moderately dumped system with positive definite damping matrix, the origin x = 0
is an isolated minimum of the kinetic energy, and the equilibrium state corresponding to
x = 0 is stable if the incremental total potential energy Π(u) measured from the current
equilibrium state attains an isolated minimum at u = 0.

The only one difference between a conventional conservative system and the cable–bar
structure is that the constitutive relation is given as (2) for the latter. Although the
stiffness of member i depends on the sign of di, the strain energy qidi/2 and its derivative
with respect to di are continuous functions of di. Therefore, the condition C1 is satisfied,
and the current equilibrium state u = 0 is stable if Π(u) attains an isolated local minimum
at u = 0.

Since the first derivative of Π(u) with respect to u vanishes from the equilibrium con-
ditions, the stability is defined by the quadratic term of Π(u). Suppose that the direction
of the incremental displacements u is given. The tangent stiffness matrix consistent to (2)
is denoted by K̂(u) ∈ Rn×n. The twice of the quadratic term of Π(u) is written as

V̂ (u) = u>K̂(u)u (3)

The equilibrium state is stable if V̂ (u) = u>K̂(u)u > 0 for any admissible u. On the
contrary, the structure is unstable if there exists an admissible u satisfying u>K̂(u)u < 0.

3 Minimization of incremental potential energy

Stability is investigated by minimizing V̂ (u) with respect to u. Consider the following
optimization problem:

P1 : minimize V̂ (u) = u>K̂(u)u (4a)

subject to N(u) = 1 (4b)

where the constraint (4b) is given for preventing convergence to the trivial solution u = 0
for the case where V̂ (u) is positive for any u (u 6= 0). In the following, we use the quadratic
constraint as N(u) = u>u = 1.

If the optimal value of P1 is positive, then the equilibrium state is stable. However, the
constraint u>u = 1 is not convex, and the objective function is nonconvex if the equilib-
rium state is unstable. Therefore, the global optimality of the solution of P1 obtained by
a nonlinear programming cannot be guaranteed.

The incremental extension di of the ith member is decomposed using the slack variables
d+

i and d−i as

di = d+
i − d−i , d+ ≥ 0, d−i ≥ 0, d+

i d−i = 0, (i = 1, . . . , s) (5)

Since ki > 0, the complementarity condition d+
i d−i = 0 with d+ ≥ 0 in (5) is automatically

satisfied by minimizing the quadratic term V (u,d+) of the incremental potential energy,
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which is defined as

V (u,d+) =
∑

i∈I
(d+

i )2ki + u>K+u (6)

where K+ ∈ Rn×n is the tangent stiffness matrix consisting of the cables in tensile state
and the bars. Therefore, (5) is written as

d+
i − di ≥ 0, (i = 1, . . . , s) (7)

The first term in (6) corresponds to the strain energy of the cables with zero extension.
The second term is the strain energy of the bars and the cables in tensile state. The
equilibrium state is stable if V (u,d+) is positive for any admissible set of u and d+

satisfying (1) and (5).
Let h>i denote the ith row of H. Then from (1), (7) is rewritten as

eid+ − hiu ≥ 0, (i = 1, . . . , s) (8)

where the elements in ei ∈ Rm are 0 except 1 in the ith element.
Let m denote the number of members in I which are numbered for simplicity as 1, . . . , m.

A matrix A ∈ R(n+m)×(n+m) and a vector t ∈ Rn+m are defined as

A =

(
K+ O
O diag(k1, . . . , km)

)
(9)

t = (u1, . . . , un, d
+
1 , . . . , d+

m)> (10)

where diag(k1, . . . , km) is a diagonal matrix.
Define gi as

gi = (h>i ,−ei>)> (11)

Hence, (8) is written as

g>i t ≤ 0, (i = 1, . . . , s) (12)

Then P1 is then rewritten as

P2 : minimize V (t) = t>At (13a)

subject to g>i t ≤ 0, (i = 1, . . . , m) (13b)

u(t)>u(t) = 1 (13c)

The structure is stable if V (t) is positive at the optimal solution of P2. Note again that
the constraint (13c) is given to prevent obtaining the degenerate solution t = 0 for the
case where the minimum of V (t) for t 6= 0 is positive. Since u 6= 0 for d 6= 0, we use the
quadratic constraint t>t = 1 instead of (13c). Then the sign of the optimal value of P2
coincides with that of P3 defined as

P3 : minimize V (t) = t>At (14a)

subject to g>i t ≤ 0, (i = 1, . . . , m) (14b)

t>t = 1 (14c)
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The ith eigenvalue of the symmetric matrix A is denoted by λA
i (λA

1 ≤ λA
2 ≤ · · · ≤

λA
n+m). If A is positive definite, then the equilibrium state is stable, and it is easily

confirmed that the optimal value of P3 is positive. Therefore, in the following, we consider
the case where A is not positive definite; i.e., λA

1 ≤ 0.
Let I ∈ R(n+m)×(n+m) denote an identity matrix, and for a sufficiently large λ∗ (> |λA

1 |),
define A∗ by

A∗ = A + λ∗I (15)

Then the eigenvalues of A∗ ∈ R(n+m)×(n+m) satisfy λA∗
i = λA

i + λ∗ > 0 (i = 1, . . . , m + n),
and A and A∗ share the same set of eigenvectors.

