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Abstract
Seismic design problem of a steel moment-resisting frame is formulated as a mul-
tiobjective programming problem. The total structural (material) volume and
the plastic dissipated energy at the collapse state against severe seismic motions
are considered as performance measures. Geometrically nonlinear inelastic time-
history analysis is carried out against recorded ground motions that are incre-
mentally scaled to reach the predefined collapse state. The frame members are
chosen from the lists of the available standard sections. Simulated Annealing
(SA) and Tabu Search (TS), which are categorized as single-point-search heuris-
tics, are applied to the multiobjective optimization problem. It is shown in the
numerical examples that the frames that collapse with uniform interstory drift
ratios against various levels of ground motions can be obtained as a set of Pareto
optimal solutions.

Keywords Seismic design; Multiobjective programming; Plastic dissipated en-
ergy; Steel frame; Simulated annealing; Tabu search

1 Introduction

In the framework of performance-based design of steel moment-resisting frames, several
performance states such as immediate occupancy and collapse prevention should be
investigated against seismic motions with specified levels. In this paper, we consider
the collapse state defined so that the roof displacement reaches the specified value [1,
2, 3]. In order to evaluate the loading capacity at collapse state of a steel frame, the
seismic excitation is usually modeled as equivalent static loads, for which the responses
are found by the incremental procedure called static pushover analysis. However, it is
preferable to evaluate the seismic responses by time-history analysis, if the dynamic
effects are to be fully incorporated.

The criteria for the seismic design are generally classified as
1This paper has appeared in: Earthquake Engng. Struct. Dyn., Vol. 36(11), pp. 1481–1495, 2007.
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• The story displacements and the local deformations such as the strains at the con-
nections should not exceed the given upper bound against equivalent static loads or
ground motions with specified level.

• The load level should be large enough at the predefined collapse state, and the
collapse mechanism should not consist of unfavorable local deformation.

In the approach based on the first criterion, which is a traditional code-based approach
of seismic design, we can find the safety margin of the structure in view of deformation
at the specified load level, but the margin of the load level to collapse is unknown [4].
On the contrary, in the approach based on the second criterion, which is a standard
approach of performance-based design, the ultimate load resisting capacity is eval-
uated and the local behavior at collapse is investigated. Several other performance
states such as immediate occupancy are to be investigated for evaluating the structural
performances against moderately small earthquakes [5].

In this paper, we adopt the second criterion; i.e., the level of the ground motion
leading to the collapse state of a moment-resisting frame is evaluated by an incremental
dynamic analysis. In the inelastic design of frames, the collapse mechanism with widely
distributed plastic hinges at beam ends are preferred. Such a design can be obtained
by maximizing the dissipated energy for specified roof displacement at collapse state.
Another importance in consideration of the dissipated energy is that the response of
the structures can be approximately evaluated by the balance of input and dissipated
energies [6]. On the other hand, the amount of the energy to be dissipated under
specified deformation is strongly related to the total structural (material) volume.
Hence, the structural volume controls the level of seismic motion that leads to the
collapse state. Therefore, a design with favorable collapse mechanism with uniform
interstory drift ratios can be obtained by simultaneously minimizing the total volume
and maximizing the dissipated energy.

Since the structural performances need to be maximized under various design re-
quirements, the seismic design problem is naturally formulated as an optimization
problem [4, 7, 8]. If the design variables such as the cross-sectional areas of the mem-
bers are continuous variables, the optimization problem can be solved by a gradient-
based nonlinear programming approach [9]. However, if the cross-sections of the beams
and columns of the steel frames are to be chosen from a list or a catalog of the available
standard sections [10], the design problem turns out to be a combinatorial optimization
problem, for which the global optimal solution is very difficult to obtain.

Recently, owing to the rapid development of computer hardware and software tech-
nologies, we can carry out structural analysis many times to obtain optimal solutions.
Furthermore, in the practical design process, it may be enough to obtain an approx-
imate optimal design, i.e., the global optimal design need not be obtained. Heuristic
approaches (or heuristics for simplicity) have been developed to obtain approximate
optimal solutions within reasonable computational cost, although there is no theoreti-
cal proof of convergence [11]. The most popular approach is the genetic algorithm [12],
which can be categorized as a multipoint search or population-based method that has
many solutions at each iterative step called generation. Since computational cost for
evaluating the objective and/or constraint functions at each step is relatively large for
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structural optimization problems compared with that for mathematically defined toy
problems, a multipoint strategy may not be appropriate especially for optimization of
a structure with large number of degrees of freedom. Therefore, single-point-search
heuristics such as Simulated Annealing (SA) [13] and Tabu Search (or Taboo Search,
TS) [14] may have advantage over the multipoint strategies.

