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Abstract
Methods of local and global searches of approximate optimal designs minimizing
total structural volume under stress and displacement constraints are presented
for regular frames subjected to static loads. Nonuniqueness of the optimal so-
lution is extensively utilized for local search of approximate optimal solutions,
where the search direction is computed from singular value decomposition of the
stiffness matrix with respect to the cross-sectional areas, or the sensitivity ma-
trix of the constraints. The distance between the solutions is then defined, and
the approximate optimal solutions are globally and consecutively found so as to
maximize the distance from the already found solutions under upper bound con-
straint on the total structural volume. The effectiveness of the proposed method
is demonstrated in application to a plane frame.

Keywords Optimum design; Singular value decomposition; Regular frame; Stress
constraints; Nonuniqueness of optimal solution

1 Introduction

Optimization of frames to minimize the total structural volume under stress and dis-
placement constraints for static loads is a standard problem of structural optimiza-
tion [1], and numerous number of results and solution methodologies have been pre-
sented [2]. Optimization under stress constraints has traditionally been solved by fully
stressed design (FSD), which is first presented by Michell [3]. Although optimization
problem under stress constraints is not equivalent to the FSD even for simple trusses
if the solution is statically indeterminate [4, 5, 6], the FSD is practically acceptable
because it generates approximate optimal solutions with small computational cost.

Recently, it has been pointed out that there may exist many FSDs with almost the
same total structural volume [7, 8]. Therefore, obtaining only one solution will not
be enough for practical purpose, where several solutions satisfying stress constraints
should be compared in view of other performance measures such as eigenfrequencies
and requirements in construction process. Furthermore, the objective function may
not be strictly minimized; i.e., it will be helpful for the designers if several approximate
solutions with different distributions of cross-sectional areas are obtained.

Nonuniqueness of the optimal solutions can be classified as:
1This paper has appeared in: Int. J. Numer. Meth. Engng., Vol. 67, pp. 132–147, 2006.
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(a) Local nonuniqueness due to independence of the displacements and the constraint
functions on the design variables, which is enhanced by regularity of the frame.

(b) Global nonuniqueness due to nonconvexity of the objective and/or constraint func-
tions.

Similar nonunique property can be observed for a plate discretized to finite elements [9].
The nonuniqueness of the solution has been thought to have negative effect which de-
teriorates the convergence property of the optimization algorithm. Jog and Haber [10]
suggested that the nonuniqueness of the solution to a compliance optimization prob-
lem can be detected by the singular values [11] of the matrix defined as the gradients
of the equivalent force vector with respect to the design variables. However, they did
not show how the singular vectors are used for finding approximate optimal solutions.
Furthermore, there is no general approach to optimization problems with; e.g., stress
and displacement constraints.

The nonconvex and nonunique properties, however, can be extensively used to find
many approximate optimal solutions. In this paper, a local search method is first
presented based on Singular Value Decomposition (SVD) of the stiffness matrix with
respect to the cross-sectional areas and the sensitivity matrix of the constraints of
the framed structures. The distance between the solutions is then defined, and the
approximate optimal solutions are consecutively found so as to maximize the distance
from the already found approximate solutions under constraint on upper bound of the
total structural volume. The effectiveness of the proposed methods is demonstrated
in application to a 6× 6 plane frame.

2 Optimization problem

Consider a rigidly-jointed regular plane frame as shown in Fig. 1. Let A∗
i denote the

cross-sectional area of the ith member. The second moment of area I∗i and the section
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Fig. 1: A 6-span 6-story frame.
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modulus Z∗
i are defined as functions of A∗

i . Hence, A∗
i can be considered as the design

variables for the following optimization problem.
The members are divided into groups based on the symmetry property, and the

number of variables is reduced by using the design variable linking approach. Let
Ai denote the cross-sectional area of the members in the ith group, and the vector
consisting of Ai is denoted by A. In the following, a component of a vector is indicated
by a subscript.

