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Abstract
The purpose of this paper is to show that the performance of a structural com-
ponent is drastically improved utilizing shape optimization considering inelastic
responses. Optimal flange shapes are found as an example for an H-beam to
show that the the energy dissipation capacity is significantly improved by shape
optimization. The forced displacement is given at the free end of the cantilever
beam so that the average deformation angle reaches the specified value. The con-
straint is given for the maximum equivalent plastic strain at the welded section.
Global optimal solutions are searched by a heuristic approach called simulated
annealing, which is successfully combined with a commercial finite element analy-
sis code ABAQUS for elastoplastic analysis. It is shown in the examples that the
maximum plastic strains near the welded section are reduced and the plastic de-
formation is widely distributed around the reduced section of the optimal solution;
thus, allowing large energy dissipation under small maximum plastic strain. The
results show the advantage of the optimal shape over the conventional circular
cut.
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1 Introduction

Recent rapid developments of computational technologies and optimization algorithms
enabled us to optimize real-world structures under constraints that are required in
design practice. In addition to optimizing structural systems, it is possible to find
optimal shapes of structural components or parts discretized to finite elements; e.g.
shapes of automobile suspensions, airfoil wings, and so on (Bendsøe and Sigmund,
2003). In the civil engineering field, however, optimization of structural components
has not been well investigated.

The 1994 Northridge earthquake caused widespread damage to steel moment-resisting
frames mainly due to brittle fracture near the beam-to-column flange groove welds. In
response to such damage, the Reduced Beam Section (RBS) connection has been ex-
tensively investigated (Chen et al., 1996; Iwankiw and Carter, 1996; Goel et al., 1997;
Engelhardt, 1999). In an RBS moment connection, a portion of the beam flange is se-
lectively trimmed in the region adjacent to the beam-to-column connection in order to
force the plastic hinge to be located within the reduced section, and thereby reducing
the possibility of fracture occurring at the beam-to-column flange groove weld and the
surrounding base metal. Various shapes of cutouts have been investigated, including
a constant cut, a tapered cut and a circular cut (Engelhardt et al., 2000). However,
only an optimization based on predetermined cutout shapes has been presented (Jones
et al., 2002), and no systematic process for finding the optimal shape has been found.

Optimization of elastoplastic structures has been extensively investigated during the
1990s, including sensitivity analysis of path-dependent problems (Ohsaki and Arora,
1994; Ohsaki, 1997; Swan and Kosaka, 1997). However, analytical evaluation of sensi-
tivity coefficients requires substantial computational cost. Heuristic approaches have
been developed to obtain approximate optimal solutions within reasonable computa-
tional time, although there is no theoretical proof of convergence. Simulated Annealing
(SA) (Aarts and Korst, 1989) is used in this study to search for a global optimal so-
lution without evaluation of sensitivity coefficients. SA has been successfully applied
to many structural optimization problems (Balling, 1991; Tagawa and Ohsaki, 1999),
and is applicable to both problems with continuous and discrete variables.

The main purposes of this paper is summarized as follows:
• The performance of a structural component is shown to be drastically improved

utilizing shape optimization considering inelastic responses.
• A commercial finite element analysis program can be successfully combined with

the optimization algorithm with SA.
• As an example, shapes of beam flanges are optimized to maximize the dissipated en-

ergy for forced displacement against static load with the constraint on the maximum
equivalent plastic strain along the welded section at the beam-to-column connection.
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2 Optimization problem and optimization algorithm

Consider a cantilever beam that represents half of a beam in a frame. One end is
fixed and the other end is free to simulate the inflection point at the mid-span of the
beam. Optimal flange shapes are to be found for a beam subjected to a static loading
condition defined by forced displacement at the free end.

The beam is discretized into finite elements. The shape of the flange is defined by a
cubic spline curve, and the design variables are the locations of the control points. Let
x denote the vector consisting of the variable coordinates of the control points. The
upper and lower bounds for x are denoted by xU and xL, respectively. A component
of a vector is indicated by a subscript; i.e., x = {xi}.

The objective function is the dissipated energy throughout the loading history, which
is denoted by E(x) as a function of x. Since the final deformed state is defined by the
specified displacement, unfavorable local plastification can be avoided by maximizing
E(x). The upper bound ε̄p is given for the maximum equivalent plastic strain εp

among the elements at the fixed end to prevent fracture at the beam-to-column flange
groove welds. Hence, the optimization problem is formulated as

maximize E(x) (1)

subject to εp(x) ≤ ε̄p (2)

xL
i ≤ xi ≤ xU

i , (i = 1, . . . , m) (3)

where m is the number of design variables.
Since the optimization problem stated above is highly nonlinear, it is solved by SA

which is categorized as a statistical heuristic search. Since the algorithm needs very
few problem dependent parameters, it is quite robust even for an objective function
that has many local optima. Note that other methods such as random start nonlinear
programming with the finite difference method for gradient computation (Pan et al.,
2007) and approximation using response surface (Ogawa et al., 2005) can also be used.
However, the purpose of this paper is not to present an optimization method, but to
show that shape optimization can be effectively applied to improve the elastoplastic
performance of the structural parts.