In addition to maximizing the energy dissipation capacity, it is also important to
reduce the structural volume that approximately represents the cost for the steel.
Therefore, in this paper, the design problem is formulated as a MultiObjective Pro-
gramming (MOP) problem [15, 16]. Pareto optimal solutions are generated for a plane
frame by improved multiobjective SA and TS. The responses at the collapse state un-
der seismic motions are computed by time-history analysis considering geometrical
and material nonlinearities, where the peak ground velocities of the recorded motions
are incrementally scaled to the level leading to the collapse state. The computational
performances of the methods and the characteristics of the solutions are discussed by
using a 5-story 4-span plane frame.

2 Evaluation of seismic performance

It is important in the seismic design of moment-resisting frames that the local story
mechanism should be avoided to ensure the required energy dissipation capacity before
reaching the collapse state. Therefore, if the collapse state is defined by deformation
level such as the roof displacement, the plastic dissipated energy Ep is to be maximized
in the same manner as the optimization of elastic structures for maximizing the strain
energy for given deformation. On the contrary, if Ep is defined as the dissipated
energy for the specified seismic level, then Ep should be minimized to obtain a design
with enough stiffness, which corresponds to the traditional optimization problem of
elastic structures for minimizing the strain energy for specified load level. However,
minimization of dissipated energy at collapse state leads to unfavorable story collapse
mechanism. Therefore, in this paper, we maximize the dissipated energy at the collapse
state to ensure the overall collapse mechanism.

The typical three recorded motions; (i) El Centro NS (1940), (ii) Hachinohe NS
(1968), and (iii) Taft EW (1952) are used after scaling by the Peak Ground Velocity
(PGV). Note that any site-dependent earthquake or design-spectrum-compatible mo-
tion can be used. The ground motions can also be scaled by Peak Ground Acceleration
(PGA). However, it is well known that the input energy is closely related to PGV,
rather than the instantaneous peak of acceleration. Therefore, we use PGV, because
the dissipated energy is considered as performance measure of the frame.

Let z denote a representative response quantity such as a story displacement, the
plastic dissipated energy, and so on. The maximum response zmax is defined as the
maximum absolute value among the responses zi, zii and ziii for the three motions (i),
(ii) and (iii).

The maximum responses are computed by time-history analysis considering both
geometrical and material nonlinearities modeled by a generalized plastic hinge consid-
ering the interaction between the bending moment and axial force in yield condition.
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Since the geometrically nonlinear inelastic responses are not proportional to the mag-
nitude of the input seismic motion, zmax is evaluated by an incremental dynamic
analysis [17].

Denote by H and dmax the total height of the frame and the maximum response
displacement at the roof level, respectively. The collapse state is defined by

dmax = βH (1)

where β is the specified average interstory drift ratio. The PGV of the ground motion
is increased until the collapse condition (1) is satisfied.

The PGV vmax
k of the kth-level ground motion is defined by

vmax
k = vmax

1 + ∆vmax(k − 1) (2)

where vmax
1 is the specified PGV for the smallest motion, and ∆vmax is the increment

of the PGV. A value corresponding to the kth-level motion is indicated by subscript
( )k.

The responses at collapse state are evaluated by the following incremental dynamic
analysis with interpolation:
Step 1: Set vmax

1 and ∆vmax, and initialize the ground motion level as k = 1.
Step 2: Calculate PGV by (2), and carry out time-history analysis to compute the

maximum roof displacement dmax
k and the maximum values z

(i)max
k of the preselected

responses z
(i)
k (i = 1, . . . , q), where q is the number of response quantities.

Step 3: If dmax
k < βH, let k ← k + 1 and go to Step 2. Otherwise, let s = k, and

linearly interpolated zmax at collapse between the values for s− 1 and s as

α=
βH − dmax

s−1

dmax
s − dmax

s−1

(3)

z(i)max=(1− α)z
(i)max
s−1 + αz(i)max

s , (i = 1, . . . , q) (4)

If the frame collapse under more than one seismic motions of the same level, the
smallest values of the dissipated energy should be taken as Emax

p to be maximized,
because it represents the worst-case scenario. However, Emax

p is defined, in a similar
manner as other response quantities, as the maximum value of Ep among the three
ground motions. The maximum value Emax

p at the final sth-level generally corresponds
to the ground motion leading to collapse state, and the frame does not collapse under
the other two seismic motions.