Let P denote the static load vector. The nodal displacement vector against P is
denoted by U that is found by solving the equilibrium equation as

K(A)U = P (1)

where K(A) is the stiffness matrix, and the deformation is assumed to be sufficiently
small. The equivalent nodal loads F(U,A) corresponding to U is defined by

F(U,A) = K(A)U (2)

The conventional assumption of rigid floor is used; i.e., the horizontal displacements
of the nodes in the same story are same. Hence, there is no axial deformation in the
beams. The stress constraints are assigned at the two ends of the members, and the
same upper bound σ̄ is given for the absolute values of the stresses. Therefore, we have
four points in a column, i.e., two flanges of two ends, for which the stress should be
constrained. However, the number of points for stress constraints is two for a beam,
because the beam has no axial deformation. Constraints are also given for the nodal
displacements.

Let gj(U(A),A) denote the jth constraint function of the optimization problem
representing the bound on a response such as stress and displacement. The total
length of the members in the ith group and the number of groups are denoted by Li

and m, respectively. The objective function is the total structural volume V . The
following optimization problem is to be solved:

OPT1 : minimize V (A) =
m∑

i=1

AiLi (3)

subject to gj(U(A),A) ≤ 0, (j = 1, . . . , s) (4)

AL
i ≤ Ai ≤ AU

i , (i = 1, . . . , m) (5)

where AL
i and AU

i are the lower and upper bounds for Ai, respectively, and s is the
number of constraints. OPT1 is a nonlinear programming problem that can be solved
by any optimization algorithm such as sequential quadratic programming.
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3 Local Search of Approximate Optimal Solutions

Since OPT1 is nonconvex, convergence to the global optimal solution is not guaranteed.
However, if the solutions with same objective value are always found starting from
different initial solutions, the solutions can be conceived as globally optimal. Even if
a solution is locally optimal, it satisfies the Karush–Kuhn–Tucker (KKT) conditions
that are the necessary and sufficient conditions for local optimality [12].

Let µj denote the Lagrange multiplier for the jth constraint. The derivative Si of
the Lagrangian with respect to Ai is given as

Si = Li +
s∑

j=1

µj
∂gj

∂Ai

, (i = 1, . . . , m) (6)

The KKT conditions are written as




Si = 0 for AL
i < Ai < AU

i

Si ≥ 0 for Ai = AL
i , (i = 1, . . . , m)

Si ≤ 0 for Ai = AU
i

(7)

with complementarity conditions

µj ≥ 0, gj ≤ 0, µjgj = 0, (j = 1, . . . , s) (8)

If A is locally optimal, there exist U and µj that satisfy the KKT conditions (7) and
(8).

Let JE denote the set of member groups that satisfy AL
i < Ai < AU

i . Eq. (7) for
i ∈ JE can be written as

Li +
s∑

j=1

µj
∂gj

∂Ai

= 0, (i ∈ JE) (9)

The number of groups in JE is denoted by nE. Let CE and sE denote the set of
independent active constraints and the number of constraints in CE. For a solution
with sE ≥ nE, e.g., a FSD, µj can be computed from (9) after obtaining A and U by
the active constraints gj = 0 (j ∈ CE).

Suppose that gj is a function of U only and does not explicitly depend on A. If
A, U and µj satisfying the KKT conditions are obtained and there exist a direction
vector ∆A of A that does not have any effect on U, then the optimal solution is locally
nonunique within first order approximation. For the case where P is independent of
A, the incremental form of (1) for variation of A is written as

K(A)∆U + KA(U,A)∆A = 0 (10)

where KA(U,A) is given using (2) as

KA(U,A) =
∂F(U,A)

∂A
(11)
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which is called stiffness matrix with respect to the cross-sectional areas. The nonunique-
ness of the optimal solution can be detected from (10) by computing the rank of KA

that depends on U.
For a frame with sandwich cross-section, where I∗i is proportional to A∗

i , KA does
not explicitly depend on A, and the ith column is equal to the sum of the nodal load
vectors corresponding to the unit value of Ai of the members in the ith group.

