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Abstract
Imperfection sensitivity properties are derived for finite dimensional elastic conser-
vative systems exhibiting hill-top branching at which arbitrary many bifurcation
points coincide with a limit point. The critical load at a hill-top branching point
is demonstrated to be insensitive to initial imperfections when all the bifurcation
points are individually symmetric. Therefore, it is not dangerous to design a frame
or truss so that many members buckle simultaneously at the limit point, although
the notion of the danger of optimization by compound bifurcation is widespread.
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1 Introduction

The simultaneous buckling was studied in association with optimization. The principle
of simultaneous mode design states, “A given form will be optimum if all failure modes
which can possibly intersect occur simultaneously (Spunt, 1971).” The danger of
naive optimization without due regard to imperfection sensitivity and the erosion of
optimization by compound branching were suggested (Thompson and Supple, 1973).
Various kinds of structures were found highly imperfection-sensitive when two or more
bifurcation points are nearly or strictly coincident, and are subjected to interaction
of buckling modes, such as local and global modes (Hutchinson and Amazigo, 1967;
Koiter and Kuiken, 1971; Thompson and Lewis, 1972; Tvergaard, 1973). Thompson
and Hunt (1974) suggested extreme enhancement of imperfection sensitivity due to
modal interaction as a result of optimization; imperfection sensitivity of coincident
critical points was studied thereafter (Thompson and Hunt, 1984; Hunt, 1986).

Yet such severe enhancement of imperfection sensitivity is absent for another kind
of coincident critical points. A nearly coincident pair of a bifurcation point and a limit

1This paper has appeared in: Int. J. Solids and Struct., Vol. 43, No. 16, pp. 4704-4719, 2006.
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point of loading parameter was found in (a) numerical simulation of a long tensile
steel specimen undergoing plastic instability (Needleman, 1972), and (b) mechanical
instability of stressed atomic crystal lattices (Thompson and Schorrock, 1975). Such a
pair of points was approximated by a hill-top branching (bifurcation) point, at which
the pair of points coincide strictly. This hill-top point was shown to enjoy locally
piecewise linear imperfection sensitivity (Thompson and Schorrock, 1975; Thompson,
1982; Ikeda et al., 2002; Okazawa et al., 2002), which is less severe than the two-thirds
power-law for a simple pitchfork bifurcation point. A piecewise linear relationship was
also observed for other hill-top branching points that occur as the coincidence of

(i) an asymmetric bifurcation point and a limit point (Ohsaki, 2003), and
(ii) a limit point and a double bifurcation point studied by a group-theoretic approach (Ikeda

et al., 2005).
Ohsaki (2000) optimized shallow trusses under constraints on nonlinear buckling

and found that the optimum solution usually has a hill-top branching point, which is
not sensitive to imperfections. Thus the optimization for nonlinear buckling does not
always produce a dangerous structure.

It is noteworthy that, for a pin-jointed truss, member buckling can occur almost
independently from global buckling (Peek and Triantafyllidis, 1992). Therefore, it
is possible to create a hill-top branching point at which arbitrary many symmetric
bifurcation points can exist at a limit point; i.e. many members buckle simultaneously
with global buckling.

The basic framework to deal with coincident critical points can be found in the static
perturbation method (Supple, 1967, 1968; Thompson and Hunt, 1973, 1984; Godoy,
1999); in this framework, compound bifurcations were studied in detail (Hunt, 1981).
Critical points can be classified by investigating the linear, quadratic, cubic, quartic,
... terms of the total potential energy (Thompson and Hunt, 1973). The interaction
between bifurcation modes is classified into third-order and fourth-order interactions;
the third-order interaction exists if one of the bifurcation modes is asymmetric. The
maximum load of an imperfect symmetric system is reduced if the forth-order cross-
term is negative (Thompson and Hunt, 1984).