3 Seismic design problem

Suppose a list of the available standard sections is given for each member of a moment-
resisting steel frame. The cross-sectional property of the member i is defined by the
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cross-sectional area Ai, the second moment of inertia I i and the plastic section modulus
Zi

p, which are to be selected from the list M i as

M i = {(Ai
1, I

i
1, Z

i
p1), . . . , (A

i
ri
, I i

ri
, Z i

pri
)} (5)

where ri is the number of elements in the list.
The integer variable Ji defines the cross-section of the ith member. Let m denote

the number of members. If Ji = j (i = 1, . . . , m), the jth section (Ai
j, I

i
j, Z

i
pj) in M i is

assigned to the ith member. Hence, the mechanical property of the frame is defined
by the vector J = {Ji}, which is taken as the integer design variable vector.

The total structural volume to be minimized is denoted by V (J). Emax
p is also

chosen as the objective function to be maximized. Hence, the multiobjective structural
optimization problem is formulated as [18, 16]

MOP : minimize V (J) and − Emax
p (J) (6)

subject to Rmax(J) ≤ R̄max, (7)

Ji ∈ {1, . . . , ri}, (i = 1, 2, . . . , m) (8)

where Rmax denotes the maximum interstory drift ratio among all stories correspond-
ing to all the seismic motions for the initial PGV level vmax

1 . If Rmax exceeds the
moderately large upper bound R̄max, then the solution is simply rejected and the
incremental process is not carried out, because the frame will collapse prematurely
exhibiting unfavorable story mechanism. This way, the computational cost for perfor-
mance evaluation at each step of optimization is reduced.

Let F1(J) = V (J) and F2(J) = −Emax
p (J). For two feasible solutions J1 and J2

satisfying the constraints, if Fi(J
1) ≤ Fi(J

2) for i = 1, 2 and Fj(J
1) < Fj(J

2) for j = 1
or 2, then J2 is said to be dominated by J1. If there is no solution that dominates
J∗, then J∗ is called nondominated solution, noninferior solution, compromise solution
or Pareto optimal solution, which is called Pareto solutions, for simplicity, in the
remainder of this paper. The designer or the decision maker can select a Pareto
solution according to his/her preference or to another performance measure, because
a Pareto solution is a kind of a compromise solution which cannot improve all the
objective functions.

The problem MOP (6)–(8) is classified as a combinatorial multiobjective program-
ming problem, because it has integer variables and multiple objective functions. There
are several approaches for obtaining Pareto solutions of a combinatorial multiobjective
programming problem. However, a computationally efficient optimization approach is
desired for the current problem, because time-history analysis should be carried out
several times for evaluation of the objective functions for each intermediate solution
in optimization process.
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4 Heuristic approaches

The approaches to MOP are classified to priori-articulation of preference and posteriori-
articulation of preference [16]. In the priori-articulation approach, the objective func-
tions are combined or transformed to constraints to formulate a single-objective prob-
lem. This approach is suitable for the case where the designer’s preference is rather
fixed, because the single-objective problem should be modified and solved iteratively
if the solution is not preferred by the designer. In the posteriori-articulation approach,
on the other hand, a set of Pareto solutions is first generated, and the most preferred
solution is selected from the set by the designer. In this paper, we use the posteriori-
articulation approach because the preferable values of the total structural volume and
the dissipated energy are difficult to be assigned a priori.

Several heuristics have been developed for simultaneously generating a diverse set
of Pareto solutions. Among them, we use SA and TS, which are categorized as single-
point-search heuristics. SA has been shown to be very effective to the problems with
many local optimal solutions, because it allows a move to a non-improving solution.
Recently, SA has been extended to MOP [19], and we follow the basic framework in
[20]. The following options are introduced to improve the convergence property to the
Pareto solutions with enough diversity:
• In the process of generating neighborhood solutions, all the variables are modified,

and the magnitude of modification is governed by the normal distribution of prob-
ability.

• The neighborhood solution in the direction that has been rejected at the previous
step is automatically rejected to reduce the computational cost for function evalua-
tion.