Let λi (λ1 ≥ λ2 ≥ . . . ) denote the ith singular value of KA, and the ith diagonal
component of the diagonal matrix Λ is λi. SVD of KA leads to

KA = QΛR> (12)

where the ith columns of Q and R are the singular vectors Qi and Ri, respectively,
corresponding to λi, and the following relation is satisfied:

KARi = λiQi, (i = 1, 2, . . . , m) (13)

It is assumed here that m is less than the number of degrees of freedom n, which
is usually satisfied by a rigidly-jointed regular frame. If KA is full rank, it can be
observed from (10) that there is no solution ∆A (6= 0 satisfying ∆U = 0. For a non-
optimal general frame, the rank of KA is m, because variation of A in any pattern
will lead to variation of U. However, it often happens for a regular frame as shown in
the following examples that rank(KA) is less than m. Consider the case, e.g., where
rank(KA) = m− 1. Since λm = 0,

KARm = 0 (14)

is satisfied. Therefore, ∆U = 0 from (10) for ∆A = Rm and U is constant within
first-order approximation if A is modified in the direction of Rm. The KKT conditions
are satisfied by the modified design if nE is not less than m, because µj can be found
from (9). This way, optimal solutions can be locally searched using SVD of KA.

Even if λm is not equal to 0 and has very small positive value compared to the
maximum value λ1, approximate optimal solutions can be found by searching in the
direction of Rm. However, in this case, more accurate directions can be found by
directly using the SVD of the sensitivity matrix G for which the (j, i)-component is
equal to the sensitivity coefficient of the jth constraint function with respect to the
ith design variable as

G =

[
∂gj

∂Ai

]
(15)

Note that the side constraints should be satisfied by the modified solution; i.e.,
∆Ai ≥ 0 for groups in JL satisfying Ai = AL

i , and ∆Ai ≤ 0 for groups in JU satisfying
Ai = AU

i . If it is not straightforward to find such feasible direction, it can be found
by solving an auxiliary optimization problem as a linear combination of the singular
vectors. Let ei denote the coefficient for Ri = {Ri,j}. The number of singular vectors
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to be considered is denoted by h. The coefficients are found by solving the following
optimization problem to minimize an objective function Q(e):

OPT2 : minimize Q(e) (16)

subject to
m∑

i=m−h+1

eiRi,j ≥ 0, (j ∈ JL) (17)

m∑

i=m−h+1

eiRi,j ≤ 0, (j ∈ JU) (18)

m∑

i=m−h+1

(ei)
2 = 1 (19)

Note that h is taken as the minimum value that has a feasible solution of OPT2. Since
the purpose of solving OPT2 is to find a direction satisfying the constraints (17) and
(18), Q(e) can be given arbitrary. Another norm constraint can also be given for (19).

4 Global Search of Approximate Optimal Solutions

Since OPT1 is a nonconvex problem, there may exist many local optimal solutions that
have slightly larger objective values than that of the global optimal solution. Also,
for a regular frame, we can find approximate optimal solutions in the neighborhood
of a local optimal solution as described in the previous section. In view of practical
application, the most preferred solution should be chosen from a set of approximate
solutions considering other performance criteria.

Let Ṽ denote the optimal objective value of OPT1. Assign the following requirement
as an approximate optimal solution:

V (A) ≤ Ṽ + ∆V (20)

where ∆V is assumed to be sufficiently small. Let Ãk denote the kth approximate
optimal solution that has been already found. The distance Dk between A and Ãk is
defined by the Euclidean norm as

Dk =

√√√√
m∑

i=1

(Ai − Ãk
i )

2 (21)

Let τ be an auxiliary variable, and the following optimization problem is solved for
maximizing the minimum distance from existing optimal solutions under constraints

6



on the responses and the total structural volume:

OPT3 : maximize τ

subject to τ ≤
√√√√

m∑
i=1

(Ai − Ãk
i )

2, (k = 1, 2, . . . , q) (22)

V (A) ≤ Ṽ + ∆V (23)

gj(U(A),A) ≤ 0, (j = 1, . . . , s) (24)

AL
i ≤ Ai ≤ AU

i , (i = 1, . . . , m) (25)

where q is the number of approximate solutions that have been already found. This
way, approximate optimal solutions with various distributions of cross-sectional areas
can be found consecutively by solving OPT3.