In this paper, imperfection sensitivity of a hill-top branching point with many sym-
metric bifurcation points is investigated. This point is actually created for a pin-jointed
truss with simultaneously buckling members. The bifurcation modes are individually
symmetric among themselves, but some modes have infinitesimally small third-order
interaction. The symmetry conditions with respect to bifurcation modes and limit-
point-type mode are relaxed by ignoring such interaction to account for practical
situation of member buckling at the limit point.

2 Illustrative example of a hill-top branching.

We start with a simple illustrative example: a 2-bar truss as shown in Fig. 1, where
H = 100 mm and L = 1000 mm. The members are connected to the nodes by
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Fig. 1: A 2-bar pin-jointed truss.
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Fig. 2: Relation between the cross-sectional area and critical load ratio of the 2-bar
truss.

pin joints. Each member is divided into four beam elements to implement mem-
ber buckling. Green’s strain is used for representing geometrically nonlinear strain-
displacement relation. In the following, the units of length and force are mm and kN,
respectively.

Maple 9, a symbolic computation software, is used for the differentiation of the
total potential energy with respect to displacements, imperfection parameters, etc.
The equilibrium paths are traced by a displacement increment method with sufficiently
small increments, and it has been confirmed that unbalanced loads at every incremental
step are very small.

Let I and A, respectively, denote the second moment of area and the cross-sectional
area of the members which have a D×D solid square cross-section; i.e. I = D4/12 =
A2/12. The elastic modulus is denoted by E. The vertical load is defined by a unit
load P and load factor Λ as ΛP , and Λ is increased to find the critical load factor Λc

where the lowest eigenvalue of the tangent stiffness matrix vanishes. Fig. 2 shows the
variation of the critical load ratio ΛcP/(EA) plotted against A. For a large value of
A, the critical point is governed by a limit point. On the other hand, if A is small,
member buckling occurs before reaching the limit point.
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Fig. 3: Relation between vertical displacement and load for A = 3000.0.
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2nd mode p̂2

Fig. 4: Eigenmodes corresponding to the two zero eigenvalues at the double bifurcation
point for A = 3000.0.

Consider an optimization problem of maximizing ΛcP/(EA) that is conceived as
the critical load for the unit cost. It is seen from Fig. 2 that ΛcP/(EA) increases
as A is increased from 0. At A = A∗ ' 3984.0, bifurcation points exist at the limit
point, which is called a hill-top branching point. For A ≥ A∗, P c/(EA) is constant;
accordingly, the structure with A = A∗ can be regarded as the optimal solution that
achieves the maximum ΛcP/(EA) with the smallest A. As we have seen, structural
optimization entails hill-top branching.

Fig. 3 shows the relation between ΛP and the vertical displacement v at the center
node for A = 3000.0 that has a double bifurcation point before reaching a limit point,
where E = 1 for simplicity. The eigenmodes p̂1 and p̂2 for zero eigenvalues at the
double bifurcation point are shown in Fig. 4. Notice that only member buckling
occurs in both p̂1 and p̂2. Let Uc denote the nodal displacement vector at the double
bifurcation point. Deformation in the vicinity of Uc is defined as

U = Uc + q1p̂1 + q2p̂2 (1)

where q1 and q2 are called generalized coordinates. The contour map of the total
potential energy V scaled as 10000(V + 12.2896) is plotted in Fig. 5 with respect to
q1 and q2. Since p̂1 is antisymmetric with respect to the vertical reflection axis of the

4



   -0.25
   -0.26
   -0.27
   -0.28
   -0.29
    -0.3

   -0.31
   -0.32
   -0.33
   -0.34
   -0.35
   -0.36
   -0.37
   -0.38

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Fig. 5: Contour map of the scaled total potential energy 10000(V + 12.2896) at the
double bifurcation point for A = 3000.0.

truss, V is a symmetric (even) function of q1. Although the deformations defined by
Uc +q2p̂2 and Uc−q2p̂2 have different properties, V is almost symmetric with respect
to q2 as can be seen from Fig. 5, because only member buckling occurs in p̂2 and is
not influential on nodal displacements.