• Local search is conducted several times at the same temperature level.
• A sharing function approach developed for genetic algorithms [21] is used to maintain

diversity of the Pareto solutions.
TS, which is originally developed for single objective problem [14], has also been

proven to be effective to MOP [22]. In TS, the best solution in the neighborhood is
selected as the next candidate, and a tabu list is used to prevent a local cyclic search
among small number of solutions. We modify the approach in [23] as
• The best solution in the candidate list is selected as the seed solution for the next

step; whereas it was randomly selected in the original algorithm.
• A sharing function and niche count are used for modification of the performance

function of a solution.

5 Numerical results

5.1 Analysis Model

Pareto solutions are found for a 5-story 4-span plane frame as shown in Fig. 1. Only
the mass of the slab is included in the story mass that does not depend on the sizes
of the columns and beams. The vertical load due to the story mass is applied at each
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Fig. 1: A 5 story 4 span planar frame model.

beam-to-column connection before conducting time-history analysis, where W1 = 245
kN and W2 = 343 kN. The following two kinds of groups are utilized for definition of
the design variables:
Member Group: Symmetrically located members have the same section.
List Group: The sections of the vertically aligned columns and the beams in the

same floor, respectively, are selected from the same lists.
The numbers 1, 2, 3, ... in Fig. 1 denote the Member Groups. The List Groups are
shown below the frame in Fig. 1; e.g., the members in Member Groups 1, 2 and 3 are
selected from the same list. Table 1 shows the size of the sections of the members in
each List Group. The standard sections in each list are shown in Tables 2 and 3 for
columns and beams, respectively.

The average drift ratio β for the definition (1) of the collapse state is 0.02. Note
that any larger value can be used for β, if necessary. The initial value of PGV in
(2) is vmax

1 = 0.5 m/s, which is equal to the level of the severe earthquake motion
for inelastic design that is traditionally used in Japan. The increment is given as
∆vmax = 0.05 m/s. The upper bound R̄max for the interstory drift ratio for vmax

1 = 0.5
m/s is 1/75, which is slightly larger than the upper bound 1/100 adopted in Japan to
allow more variety of designs in the framework of performance-based design. Time-
history analysis is carried out by CLAP [24], where the P -∆ effect is considered,
and the material nonlinearity is modeled by the generalized plastic hinge. Young’s
modulus is E = 205.8 kN/mm2, Poisson’s ratio is 0.3, and the yield stress is 265
kN/mm2. The bilinear stress-strain relation with kinematic hardening is used, where
the stiffness after yielding is 0.01E. The duration of each seismic motion is taken
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Fig. 2: Comparison of solutions obtained by original and proposed SAs with 3000
analyses. Dotted line: Pareto front by 30000 analyses.
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Fig. 3: All solutions generated by proposed SA with 3000 analysis. Dotted line: Pareto
front by 30000 analyses.

as 10 sec., because the maximum response occurs within 10 sec. for all of the three
motions. The stiffness-proportional damping is used, where the damping ratio for the
fundamental mode is 0.02.

5.2 Pareto Optimal Solutions in the Objective Space.

The Pareto solutions found by the proposed SA with sharing function is shown by ◦ in
Fig. 2 in the space of the objective functions. Three sets of optimization process with
1000 analyses from different initial solutions are combined to find Pareto solution with
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3000 analyses, because no significant improvement of solutions has been observed after
1000 analyses for each set. The Pareto front obtained by 30000 preliminary analyses,
which is regarded as an accurate set of the Pareto solutions, is plotted by the dotted
line. The × marks in Fig. 2 are the Pareto solutions found by three sets of 1000
analyses by the original SA without sharing function. Note that only the effect of
the use of sharing function is investigated, because it is the most effective option for
both of SA and TS. The range of the solutions and the number of Pareto solutions
obtained by the original and proposed SAs are shown in Table 4. The number of
Pareto solutions obtained by proposed SA that dominate those by the original SA, or
vice versa, which are called superior solutions for simplicity, are also listed in Table 4.
The range of the Pareto front by 30000 analysis is shown in the last row of Table 4. It
is seen from these results that more solutions distributed in wider range can be found
by incorporating sharing function. The increase of the number of superior solutions
also indicates improvement of accuracy of the solutions.

Fig. 3 shows all the solutions generated in the process of SA with 3000 analyses.
Note that the solutions with Emax

p = 0 located along the abscissa do not satisfy
the constraint (7) on the maximum interstory drift ratio at the first analysis with
k = 1, where the PGV is equal to 0.5 m/s. These solutions are unconditionally
rejected without further carrying out incremental dynamic analysis. Thus the total
computational cost can be reduced by utilizing the constraint (7) on the interstory
drift ratio. The ratio of the number of these rejected solutions to the number of total
solutions is 44.2%; i.e., almost half of the solutions are infeasible. As can be seen from
Fig. 3, SA searches a wide range in the objective space, but cannot reach the Pareto
front. This is a general property of SA that has been observed in the results with
different initial solutions.