5 An Illustrative Example

In the following examples, including the plane frame in the next section, the units
of force and length are kN and mm, respectively. Optimization is carried out by
IDESIGN Ver. 3.5 [13], where the sequential quadratic programming is used. Sensi-
tivity coefficients of stress and displacement are found using the standard approach of
direct differentiation method.

Nonuniqueness of the optimal solution is first investigated by a continuous beam
as shown in Fig. 2, where the numbers with and without parentheses are member
numbers and node numbers, respectively. The length of each beam is 2000, and the
elastic modulus is 200. The lower bound AL

i for the cross-sectional area is 100. Upper
bound is not given for Ai. The applied nodal moment is 10000. Design variable linking
is not used, i.e., the number of variables m is 6.

Consider a sandwich cross-section defined by

I∗i = (r∗i )
2A∗

i (26)

where r∗i = 50 is the radius of the ith member. Constraints are given for the stresses
at two ends of each member.

Let θi denote the rotation of the ith node. To investigate the special case of
nonunique optimal solution, we assign a periodic boundary condition such that θ1 = θ7.
Uniform random number ti ∈ [0, 1) is generated to define the initial solution as

Ai = A0(1 + cti), (i = 1, . . . , m) (27)

1 2 3 4 5 6 7

(1) (2) (3) (4) (5) (6)

Fig. 2: A 6-span continuous beam.
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Table 1: Optimization results of the beam.

c = 0 c = 0.5 c = 1.0 c = 2.0
A1 714.286 717.170 719.964 724.229
A2 714.286 711.401 708.607 704.343

V (×106) 8.57143 8.57143 8.57143 8.57143

where c is a parameter, and A0 = 100 for this example.
Table 1 shows the optimization results from various initial solutions. Note that each

optimal solution has been found with 8 iterations, and satisfies at least one of the
stress constraints in each member in equality. All the solutions are periodic such that
A1 = A3 = A5 and A2 = A4 = A6. It is seen from Table 1 that the objective value is
same for all cases, although the cross-sectional areas are different. The nodal rotations
have the same value 4.6667× 10−3.

The rank of KA is 5, and the singular values are 14.000, 12.124, 12.124, 7.0000,
7.0000, 0.0. The singular vector R6 corresponding to the vanishing singular value
is (−1, 1,−1, 1,−1, 1) after normalization. Therefore, the optimal solutions can be
written with a parameter α as

A1 = A3 = A5 = 714.286 + α,

A2 = A4 = A6 = 714.286− α
(28)

which agree with the results in Table 1.
If the constraint θ1 = θ7 of the periodic boundary condition is not given, the rank

of KA of the optimal solution is 6, and the singular values are 12.064, 11.151, 9.1058,
8.3791, 5.3656, 2.7534. Therefore, the rank deficiency of KA is related to the regularity
of the frame.