Fig. 6 shows the relation between ΛP and the vertical displacement v at the center
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Fig. 6: Relation between vertical displacement and load for A = A∗.
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Fig. 7: Relation between vertical displacement and eigenvalues for A = A∗.
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Fig. 8: Orthogonal eigenmodes corresponding to the three zero eigenvalues at the
hill-top point.

node for A = A∗. It is confirmed from Fig. 6 that a limit point is reached as v is
increased. The eigenvalues of the tangent stiffness matrix are plotted in Fig. 7. It
should be noted that the three lowest eigenvalues do not coincide before reaching the
hill-top point, where they simultaneously vanish. The eigenmodes corresponding to
the three eigenvalues are as shown in Fig. 8. The eigenmode p̂2 corresponds to a
symmetric bifurcation due to member buckling without displacement at the center
node, and p̂1 and p̂3 are the mixture of limit point mode and bifurcation mode due to
member buckling. Thus the coincidence of a limit point and bifurcation points incurs
the mixing of eigenmodes.

Since any linear combination of critical modes at a coincident critical point is also a
critical mode, it is possible to extract the limit point mode and the bifurcation mode
due to member buckling from the critical modes mixed in this manner. From the
general theory of elastic stability (Thompson and Hunt, 1973), the limit point mode
can be obtained from the incremental displacement along the fundamental equilibrium
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Fig. 9: Non-orthogonal eigenmodes corresponding to the three zero eigenvalues at the
hill-top point.

path at the limit point, which turns out to be the 3rd mode p3 in Fig. 9. The
bifurcation mode p1 in Fig. 9 is obtained as a pertinent linear combination of p̂1 and
p̂3 in Fig. 8 so that the vertical displacement of the center node vanishes.

The third-order differential coefficients Vijk of the total potential energy in the di-
rections of modes i, j, k (= 1, 2, 3) in Fig. 9 are obtained as

V111 = 2.8454× 10−10, V112 = 5.0485× 10−15, V113 = 7.8384× 10−5,

V122 = −2.6232× 10−10, V123 = 1.2865× 10−11, V133 = 2.8728× 10−13,

V222 = 2.6394× 10−15, V223 = 7.8385× 10−5, V233 = 1.2026× 10−12,

V333 = 7.4097× 10−5

(2)

Since the loaded center node moves in p3, and V333 has larger value than V111 and V222,
p3 can be confirmed to be a limit point mode. p2 is a symmetric bifurcation mode,
because it is antisymmetric with respect to y-axis. p1 is an almost symmetric (slightly
asymmetric) mode, because V111 has a very small value, although the mode shape
is not antisymmetric. The symmetricity may be further investigated by computing
the 5th and higher differential coefficients of V . In the following sections, general
formulations are presented for imperfection sensitivity for a hill-top branching point
with arbitrary many symmetric bifurcation points.

3 Hill-top branching at the perfect system.

We next consider a general case of finite dimensional geometrically nonlinear struc-
ture, of which the deformation is described by the nodal displacement vector U =
(U1, . . . , Un), where n is the number of degrees of freedom. We assume the existence
of the total potential energy V̄ (U, Λ) that is a smooth function of U and loading
parameter Λ.
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Denote by H the Hessian of V̄ with respect to U, which is called tangent stiffness
matrix. The eigenvalue problem of H is formulated as

Hp̂i = eip̂i, (i = 1, . . . , n) (3)

where ei is the ith lowest eigenvalue (ei ≤ ei+1), and p̂i is the associated eigenvector
normalized by p̂>i p̂i = 1 (i = 1, . . . , n), where ( )> denotes the transpose of a vector.