Accordingly, the structure is stable if the optimal value of the following problem P4 is
greater than λ∗.

P4 : minimize V ∗(t) = t>A∗t (16a)

subject to g>i t ≤ 0, (i = 1, . . . , m) (16b)

t>t = 1 (16c)

4 Optimization algorithm by using penalty approach

In order to solve P4 by the inverse-power method (Atkinson, 1989), the objective func-
tion is converted to Ṽ (t) as follows by incorporating the constraint (16b) as the penalty
term:

Ṽ (t) = t>A∗t +
m∑

i=1

µi(g
>
i t)2 (17)

where µi > 0 is specified as follows using a positive penalty parameter µ:

µi = µ for g>i t > 0

µi = 0 for g>i t ≤ 0
(18)

Define a matrix C ∈ R(n+m)×(n+m) as

C = A∗ + P (19)

where

P =
m∑

i=1

µigig
>
i (20)

Note that C is positive definite by the definition of A∗ and P. Hence, the stability of the
structure is detected by solving the following problem:

P5 : minimize Ṽ (t) = t>Ct (21a)

subject to t>t = 1 (21b)

If C is constant, P5 is a problem of finding the minimum eigenvalue of a positive definite
matrix. However, C depends on t through P, but we can iteratively update C and find
the minimum objective value of P5 by the inverse-power method as
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Step 1 Specify the constants λ∗ and µ.
Step 2 Assign initial value of t.
Step 3 Normalize t by t>t = 1, and compute Ṽ (t).
Step 4 Set µi = µ for g>i t > 0; otherwise set µi = 0.
Step 5 Compute C.
Step 6 Solve the linear equations Cy = t for y and let t ← y.
Step 7 Go to Step 3 if not converged.

5 Optimality conditions and convergence properties

The property of the optimal solution can be investigated by the optimality conditions
of P5. Consider first, for comparison purpose, an elastic structure without discontinuity
in tangent stiffness matrix denoted by K. Then the stability of the equilibrium state is
detected by minimizing u>Ku under constraint u>u = 1. The Lagrangian for this problem
is written as

L0(u, η) = u>Ku + η(1− u>u) (22)

where η is the Lagrange multiplier. The stationary condition of L0 with respect to u gives
the eigenvalue problem

Ku = ηu (23)

for which η is regarded as the eigenvalue.

The Lagrangian for P5 is given as

L(t, η) = t>Ct + η(1− t>t) (24)

Although µi in C is defined iteratively depending on the constraint activity in Step 4 of
the inverse-power method, it is assumed here that the algorithm has been converged and
the active constraints have been determined to fix the penalty parameters.

From the stationary conditions of L with (15), (19) and (20), we obtain

K+u +
m∑

i=1

µihi(h
>
i u− d+

i ) + λ∗u = ηu (25)

kid
+
i − µi(h

>
i u− d+

i ) + λ∗d+
i = ηd+

i , (i = 1, . . . , m) (26)

Note that the constraint h>i u − d+
i ≤ 0 is not satisfied in exact equality in this penalty

approach, and µi(h
>
i u−d+

i ) in the second terms in (25) and (26) corresponds to the axial
force due to elongation of a member in I. We can also see from (23) and (25) that the
eigenvalue is increased by λ∗ due to the existence of the term λ∗u in the left-hand-side of
(25).

Next we investigate the convergence properties with respect to the penalty parameter µ.
The following equation is obtained from the optimality conditions of the original problem
P4:

A∗t0 − η0t0 +
1

2

∑

j∈J
µ0

jgj = 0 (27)
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Table 1
Solutions of Ex1 for various values of penalty parameter.

µ x1 x2 x3 V ∆ δ

1 1.8970× 10−7 0.52573 0.85065 1.2764 1.3131× 10−1 3.2492× 10−1

10 7.6515× 10−7 0.68923 0.72455 1.4750 2.4979× 10−2 3.5322× 10−2

100 8.8476× 10−7 0.70534 0.70887 1.4975 2.5000× 10−3 3.5355× 10−3

1000 8.9769× 10−7 0.70693 0.70728 1.4998 2.5017× 10−4 3.5355× 10−3

where t0 is the optimal value of t, η0 and µ0
j are the Lagrange multipliers, and J ⊆ I is

the set of indices of the active constraints at the optimal solution.
On the other hand, the solution t of P5 obtained by the inverse-power method satisfies

[
A∗ + µ

∑

j∈J
gjg

>
j

]
t = λt (28)

where µ is the specified penalty parameter, and λ is regarded as the eigenvalue of the
matrix [A∗ + µ

∑
j∈J gjg

>
j ].