The two sets of Pareto solutions found by the proposed TS with 3000 analyses
called TS3000-1 and TS3000-2 are shown in Fig. 4, where the Pareto front obtained
by 30000 preliminary analyses is also plotted. Fig. 5 shows all the solutions generated
by TS3000-1. As can be seen, TS searches the solutions near the Pareto front.

It is seen from Figs. 2 and 4 that the TS has more accuracy than SA, and has good
diversity if the results of the two sets of 3000 analyses are combined. However, the
search space of TS depends on the initial solution as observed in Fig. 4, where the
region with larger V and Emax

p are searched by TS3000-1 and the remaining region is
searched by TS3000-2. The ratios of the numbers of the rejected solutions along the
abscissa of Fig. 5 to the number of total solutions is 16.7% which is much smaller than
that of SA. Therefore, TS has the advantage in searching the space of the feasible
solutions.

The results by the proposed TS is compared in Fig. 6 with those of the original TS
without sharing function. Although no drastic increase is observed in the range and
number of solutions, the number of the superior solutions by the proposed TS is more
than three times of that by the original TS. Therefore, the accuracy of the Pareto
solutions is improved by incorporating the sharing function.
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Fig. 5: All solutions generated by TS3000-1. Dotted line: Pareto front by 30000
analyses.

5.3 Properties of the Pareto Optimal Solutions.

The properties of the Pareto solutions are discussed based on the results of TS3000-2.
Fig. 7 shows the relation between the objective functions V and Emax

p of the Pareto
solutions. Each mark distinguishes the PGV at the collapse state, which increases as
V is increased. Even for the frames that collapse under the seismic motions of the
same PGV, Emax

p is an increasing function of V so as to form the smooth Pareto front.
A design with widely distributed plastic hinges can be obtained by selecting a solution
from the set of Pareto solutions. Thus, the most preferred solutions for various levels
of PGV at collapse can be obtained.
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The characteristics of the Pareto solutions are investigated for the solutions that
collapse under seismic motions with vmax

k = 1.2 m/s. The typical designs named
Solutions 1–5 are selected as indicated in Fig. 4. The cross-sectional areas of Solution
3 are as shown in Fig. 8, where the width of each member is proportional to its cross-
sectional area. It can be observed from Fig. 8 that Solution 3 has large sections for
internal beams and columns, which is a general property of the Pareto solutions as
seen in Fig. 9.

The total volume, dissipated energy and the story drift ratios of Solutions 1–5 are
listed in Table 5. It is seen that the The lower 3 stories have almost the same maximum
drift ratios; i.e. the frames collapse uniformly.
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Fig. 8: Cross-sectional areas of Solution 3.

(a) Solution 1 (b) Solution 5

Fig. 9: Cross-sectional areas of Solutions 1 and 5.
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Fig. 10: Ductility ratios of Solution 3.

Fig. 10 shows the maximum ductility ratios of the plastic hinges at the ends of each
member of Solution 3. The member ends without the values in Fig. 10 remain elastic at
the collapse state. The ductility ratios greater than 3.0 are written in a white number
in a black box. Note that large plastic deformation exists in the column base and
the internal beams, and no large deformation can be found in the columns except at
the base. This way, the Pareto solutions with favorable uniform story collapse can be
generated by solving the multiobjective optimization problem, and many alternative
designs can be simultaneously obtained.
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6 Conclusions

An MOP problem has been formulated to simultaneously minimize the total structural
volume and maximize the plastic dissipated energy at the collapse state. Incremental
dynamic analysis is carried out to determine the PGV of the seismic motion that
leads to the collapse state. The design variables are cross-sectional properties that are
selected from the list of the standard sections. SA and TS have been used to obtain
the set of Pareto solutions. The conclusions obtained from this study are summarized
as follows:
• A frame that collapses with a uniform interstory drift ratio can be obtained as a

Pareto solution that simultaneously minimize the structural volume and maximize
the dissipated energy at collapse state. Many alternative designs or compromise
solutions can be obtained as a set of Pareto solutions.

• The optimal cross-sections, which are to be selected from the list of available stan-
dard sections, can be found by solving a combinatorial optimization problem.