6 Numerical Example of a Regular Frame

6.1 Description of the frame model

Optimal solutions are found for a 6-story 6-span frame as shown in Fig. 1, where
H = W = 4000, m∗ = 84, n = 97, and m = 45 considering the symmetry condition.
Note that the units of force and length are kN and mm also in this section. Only
horizontal loads are applied, and (P1, P2, P3, P4, P5, P6) = (50, 100, 150, 200, 250, 300)
in Fig. 1. The elastic modulus is 200. The upper bound AU

i is not given for Ai. The
objective function in OPT2 is given as

Q(e) =
h∑

i=1

m∑
j=1

eiRi,j (29)
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Table 2: Optimization results of the frame.

c = 0 c = 0.5 c = 1.0 c = 2.0
A1 22047.3 22041.2 22040.5 22036.4
A2 14026.0 13992.8 14008.7 13983.8
A3 8266.1 8265.3 8274.1 8271.7
A4 4474.1 4486.2 4473.1 4484.5

V (×109) 2.4824 2.4824 2.4824 2.4824

6.2 Local search for frame with sandwich section

The lower bound for the cross-sectional area is 3000, and r∗i = 250 for all members.
The initial solutions are randomly generated by (27) with A0 = 3000.

The optimal objective values for all the cases are 2.4824× 109, although the cross-
sectional areas are different as shown in Table 2. The values of A1, . . . , A4 of the
external column of stories 1–4 are also shown in Table 2. It is observed that the
optimization algorithm converges to global optimal solutions, but the uniqueness of
the solution is not satisfied. The optimal solution for c = 0, denoted by optimal
solution 1, is shown in Fig. 3, where the width of each member is proportional to its
cross-sectional area.

The optimal solution is fully stressed; i.e., the maximum absolute values of the
stresses are equal to the upper bound σ̄ for all groups. The number of active constraints
at the optimal solution is 126, which is larger than n (= 97), for all the cases. Therefore,
the displacements are uniquely determined by the active constraints.

SVD has been carried out for KA of the optimal solution 1 in Fig. 3. The 20 lowest
and the maximum singular values are listed in the 1st column of Table 3. Note that
λ45, . . . , λ29 are relatively small compared with the maximum value λ1, but λ28 is about
8 times as large as λ29.

Let σij denote the stress at the jth point where the stress is constrained in the
ith member. The accuracy of an approximate solution is confirmed by the maximum
stress ratio β defined by

β = max
i,j

( |σij|
σ̄

)
(30)

Fig. 3: Optimal solution 1 (sandwich section)
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Table 3: Singular values of the optimal solutions with sandwich section.