Consider a case where m−1 bifurcation points exist at a limit point; i.e. the critical
point is a hill-top branching point with m lowest eigenvalues vanishing simultaneously.
To separate the bifurcation modes and the limit point mode, the increment of U at
the limit point along the fundamental equilibrium path is used for defining the limit
point mode pm as demonstrated in the previous section. The bifurcation modes pi

(i = 1, . . . , m− 1) are obtained by removing the component of pm from p̂i as

pi = p̂i + cipm, (i = 1, . . . , m− 1) (4)

where the coefficient ci is computed from

p>m(p̂i + cipm) = 0, (i = 1, . . . , m− 1) (5)

The generalized coordinate qj in the direction of pj is defined by the transformation

U = Uc +
n∑

j=1

qjpj (6)

where Uc is the displacement vector at the critical point.
Denote by q1, . . . , qm−1 the generalized coordinates in the direction of bifurcation

modes measured from the hill-top point, and by qm that in the direction of limit-
point mode. Then q1, . . . , qm serve as active coordinates and qm+1, . . . .qn as passive
coordinates. The increment of the loading parameter from the hill-top point is denoted
by λ.

The total potential energy is defined as a function of q = (q1, . . . , qn) and λ and is
written as V (q, λ). Differentiation with respect to qi is indicated by a subscript i. The
equilibrium equations are written as

Vi = 0, (i = 1, . . . , n) (7)

Since m lowest eigenvalues ei (i = 1, . . . , m) vanish at the hill-top point, the following
relations hold:

Vij = 0, (i, j = 1, . . . , m) (8)

For the modes pi (i = m + 1, . . . , n) higher than m, orthogonality conditions

p>i pj = 0, (i, j = m + 1, . . . , n; i 6= j) (9)
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should be satisfied so that Vij is diagonalized such that

Vij = 0, (i, j = m + 1, . . . , n; i 6= j) (10)

Vij = Vji = 0, (i = 1, . . . , m; j = m + 1, . . . , n) (11)

Note that the orthogonality among the eigenvectors pi (i = 1, . . . , m) need not be
satisfied, because, for multiple eigenvalues, any linear combination of the eigenvectors
is also an eigenvector.

From the conditions of limit point and bifurcation points,

V ′
i = 0, (i = 1, . . . , m− 1) (12)

V ′
m 6= 0 (13)

are to be satisfied, where ( )′ indicates differentiation with respect to λ.

4 Imperfection sensitivity analysis at hill-top point.

We move on to consider a critical point of an imperfect system. Let ε denote the
imperfection parameter. The total potential energy of an imperfect system, which
is a function of n + 2 variables λ, q1, . . . , qn and ε, is written as V (q, λ, ε). Since n
equilibrium equations (7) should be satisfied for n + 2 variables, an equilibrium state
is to be determined by specifying two variables; say, e.g. ε and λ.

Suppose without loss of generality that the imperfection is influential both on the
bifurcation modes and the limit point mode; i.e. q1 and qm are assumed to have
nonzero values at a critical point of the imperfect system. Then q1 and qm can be
taken as two independent parameters, and the following relations hold:

q1m = qm1 = 0, q11 = qmm = 1 (14)

where qij denote differentiation of qi with respect to qj.
Differentiating the ith equilibrium equation Vi = 0 in (7) with respect to qs (s =

1 or m) leads to

n∑
j=1

Vijqjs + V ′
i λs + V̇iεs = 0, (i = 1, . . . , n; s = 1 or m) (15)

where a dot denotes differentiation with respect to ε.
For i = 1 or m, incorporating (8), (10), (11) and (12) into (15) results in

λs = εs = 0, (s = 1 or m) (16)

For i = m + 1, . . . , n, incorporating (16) into (15) results in

qis = 0, (s = 1 or m) (17)
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Therefore, the differential coefficients of the passive coordinates qi (i = m + 1, . . . , n)
vanish, and, in turn, the passive coordinates have lower order than the two active
coordinates q1 and qm; i.e.

|qi| ¿ |qs|, (i = m + 1, . . . , n; s = 1 or m) (18)

By further differentiating (15) with respect to qt (t = 1 or m) and using (8), (10),
(11), (16) and (17), we obtain

Viiqist +
m∑

j=1

m∑

k=1

Vijkqjsqkt + V ′
i λst + V̇iεst = 0, (s, t = 1,m; i = 1, . . . , n) (19)