From (27) and (28), we obtain

A∗(t0 − t) + (λt− η0t0) +
∑

j∈J
(µ0

j/2− µg>j t)gj = 0 (29)

Therefore, if g>j t converges to µ0
i /(2µ) as µ is increased, then t converges to t0 with

λ → η0; i.e., if the error g>j t of an active constraint is inversely proportional to µ, then
the error can be reduced to a small value by increasing µ. Note that too large value of µ
results in illconditioning of the matrix C.

6 Numerical examples

The convergence property of the algorithm proposed in Section 3 is first investigated
by a small test problem which can be solved analytically. Stability of a small cable–bar
structure is next investigated to confirm convergence to the optimal solution. Finally, a
moderately large cable–bar structure is solved to ensure the practical applicability.

6.1 Small test problem

Consider first a small numerical example as

Ex1 : minimize V (x) = 3x2
1 + 2x2

2 + x2
3 (30a)

subject to x2 ≥ x3 (30b)

x>x = 1 (30c)

The optimal solution is easily found as xopt = (0, 1/
√

2, 1/
√

2)> with V (xopt) = 1.5, where
the inequality constraint (30b) is active at the optimal solution.

The errors ∆ and δ of the solution and the active constraint are defined as
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Fig. 1. Histories of the errors ∆ and δ for Ex1; solid line: µ = 1, dashed line: µ = 10, dotted line:
µ = 100.

∆ =

√√√√
3∑

i=1

(xi − xopt
i )2 (31a)

δ = |x2 − x3| (31b)

The results of 20 iterations from the initial solution x = (0.6, 0.8, 1.0)> with different
values of penalty parameter are shown in Table 1. As is seen, the results strongly depend
on the value of the penalty parameter. The histories of ∆ and δ for µ = 1, 10 and
100 are plotted in Figs. 1(a) and (b). For µ = 100, the solution converges rapidly to a
good approximate optimal solution with ∆ = 2.5000× 10−3. The algorithm converged to
the same value ∆ = 2.5000 × 10−3 in 20 steps for µ = 100 from ten different randomly
generated initial solutions. Therefore, the algorithm is robust in the sense that the solution
does not depend on the initial value.

The values of ∆ and δ at the 20th step are 2.5000×10−4 and 3.5355×10−4, respectively,
for µ = 1000. Therefore, the errors are inversely proportional to the penalty parameter
and converge to µ∆ = 0.25000, µδ = 0.35355. The solution is not sensitive to µ if it is
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Fig. 2. Cable–bar Model 1.

moderately large; i.e., no trial-and-error process is needed for tuning the penalty param-
eter.

6.2 Cable–bar Model 1

Consider next a cable–bar Model 1 as shown in Fig. 2, where the horizontal bars are
supported by the vertical cables. The bars and the cables in tensile state are modeled by
the truss element. Let H = W = 1, and Young’s modulus is 1, for simplicity. The cross-
sectional areas are 100.0 for the bars and 1.0 for the cables. A horizontal load p = 10.0 is
applied at support 4. All the cables have zero extension at the equilibrium state and are
included in I in (2).

The minimum eigenvalue of A is λA
1 = −30.0, and the maximum eigenvalue of the

penalty matrix P is 3.0. It is known in the inverse-power method that a large ratio of
the second eigenvalue to the lowest leads to rapid convergence to the lowest eigenvalue.
Therefore, we define λ∗ to be equal to 1.01|λA

1 |.
Let ui (i = 2, 3) denote the vertical incremental displacement of node i. The results of

20 iterations from a randomly generated initial solution with different values of penalty
parameter are shown in Table 2. As is seen, the convergent solutions strongly depend on
the value of the penalty parameter.

The optimal values uopt
i of ui are (uopt

2 , uopt
3 ) = (−0.5, 0.5) and the remaining displace-

ment components are 0; i.e., the incremental displacements are antisymmetric with respect
to the y-axis. The errors ∆ and δ of the solution and the active constraints are defined as

∆ =

√√√√
n∑

i=1

(ui − uopt
i )2 (32a)

δ =
√∑

j∈J
(hiu− d+

i )2 (32b)

The histories of ∆ and δ for µ = 100, 500 and 1000 are plotted in Fig. 3. For µ = 10000, the

10



0

0.1

0.2

0.3

0.4

0 5 10 15 20

E
rr

o
r 

o
f 

s
o

lu
ti

o
n

Iteration

(a) History of ∆.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

E
rr

o
r 

o
f 

c
o
n
s
tr

a
in

ts

Iteration

(b) History of δ.