• SA and TS can be successfully used for a multiobjective structural optimization
problem that demands large computational cost for the function evaluation. How-
ever, TS is an advantage over SA in view of the diversity of the Pareto solutions
and the ability of searching the solutions near the Pareto front.

• The accuracy and diversity of the Pareto solutions by SA and TS can be improved
by using sharing functions that are used in multiobjective genetic algorithm.
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Table 1: Size of the sections of the members in each List Group.
column I ¤-400 series
column II ¤-500 series
column III ¤-500 series
beam I H-500 series
beam II H-600 series
beam III H-600 series

Table 2: Column sections.
¤ - 400 series

Ji size (mm) Ai (×104 mm2) I i (×108 mm4) Zi
p (×106 mm3)

1 ¤− 400× 12 1.788 4.38 2.56
2 ¤− 400× 16 2.326 5.52 3.28
3 ¤− 400× 19 2.710 6.28 3.77
4 ¤− 400× 22 3.077 6.95 4.22
5 ¤− 400× 25 3.428 7.54 4.64

¤ - 500 series
Ji size (mm) Ai (×104 mm2) I i (×108 mm4) Zi

p (×106 mm3)

1 ¤− 500× 12 2.268 8.84 4.10
2 ¤− 500× 16 2.966 11.30 5.29
3 ¤− 500× 19 3.470 13.00 6.13
4 ¤− 500× 22 3.957 14.50 6.92
5 ¤− 500× 25 4.428 15.90 7.66
6 ¤− 500× 28 4.883 17.20 8.36
7 ¤− 500× 32 5.463 18.70 9.21
8 ¤− 500× 36 6.014 20.00 9.97
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Table 3: Beam sections.
H - 500 series

Ji size (mm) Ai (×104 mm2) I i (×108 mm4) Zi
p (×106 mm3)

1 H− 500× 200× 9× 12 0.923 3.75 1.72
2 H− 500× 200× 9× 16 1.076 4.60 2.08
3 H− 500× 200× 9× 19 1.190 5.21 2.34
4 H− 500× 200× 9× 22 1.305 5.81 2.60
5 H− 500× 200× 12× 22 1.442 6.05 2.76
6 H− 500× 250× 9× 22 1.525 7.07 3.13
7 H− 500× 250× 12× 22 1.662 7.31 3.29
8 H− 500× 250× 12× 25 1.804 8.04 3.61
9 H− 500× 250× 12× 25 1.947 8.75 3.93

H - 600 series
Ji size (mm) Ai (×104 mm2) I i (×108 mm4) Zi

p (×106 mm3)

1 H− 600× 200× 9× 12 1.013 5.70 2.20
2 H− 600× 200× 9× 19 1.280 7.86 2.96
3 H− 600× 200× 12× 22 1.562 9.18 3.51
4 H− 600× 250× 12× 22 1.782 11.00 4.15
5 H− 600× 250× 12× 25 1.924 12.10 4.54
6 H− 600× 250× 16× 28 2.285 13.70 5.23
7 H− 600× 300× 12× 28 2.347 15.50 5.73
8 H− 600× 300× 16× 28 2.565 16.00 6.03
9 H− 600× 300× 16× 32 2.792 17.70 6.64

Table 4: Comparison of the results by the proposed SA and TS to the original methods
without sharing functions.

Volume [m3] Dissipated Energy [kN] No. of No. of
Min. Max. Min. Max. solutions superior solutions

SA (original) 5.21 9.05 1382.07 4819.92 26 12
SA (proposed) 4.50 9.65 937.45 5153.14 37 31
TS (original) 7.37 9.36 3710.52 5153.14 101 21
TS (proposed) 6.94 9.27 3484.76 5103.31 103 74
Pareto Front 4.40 9.65 961.75 5153.14 - -
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Table 5: Total volume, dissipated energy and interstory drifts of Solutions 1–5.

Solution
Volume Dissipated Energy Story Drift Ratio (×10−2)
(m3) (kN · m) 1 2 3 4 5

1 4.715 1269.9 3.6160 2.8926 2.7763 2.4588 1.2720
2 5.328 2212.7 3.2760 2.6208 2.6657 2.0847 1.5753
3 6.127 2993.1 3.4085 2.7268 2.8153 2.4748 1.8625
4 7.013 3889.6 3.6018 2.8814 2.4655 2.4818 1.8150
5 8.330 4770.3 3.9145 3.1316 2.5125 2.0860 1.3488
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