We use the SA for continuous variables by Goffe et al. (1994). The main feature of
this method is that it controls the size of the most promising region by the maximum
distance to the neighborhood solutions, which is initially moderately large and grad-
ually adjusted to an appropriate value. The constraint εp ≤ ε̄p is incorporated by a
penalty function approach using the penalty parameter η as

Ẽ(x) = E(x)− η max(0, εp(x)/ε̄p − 1) (4)

The algorithm depends on the following parameters: number of function evaluations
before reducing the size of the neighborhood is defined by mNS; number of function
evaluations before reducing the temperature is defined by mNSNT; the objective func-
tion is scaled by 1/c; initial temperature and its reduction ratio is given by T and
µ, respectively; the average initial solution and the initial size of the most promising
region for xi are defined by x̄i and di, respectively. See Goffe et al. (1994) for the
details.
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Fig. 1: Normal flange shape.

3 Optimization results

Optimal flange shapes are found for a wide-flange cantilever beam with length 700
mm and a cross-section of H − 150 × 150 × 7 × 10; i.e., the span-height ratio is
700× 2/150 = 9.33.

The normal flange shape is shown in Fig. 1. The flange width is to be varied at the
300 mm region from the welded section (fixed end). The control points for the cubic
spline curve are also given in Fig. 1. The location of the control point 6 is fixed, and
the points 0–5 can move only in y-direction. Hence, the number of design variables
(y-coordinates) is 6 considering the symmetry condition with respect to the x-axis.
Only reduction is allowed for the flange width at the control point, and the upper and
lower bounds of the variables are 75.0 mm and 25.0 mm, respectively.

Optimization is to be carried out to maximize the dissipated energy E under mono-
tonic loading condition up to the displacement 14 mm at the free end, which corre-
sponds to average rotation angle θ = 0.02. The upper-bound constraint is given for
the maximum equivalent plastic strain εp among the elements along the fixed end.

The parameters for SA are NT = 2, NS = 20, c = 100, T = 1.0. The penalty
parameter is set as η = 0.85 so that the magnitude of the penalty term in (4) is
about 10-times as large as the possible value of E at the initial temperature. The
initial values are specified as x̄i = 75.0, di = 10.0. The process is terminated if the
improvement of Ẽ is less than the small value 0.1 within consecutive four steps of
decreasing the temperature.

Geometrically nonlinear elastoplastic analysis is carried out by ABAQUS Ver. 6.5.1
(ABAQUS, 2004), which is a general purpose finite element code. S4R, which is a
4-node quadrilateral thick shell element with reduced integration and a large-strain
formulation, is used for modeling. A coarse mesh is used for optimization and its
accuracy is investigated by analysis with a fine mesh. The total numbers of elements
and freedom of displacement for the coarse mesh are 504 and 3306, respectively. The
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Table 1: Dissipated energy E and maximum plastic equivalent strain εp at the fixed
end.

Optimal shape Verification
(Coarse mesh) (Fine mesh)
E εp (×10−3) E εp (×10−3)

Case 0 950 17.2 949 29.35
Case 1 875 1.00 871 1.12
Case 2 893 2.00 891 3.65
Case 3 900 4.00 899 6.42
Case 4 912 7.95 908 11.27

elastic modulus is 2.05×105 N/mm2 and Poisson’s ratio is 0.3. The yield stress is 235.0
N/mm2 and the hardening ratio is 0.001. The J2 associated flow theory and linear
kinematic hardening with Ziegler’s rule are adopted.

The ABAQUS analysis is iteratively called from the SA algorithm. SA program
generates new coordinates of the control points, which are transmitted to ABAQUS
preprocessing module controlled by Python script language (David, 2001), that creates
the beam model and submits a job through ‘.inp’ file to ABAQUS/standard analysis.
The analysis results are stored in ‘.odb’ file. A postprocessing module also written in
Python script language is used to extract the necessary data such as E and εp, which
are called ALLPD and PEEQ in ABAQUS. The data are returned to the SA program
for the new round of iteration. A PC with Intel Xeon 3.4 GHz CPU and 2GB RAM
is used for the computation.

Optimal shapes are found under monotonic loading condition and the results are
compared with those of the normal beam with uniform flange width (Case 0). Op-
timal shapes and their distribution of εp for Cases 1–4 corresponding to ε̄p = 0.001,
0.002, 0.004, and 0.008, respectively, are shown in Figs. 2(a)–(d), where darker color
represents larger values. The result of Case 0 is also shown in Fig. 2(e).