Letting (i, s, t) = (1, 1,m) in (19),

V11m + V̇1ε1m = 0 (20)

is obtained; i.e. ε1m 6= 0 and ε has the quadratic order of the two active coordinates.
Similarly, if we set (i, s, t) = (m,m, m) in (19),

Vmmm + V ′
mλmm = 0 (21)

is obtained; i.e. λmm 6= 0 and λ also has the quadratic order. Finally, it is easily
observed from (19) for i > m that qist 6= 0 is satisfied; i.e. the passive coordinates
are also quadratic function of the active coordinates. Note that these relations are
satisfied if at least one bifurcation point exists at a limit point.

Hence, the following relations hold:



|qi| = O(ε1/2), (i = 1, . . . , m)
|qi| = O(ε), (i = m + 1, . . . , n)
|λ| = O(ε)

(22)

i.e. the load factor λ has the linear order of the imperfection parameter ε.
As the objective of this paper, quantitative imperfection sensitivity analysis is con-

ducted by using the third-order systems along with the static perturbation procedure
by Thompson (1982). In the following, all variables are evaluated at the hill-top point.

Assumptions on the derivatives of V employed are
• All m−1 bifurcation points are symmetric, and V is individually symmetric (Thomp-

son and Hunt, 1984) up to the third-order terms in the subspace of the bifurcation
modes; i.e.

Vijk = 0, (i, j, k = 1, . . . , m− 1) (23)

• To account for the practical situation of multiple member buckling, the cross-terms
between bifurcation modes and the limit point mode satisfy:

Vijm 6= 0, (i, j = 1, . . . , m− 1; i 6= j) (24)

Vimm = 0, (i = 1, . . . , m− 1) (25)
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• The term for the the limit point enjoys:

Vmmm 6= 0 (26)

On the basis of (12), (13), (18) and the assumptions (25) and (26), it suffices to
consider the following third-order system of the total potential energy:

V =
1

2

m−1∑
i=1

m−1∑
j=1

Vijmqiqjqm +
1

6
Vmmmq3

m +
m∑

i=1

V̇iqiε + V ′
mqmλ (27)

Differentiating V with respect to qi (i = 1, . . . , m− 1) and qm leads to

m−1∑
j=1

Vijmqjqm + V̇iε = 0, (i = 1, . . . , m− 1) (28)

1

2

m−1∑
i=1

m−1∑
j=1

Vijmqiqj +
1

2
Vmmmq2

m + V̇mε + V ′
mλ = 0 (29)

It is natural to consider an imperfection in the direction involving all the active
coordinates. However, we have to investigate a special imperfection in the direction of
one of the active coordinates to verify the following scaling process by qm. If V̇i 6= 0 for
some i = 1, . . . , m− 1, qm 6= 0 can be derived from (28). If V̇i = 0 for i = 1, . . . , m− 1
and V̇m 6= 0, (29) is generally satisfied by qm 6= 0. Therefore, we can assume qm 6= 0
in the sequel without loss of generality.

By dividing (28) by qm, we can derive

m−1∑
j=1

Vijmqj + V̇i
ε

qm

= 0, (i = 1, . . . , m− 1) (30)

which is to be interpreted as a set of simultaneous linear equations of qj (j = 1, . . . , m−
1). Since Viim 6= 0 (i = 1, . . . , m− 1) are satisfied as the bifurcations are not degener-
ate (Ohsaki, 2001), qj can be successfully found by solving (30) as

qj = q̃j
ε

qm

, (j = 1, . . . , m− 1) (31)

for a set of constants q̃j (j = 1, . . . , m− 1). Then (30) is rewritten as

m−1∑
j=1

Vijmq̃j + V̇i = 0, (i = 1, . . . , m− 1) (32)

With the use of (31), (29) becomes

(
1

2

m−1∑
i=1

m−1∑
j=1

Vijmq̃iq̃j

)
ε2

q2
m

+
1

2
Vmmmq2

m + V̇mε + V ′
mλ = 0 (33)
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For each specified value of ε and q̃i (i = 1, . . . .m − 1), the variables in (33) are
considered to be qm and λ.