Sandwich section H-beam and box-solumn
KA G KA G

λ45 5.9151× 10−3 1.0672× 10−20 1.0114× 10−2 4.0244× 10−20

λ44 8.3172× 10−3 1.1750× 10−20 1.1006× 10−2 5.5420× 10−20

λ43 1.3406× 10−2 1.5271× 10−20 1.1598× 10−2 6.6670× 10−20

λ42 1.7397× 10−2 2.3706× 10−20 1.5443× 10−2 8.4620× 10−20

λ41 1.9328× 10−2 3.0968× 10−20 1.7206× 10−2 1.1879× 10−19

λ40 2.0601× 10−2 3.8565× 10−20 2.2926× 10−2 1.5696× 10−19

λ39 2.4255× 10−2 4.5570× 10−20 2.3577× 10−2 1.6586× 10−19

λ38 2.7042× 10−2 4.7258× 10−20 2.5175× 10−2 3.3047× 10−19

λ37 2.9890× 10−2 5.4876× 10−20 3.3748× 10−2 4.7740× 10−19

λ36 3.6977× 10−2 5.8879× 10−20 3.7028× 10−2 9.3395× 10−19

λ35 4.0571× 10−2 9.1018× 10−20 4.0585× 10−2 2.9089× 10−18

λ34 4.2824× 10−2 9.7051× 10−20 4.5260× 10−2 7.4879× 10−6

λ33 5.2246× 10−2 1.0483× 10−19 5.3971× 10−2 1.1227× 10−5

λ32 5.8112× 10−2 1.1878× 10−19 6.4710× 10−2 1.3807× 10−5

λ31 6.7549× 10−2 1.5394× 10−19 7.6041× 10−2 1.5792× 10−5

λ30 8.3303× 10−2 2.1828× 10−19 7.8555× 10−2 1.8081× 10−5

λ29 1.0452× 10−1 2.5267× 10−19 9.7808× 10−2 3.0958× 10−5

λ28 7.8204× 10−1 4.4907× 10−6 3.2119 3.4460× 10−5

λ27 18.313 1.7936× 10−5 15.193 4.3629× 10−5

λ26 33.031 2.5408× 10−5 24.993 4.9311× 10−5

· · · · · · · · · · · · · · ·
λ1 124.528 3.38253× 10−4 177.304 4.46112× 10−4

where β = 1 for the optimal solution. Since all the components R1,i (i ∈ JL) have
positive values for this example, the cross-sectional areas are parametrically varied in
the direction of the singular vector R45 corresponding to the lowest singular value as
A + αR45, where α is a parameter. The maximum value of |R1,i|/Ai among all the
groups is denoted by η. The ratio of V to that of the optimal solution is denoted by
γ. Variations of β and γ with respect to the cross-sectional parameter η are as shown
in Fig. 4.
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For example, if η = 0.1; i.e., if we allow 10% variation of Ai, then β = 1.0024, and
the increase of the maximum stress ratio β from 1 is very small compared with η.
The ratio γ of the total structural volume V for η = 0.1 is 0.99898, i.e., the variation
of the objective value is very small, but it decreases in the process of searching the
approximate solutions.

Next, SVD has been carried out for G of the optimal solution 1 in Fig. 3. The 20
lowest and the maximum singular values are listed in the 2nd column of Table 3. Note
that the singular values for G are much smaller than those of KA. However, the ratio
of the minimum value λ45 to the maximum value λ1 plays the crucial role for accuracy
of the approximate solutions. Since λ45/λ1 has smaller value in G than in KA, more
accurate solutions may be expected to be obtained by the singular vectors of G than
those of KA.

The problem OPT2 has been solved to obtain the feasible direction satisfying the
side constraints. The vector Ri is normalized by R>

i Ri = 1. The value of h is 4 for
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Table 4: Optimization results of the frame (H-beam and box-column).

c = 0 c = 0.5 c = 1.0 c = 2.0
A1 11996.3 12102.1 17874.2 12101.8
A2 16603.0 16554.9 5000.0 16555.0
A3 5000.0 5000.0 5000.0 5000.0
A4 17011.5 16961.2 5000.0 16961.2

V (×109) 4.1147 4.1147 4.0912 4.1147

this case, and the variations of β and γ with respect to η are as shown in Fig. 5. It is
confirmed from Figs. 4 and 5 that approximate solutions with good accuracy can be
obtained by SVD of G.

6.3 Local search for frame with H-beam and box-column

Optimal solutions are found for the frame in Fig. 1 that consists of beams with H-
section and columns with box-section. The following relations are assumed so that

Fig. 6: Optimal solution (H-beam and box-column); c = 1.0.

Fig. 7: Optimal solution (H-beam and box-column); c = 0.0.
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only the cross-sectional areas are the design variables [14]:

{
Columns : Ii = 1.076(Ai)

2, Zi = 0.804(Ai)
1.5

Beams : Ii = 3.648(Ai)
2, Zi = 1.580(Ai)

1.5 (31)

The upper bound 120 is given for the displacement in x-direction of the roof level,
which corresponds to 1/200 average drift angle. The lower bounds for Ai are 5000.0
for all the groups. The initial solutions are given by (27) with A0 = 5000.

The optimal cross-sectional areas of the exterior columns and the optimal objective
values are listed in Table 4, where the best solution has been chosen from randomly
generated 10 initial solutions for each case of c = 0.5, 1.0, 2.0, whereas the case
c = 0.0 is independent of the random numbers. The optimal objective value is same
for c = 0.0, 0.5 and 2.0, but is slightly different for c = 1.0. The cross-sectional
areas are not identical even if the objective values are same. The optimal solutions
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using singular vector of KA (Case 1: h = 3).
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using singular vector of KA (Case 2: h = 6).
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for c = 1.0 and 0.0 are shown in Figs. 6 and 7, respectively, where the distributions of
the cross-sectional areas are completely different.