Basically, the optimal shapes share a similar pattern featured with a single concave
region, which has two functions: (1) shift the maximum deformation demand from the
fixed end to the middle sections, and (2) increase the plastification area for the specified
average rotation angle θ. The distribution of εp shows that its maximum value exists
at the fixed end for Case 0, whereas it is successfully shifted to the concave region for
Cases 1–4. It should also be noted that plastification region of Cases 1–4 are longer
than that of Case 0. Therefore, the total plastified areas of the optimized flange are
not much smaller than that of Case 0, although the concavity decreases the flange
width of the plastified region.

The optimal solution is found within 6000 analyses for each case. The total number
of analysis is 11761 for Case 1, and the elapsed time for optimization is 63.06 hours (20
sec. per analysis). However, only 15% is used for analysis, and remaining portion of
the time is; 5% for preprocess, 5% for postprocess, 75% for ABAQUS license checking,
and the time used for SA algorithm is negligible.
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Fig. 2: Distribution of equivalent plastic strain of the normal and optimal beams.

Note from Fig. 2 that the flange shapes strongly depend on the value of ε̄p. Ob-
viously, larger reduction of the width is needed for smaller value of ε̄p to suppress
the deformation at the welded section for the specified θ. The value of ε̄p in practice
can be defined by the design criteria along with the concept of the performance-based
design.

The dissipated energy E and εp at the fixed end of Cases 1–4 with coarse mesh, as
well as Case 0, are shown in Table 1 for the final deformed state. It is seen from Table 1
that E decreases with the decrease of ε̄p, because the objective function is smaller for
a stricter constraint in a maximization problem. It is seen that E of Case 0 is not
much different from those of Cases 1–4, whereas εp of Case 0 is significantly larger
compared with those of Cases 1–4. For instance, almost the same (with a difference
less than 5%) dissipated energy of Case 0 is achieved by Case 4 with less than half
value of εp (7.95× 10−3 for Case 4 and 17.2× 10−3 for Case 0).

To further demonstrate the effect of flange shape optimization, E and θ of Case 0 for
specified ε̄p are computed; i.e., the analysis for Case 0 is terminated at each specified
value of εp = ε̄p The values of (E, θ) for ε̄p = 0.001, 0.002, 0.004 and 0.008 are (36,
0.006), (84, 0.007), (188, 0.008) and (404, 0.012), respectively; i.e., the value of E of
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Fig. 4: Comparison of E and εp between circular cut and optimal shape.

normal beams are far smaller than those of the optimal beams for the same value of
ε̄p. Hence, the energy dissipation capacity is drastically improved by optimization.
The resulting value of θ of the normal beam for ε̄p = 0.001, 0.002, 0.004 and 0.008
are 0.006, 0.007, 0.008 and 0.012, respectively, which are all significantly smaller than
0.02 for the optimal solutions. Therefore, the beam with optimal flange shape can
avoid large equivalent plastic strain at the welded section to improve its deformation
capacity.

To investigate the mesh convergence, results by a fine mesh with double density
in each direction are shown in Table 1. It is found that the coarse mesh accurately
predicts E, but not enough to predict εp because of the stress concentration at the
corner of the fixed end. This singularity occurs due to the unrealistic idealizations
used in the finite element model; i.e., the welded section is completely fixed although
in reality it deforms with the panel at the connection. If the exact stress and strain at
the connection is required, more detailed modeling is needed. However, the analysis
of the detailed modeling is too expensive for optimization. Therefore, the coarse mesh
has been used.

The performances of the optimal shape are compared with those of the conventional
RBS shape of circular cut, where the parameters are defined in Fig. 3. The values
of a and b are fixed at 75 mm and 200 mm, respectively, and c (mm) is varied as
17.5, 20.0, . . . , 37.5. It is seen from Fig. 4 that larger energy can be dissipated by the
optimal shapes than circular cut for the same value of εp.
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4 Conclusions

Optimal flange shapes have been found for a cantilever H-beam subjected to static
loads. The objective function to be maximized is the plastic dissipated energy. The
constraint is given for the maximum equivalent plastic strain at the welded section
(fixed end) under the specified forced displacement at the free end. The conclusions
drawn from this study are summarized as
1. The energy dissipation capacity can be improved by optimizing the flange shape.
2. Optimal shapes can be successfully obtained by SA in conjunction with a commercial

finite element analysis code.
3. The optimal shape strongly depends on the upper bound of the equivalent plastic

strain, which is to be specified in practice based on the performance required for
each frame.

Although the computational cost for optimization is very large, the results of this study
ensures that the performances of the structural parts can be effectively improved by
shape optimization.
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