The condition for the critical point is written as

∂λ

∂qm

= 0 (34)

By differentiating (33) with respect to qm and by using (34), we can obtain the following
equation:

−
(

m−1∑
i=1

m−1∑
j=1

Vijmq̃iq̃j

)
ε2

q3
m

+ Vmmmqm = 0 (35)

Eq. (35) is solved as

q2
m =

√
Cm

Vmmm

|ε| (36)

where

Cm =
m−1∑
i=1

m−1∑
j=1

Vijmq̃iq̃j (37)

By incorporating (36) into (33), we can obtain an imperfection sensitivity law

λ = − V̇m

V ′
m

ε− 1

V ′
m

√
VmmmCm |ε| (38)

in which Cm is a function of q̃i and q̃j by (37) and, in general, cannot be expressed
explicitly.

If there exist two symmetric bifurcation points at the limit point; i.e. m = 3, and
V12m = 0,

q̃j = − V̇j

Vjjm

, (j = 1, 2) (39)

is obtained from (32). Therefore, (37) is expressed explicitly and, in turn, (38) reduces
to

λ = − V̇3

V ′
3

ε− 1

V ′
3

√√√√V333

(
V̇ 2

1

V113

+
V̇ 2

2

V223

)
|ε| (40)

which agrees with the existing result (Thompson, 1982; Ikeda et al., 2005).
A fold line has come to be employed as an alternative means to deal with imperfec-

tion sensitivity (see, e.g., Eriksson et al. (1999); Lopez and Otranto (2004). However,
general properties of imperfection sensitivity can be obtained by the perturbation
approach presented in this paper.
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Fig. 11: Relation between load factor and vertical displacement of the center node.

5 Numerical examples.

Consider an arch-type truss as shown in Fig. 10, where L = 250, H = 200. A load
ΛP is applied in vertical direction at the center node. The details of the analysis
procedure are the same as those for the 2-bar truss in Section 2. The elastic modulus
E is 1 for simplicity, and P = 0.001. The members are divided into four groups as
shown in Fig. 10. Let Ai and Ii, respectively, denote the cross-sectional area and
second-moment of area of the members in the ith group. The relation between Ii and
Ai is assumed as

Ii = h2
i Ai (41)

where hi is independent of Ai.
Fig. 11 shows the relation between Λ and the vertical displacement v of the center

node for the perfect system with (A1, A2, A3, A4) = (100, 100, 1000, 300) and (h1, h2, h3, h4) =
(18.15, 18.05, 30.0, 100.0). A limit point is attained at Λ = 4.7681 as Λ is increased
from 0.

Fig. 12 shows the variation of the five lowest eigenvalues ei (i = 1, . . . , 5) with
respect to v. Note that e1 and e2 are exactly coincident, and e3 and e4 are nearly
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Fig. 12: Relation between eigenvalues and vertical displacement of the center node.

coincident. The mode p̂5 corresponds to the limit-point mode. The five eigenvalues
vanish simultaneously at the hill-top point.

The eigenmodes p̂1, . . . , p̂5 are as shown in Fig. 13. Since a set of modes that are
orthogonal with respect to the Hessian of V is found by eigenvalue analysis, (25) is
not usually satisfied. For example, p̂3 and p̂4 in Fig. 13 are symmetric with respect
to the y-axis, and nodal displacements should exist to satisfy orthogonality with the
limit-point mode p̂5, which is also symmetric. Hence p̂3 and p̂4 are the mixture of the
limit point mode and the member buckling mode. V333 does not vanish since p̂3 and
−p̂3 correspond to different physical behaviors; V444 also does not vanish. Note that
p̂1 and p̂2 are antisymmetric with respect to the y-axis, and vertical displacements of
the center node vanish; therefore, V111 = V222 = 0 is satisfied.