The optimal solutions are fully stressed, and the displacement constraint is satisfied
in equality. SVD has been carried out for KA of the optimal solution in Fig. 6 for
c = 1.0. The singular values are listed in the 3rd column of Table 3, which have
larger values than those for sandwich section. Variations of β and γ with respect to
the cross-sectional parameter η are as shown in Fig. 8 in the direction of ∆A found
from OPT2, where h = 3. In this case, the maximum stress ratio decreases as η
is increased, because the direction that increases V has not been found. Therefore,
the number of modes h is increased to 6 in solving OPT2 to obtain the relations in
Fig. 9. It is observed from Figs. 4 and 9 that the frames with H-beam and box-section
has less accuracy than that with sandwich section, because Ii and Zi are nonlinear
functions of Ai. The singular values for G are listed in the 4th column of Table 3.
The approximation results using SVD of G are plotted in Fig. 10. Note from Figs. 9
and 10 that accuracy of the solutions is improved using G instead of KA.

6.4 Global search for frame with sandwich section

Approximate optimal solutions are consecutively found for the upper bound of V
that is 2% larger than the optimal objective value Ṽ of the solution in Fig. 3; i.e.,
∆V = 0.02Ṽ in (23).

OPT3 is to be solved to maximize the minimum distance from the existing ap-
proximate optimal solutions. The solutions 2–10 found consecutively are shown in
Figs. 11(a)-(i). Notice that the approximate solutions with various distributions of
cross-sectional areas have been successfully found. The constraints on the total struc-
tural volume is satisfied in equality in all the solutions.

The value of the minimum distance τ for solutions 2–10 are plotted in Fig. 12. It
can be confirmed from Fig. 12 that τ decreases as more solutions are found. This way,
approximate solutions can be globally searched.
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Fig. 10: Variation of the maximum stress ratio β (solid line) and the volume ratio γ
(dashed line) with respect to cross-sectional parameter η for H-beam and box-column
using singular vector of G.
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(a) Solution 2 (b) Solution 3 (c) Solution 4

(d) Solution 5 (e) Solution 6 (f) Solution 7

(g) Solution 8 (h) Solution 9 (i) Solution 10

Fig. 11: Approximate optimal solutions.

It is possible to incorporate directly the preference of the designer under constraint
(23) on the structural volume; e.g., the standard variation of cross-sectional areas can
be minimized as shown in Fig. 13(a), or the maximum cross-sectional area can be
minimized to result in Fig. 13(b), where the maximum value of Ai is 13878.8 which is
about 60% of 22047.3 of the solution 1.
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7 Conclusions

Methods of local and global searches of approximate optimal designs have been pre-
sented for regular frames subjected to static loads. Constraints are given for stresses
and displacements.

Nonuniqueness of the optimal solution has been first demonstrated by a continuous
beam with periodic boundary conditions for uniform loads. The optimal solutions can
be locally searched from a solution found from an arbitrary generated initial solution.
The search direction is determined by SVD of the stiffness matrix with respect to the
cross-sectional areas or the sensitivity matrix of the constraints.

Approximate optimal solutions can be globally and consecutively found so as to
maximize the distance from the already found solutions under stress and displacement
constraints. The distance between the solutions is defined by the Euclidean norm of the
differences in the cross-sectional areas. The constraint is given for the total structural
volume, where the specified upper bound is slightly larger than the objective value of
an optimal solution.
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Fig. 13: Optimal solution for direct preference of cross-sectional areas; (a) minimum
variation, (b) minimum maximum value.
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The effectiveness of the proposed methods has been demonstrated in application to
a regular plane frame. Approximate optimal solutions have been successfully found
using the singular vectors of the stiffness matrix with respect to the cross-sectional
areas. However, accuracy of the solutions can be improved using the singular vectors
of the sensitivity matrix of the constraints.
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