Fig. 3. History of the error for Model 1; solid line: µ = 100, dashed line: µ = 500, dotted line:
µ = 1000.

solution converges rapidly to a good approximate optimal solution with ∆ = 5.4781×10−4.
The errors are inversely proportional to the penalty parameter also for this case, and
converge to µ∆ = 5.4781, µδ = 10.960. Therefore, the solution is not sensitive to µ if
it is moderately large; i.e., no trial-and-error process is needed for tuning the penalty
parameter. The value of µ has been increased as µ = 106, 107, . . . . The error decreases
for µ ≤ 1012 and increases as µ is further increased. The matrix C becomes singular at
µ = 1017. However, a solution with sufficiently small error can be obtained for a wide
range of µ.

The optimal value of V is 15.776, which is less than λ∗. Therefore, the equilibrium state
is unstable. If we assume the symmetric displacement increment (u2, u3) = (0.5, 0.5),
where the remaining components are 0, the value of V is 28.800, which confirms that the
displacement increment corresponding to the maximum decrease of the potential energy
is antisymmetric with respect to the y-axis.
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Table 2
Solutions of Model 1 for various values of penalty parameter.

µ u2 u3 V ∆ δ

100 −0.53693 0.53693 13.426 5.2226× 10−2 1.0863× 10−1

1000 −0.50386 0.50386 15.560 5.4585× 10−3 1.0959× 10−2

10000 −0.50039 0.50039 15.776 5.4781× 10−4 1.0960× 10−3

x

y

W W W

H

H

H

H

H

H

WWWW

p

p

p

p

p

Fig. 4. Cable–bar Model 2.

6.3 Cable–bar Model 2

Consider next a cable–bar model as shown in Fig. 4, where the horizontal bars are
supported by the vertical cables. Let H = W = 1, and Young’s modulus is 1, for simplicity.
The cross-sectional areas are 100.0 for the bars and 1.0 for the cables. A horizontal load p =
1.0 is applied at each roller support. All the cables have zero extension at the equilibrium
state and are included in I in (2).

The minimum eigenvalue of A is λA
1 = −3.8478. Since the ratio of the second eigenvalue

to the lowest of A should be large enough, we define λ∗ to be equal to 1.01|λA
1 | also for

this example.
The solution for µ = 106 is regarded as the optimal solution. The errors in (32) are

also used in this example. The histories of the errors ∆ and δ are plotted for µ = 10,
50 and 100 in Figs. 5(a) and (b). The solution converges rapidly to a good approximate
optimal solution with ∆ = 5.6088× 10−3 if we choose µ = 100. The optimal incremental
displacement for µ = 106 is plotted in Fig. 6.

Although µ∆ did not converge in this example due to numerical oscillation, the error
δ of constraints is inversely proportional to µ, and µδ converged to 1.3696. The optimal
value of V is 0.56180, which is less than λ∗. Therefore, the equilibrium state is unstable.
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Fig. 5. History of the error for Model 2; solid line: µ = 10, dashed line: µ = 50, dotted line:
µ = 100.

7 Conclusions

The stability analysis problem of elastic conservative systems with discontinuity in
extensional stiffness of a cable has been formulated as a minimization problem of convex
quadratic function under linear inequality constraints and a single quadratic equality
constraint. The problem is solved by an iterative algorithm based on the inverse-power
method for eigenvalue analysis. The conclusions obtained from this study are summarized
as follows:

(1) Instability of an equilibrium state of a cable–bar structure can be detected by solving
a minimization problem of the incremental total potential energy over the compati-
bility conditions.

(2) The non-convex incremental total potential energy for an unstable state can be con-
verted to a convex quadratic function by using a shifting operator. The discontinuity
in extensional stiffness of a cable can be incorporated as a convex penalty term using
the slack variables.

(3) The minimization problem of the convex quadratic function under linear inequality
constraints and a quadratic equality constraint can be solved by the inverse-power
method. This way, the difficulty due to nonconvexity of the potential energy at an
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Fig. 6. Incremental displacement corresponding to the minimum of the incremental potential
energy

for Model 2.

unstable equilibrium state has been successfully overcome.
(4) The error of the active constraint is inversely proportional to the penalty parameter.

Therefore, the error can be reduced to an arbitrary small value by increasing the
penalty parameter.

(5) The numerical examples show that the iterative process converges in about ten steps
irrespective of the size of the structure. Another advantage of the method is that the
solution converges to the exact value as the penalty parameter is increased. Therefore,
a moderate value of the penalty parameter can be assigned with a few trial steps.
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