In order to distinguish limit-point mode and member buckling modes, the limit-
point mode p̂5 is first defined as the increment of displacements at the limit point while
tracing the equilibrium path by the displacement increment method. The components
of p̂5 are subtracted from p̂3 and p̂4 to arrive at pure member buckling modes p3 and
p4 shown in Fig. 14. Note that symmetric modes p3, p4 and p5 do not satisfy the
orthogonality condition.

The third differential coefficients of V are obtained as

V115 = V335 = −2.0842× 10−7, V225 = V445 = −2.1415× 10−7,

V345 = −2.2262× 10−9, V555 = −1.8214× 10−8
(42)

It has been confirmed that the absolute values of the coefficients that are assumed
to vanish in (23) and (25) are non-zero but are small enough compared with those in
(42). Other coefficients are

V̇1 = V̇2 = −9.7979× 10−5, V̇3 = V̇4 = −9.7963× 10−5,

V̇5 = −4.7352× 10−5, V ′
5 = −7.0748× 10−11

(43)

14



1st mode p̂1

2nd mode p̂2

3rd mode p̂3

4th mode p̂4

5th mode p̂5 (limit-point mode)

Fig. 13: Eigenmodes corresponding to the five zero eigenvalues satisfying orthogonality
condition.

First consider an imperfection in the direction of the sum ε
∑5

i=1 pi of five modes
shown in Fig. 14. The use of (42) and (43) in (38) leads to

λ = −1.8393× 10−2ε− 0.22176|ε| (44)

The relation between λ and ε is plotted in Fig. 15, where ‘+’ mark is the maximum
load factor of an imperfect system obtained by nonlinear path-following analysis, and
the solid line is the piecewise linear estimation by (44). Note that the maximum
load factor of an imperfect system is attained at a limit point. It is observed from
Fig. 15 that the maximum load factors of imperfect systems can be estimated with
good accuracy by the linear sensitivity relation (44). Note that each member is divided
into four elements, and the initial imperfection is given as a piecewise linear shape for
path-following analysis of an imperfect system. On the other hand, a curved shape is
assumed in computing V̇i. However, it has been ensured from the numerical results
that discretizing errors due to the modeling stated above are negligible.

For the imperfection εp5 in the direction of limit-point mode, the second term in
the right-hand-side of (44) vanishes, and the relation between λ and ε is given by a
linear law

λ = −1.8393× 10−2ε (45)

which is plotted in Fig. 16.
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1st mode p1 = p̂1

2nd mode p2 = p̂2

3rd mode p3

4th mode p4

5th mode p5 (limit-point mode)

Fig. 14: Eigenmodes corresponding to the five zero eigenvalues satisfying Viii = 0
(i = 1, 2, 3, 4).

For the imperfection εp1, the first term in the right-hand-side of (44) vanishes, and
the relation between λ and ε is given by a piecewise linear law

λ = −0.11134|ε| (46)

which is plotted in Fig. 17. For the 3rd mode εp3, the relation is

λ = −0.11249|ε| (47)

which is plotted in Fig. 18. Note that although the mode εp3 corresponds to a slightly
asymmetric bifurcation, the linear term ε is negligibly small.

The maximum loads have thus been accurately estimated by linear and piecewise
linear relations for all the cases to assess the validity of the proposed formula (44).

6 Conclusions.

Imperfection sensitivity formulas have been developed for a hill-top branching point
that has many symmetric bifurcation points at the limit point. The problem consid-
ered here is practically very important for estimating the imperfection sensitivity of
interaction of global snapthrough and local member buckling. The maximum loads
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Fig. 15: Relation between maximum load and imperfection parameter that include
five modes.
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Fig. 16: Relation between maximum load and imperfection parameter for εp5 (limit-
point mode).

of imperfect systems are piecewise linear functions of imperfection parameter. There-
fore, the existence of member buckling at the limit point is not dangerous in view
of imperfection sensitivity. The “simultaneous mode design” for this case is not that
pessimistic as was cautioned the “erosion of optimization by compound bifurcation.”
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