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Abstract
The purpose of this review paper is to summarize the existing methods of de-
sign sensitivity analysis and optimization of elastic conservative finite dimensional
systems with respect to nonlinear buckling behavior. Difficulties related to geo-
metrical nonlinear singular behaviors are discussed in detail. Characteristics of
optimized structures are demonstrated in reference to snapthrough behavior, hill-
top branching, and degenerate critical points. A new optimization result of a
flexible truss that fully utilizes the snapthrough behavior is also presented.
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1 Introduction

In the early stage of optimum design under buckling constraints, optimal shapes of
columns were investigated by analytical approaches. Prager and Taylor (50) derived
optimality conditions for columns under linear buckling constraints. Since then, nu-
merous number of works have been published on sensitivity analysis and optimization
of column-type structures under linear buckling constraints, where difficulties due
to discontinuity of sensitivity coefficients related to multiple eigenvalues have been
extensively discussed. Optimization methods of columns under linear buckling con-
straints are not included in this review article, because they can be found in the
literature (45; 14; 57).

Optimization of finite-dimensional structures against buckling started in 1970’s. Lin-
ear buckling formulation was first used neglecting prebuckling deformation. Khot et
al. (24) presented an optimality criteria approach for trusses and frames. They ap-
plied their method to a shallow truss, although it is clear that prebuckling deforma-
tion should be incorporated for those structures. In 1980’s, more practical problems
were studied incorporating constraints on displacements and stresses as well as lin-
ear buckling load factor (33). Difficulties due to multiple eigenvalues also exist for
finite dimensional structures. Recently, it was shown that the optimum design with
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multiple linear buckling load factors can be found by successively solving SemiDefinite
Programming (SDP) (22; 29) without any difficulty by using an interior point method.

Small trusses exhibiting limit point instability were studied in the early stage of
optimization of geometrically nonlinear finite dimensional structures (49). The maxi-
mum total potential energy was also used as the performance measure (23), although
it is not clear if maximization of the total potential energy is equivalent to that of
the limit point load factor. Kamat and Ruangsingha (21) presented a mathematical
programming approach for maximizing limit point loads.

In 1990’s, numerical approaches were presented for optimum designs of moderately
large geometrically nonlinear structures. Optimality criteria approaches were mainly
used for maximizing the limit point load factor (55; 32). Although iterative approaches
that are similar to the fully stressed design are simple to implement, the optimality of
the solutions derived by those methods is not theoretically clear. Ohsaki and Naka-
mura (42) presented a method based on parametric programming approach.

For building frames, optimization methods were developed independently from gen-
eral finite dimensional structures, because they have unique situation such as brace
buckling and interaction of local and global buckling modes (27). Numerical methods
utilizing the characteristics of building frames were developed by Hall et al. (13) and
Bažant and Xiang (3). Hjelmstad and Pezeshk (15) presented an optimality criteria
approach for buckling and displacement constraints under lateral loads.

In this paper, methods of sensitivity analysis of geometrically nonlinear buckling
loads and formulations of optimization problems are reviewed. Note that problems
relating to linear buckling are out of scope of this paper. In the following, geometrical
nonlinearity means effect of large deformation, where the strains are restricted in a
small range. Historical backgrounds as well as scopes for future research are included.
Only conservative systems subjected to quasi-static proportional loads are considered.
Non-conservative systems, dynamic problems, control problems, and path-dependent
problems are beyond scope of this review. Although we concentrate on finite dimen-
sional systems, the methods and problem formulations presented in this paper are
valid also for continuum discretized by a finite element approach.

In Section 2, the basic equations and classification of critical points are briefly pre-
sented. In Section 3, possible formulations of optimization problems and difficulties
for obtaining optimal solutions are discussed in relation to snapthrough behavior. The
existing methods of sensitivity analysis of geometrically nonlinear responses and crit-
ical load factors are reviewed in Section 4. The difficulties due to hill-top branching
and degenerate critical point are presented in Section 5. In Section 6, existing studies
on imperfection sensitivity of optimized structures are shown. Finally in Section 7, a
new result is presented for a flexible truss to generate large deformation efficiently by
incorporating snapthrough behavior.
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2 Geometrically nonlinear analysis.

Consider a finite dimensional elastic structure subjected to quasi-static proportional
loads P = Λp, where Λ is the load factor and p is the specified vector of load pattern.
Let A denote the vector of design variables such as stiffnesses of elements and locations
of nodes. Note that p is also a function of A for the case, e.g. self-weight is considered.
The vector of nodal displacements is denoted by U(Λ,A) = {Ui(Λ,A)} which is a
function of Λ and A. In the following, a subscript is used for indicating an element of
a vector.

Equilibrium equations are given as

F(U(Λ,A),A) = Λp(A) (1)

where F is the vector of equivalent nodal loads defined as a nonlinear function of
U(Λ,A) and A. In the following, the arguments U, Λ and A are written explicitly
only when defining a new variable or dependence on these variables should be clearly
stated. The curve in the U−Λ space formed by the points that satisfy the equilibrium
equation (1) is called equilibrium path that is traced by an incremental and/or iterative
approach. The equilibrium path that originate from the undeformed initial state is
called fundamental equilibrium path. Green’s strain and the second Piola-Kirchhoff
stress are usually used for defining geometrically nonlinear strain-displacement relation
and the constitutive relation of the elastic material. In some cases, e.g. for a large and
complex structure, it is not straightforward to construct analysis model and to trace
the equilibrium path. However, the objective of this paper is to present optimization
formulations and sensitivity analysis methods corresponding to nonlinear buckling.
The details on geometrically nonlinear analysis may be consulted to, e.g. Refs. (8; 2).

Let S(U(Λ,A),A) denote the total strain energy of the structure. For an elastic
conservative system subjected to proportional nodal loads, F can be obtained from
the stationary conditions of S as

Fi =
∂S

∂Ui

, (i = 1, 2, . . . , n) (2)

where n is the number of degrees of freedom. The total potential energy Π(U(Λ,A), Λ,A)
is defined as

Π(U(Λ,A), Λ,A) = S(U(Λ,A),A)− ΛU(Λ,A)�p(A) (3)

where ( )� indicates the transpose of a vector or a matrix. The equilibrium equation
is written by the stationary condition of Π as

∂Π

∂Ui

=
∂S

∂Ui

− Λpi

= Fi − Λpi

= 0, (i = 1, 2, . . . , n)

(4)

3



The tangent stiffness matrix K is defined as the Jacobian matrix of F or Hessian of
Π with respect to U; i.e. the (i, j)-component Kij of K is obtained from

Kij =
∂Fi

∂Uj
=

∂2Π

∂Ui∂Uj
, (i, j = 1, 2, . . . , n) (5)

The detailed process and the computational difficulties for computing K are also out
of scope of this paper.

Let λr and Φr denote the rth eigenvalue and eigenvector of K; i.e.

KΦr = λrΦr, (r = 1, 2, . . . , n) (6)

where Φr is normalized by

Φ�
r Φr = 1, (r = 1, 2, . . . , n) (7)

The critical load factor, or the nonlinear buckling load factor, Λc is defined as the
value of Λ that satisfies λ1 = 0, where λ1 is the lowest eigenvalue of K. Define β by

β =

n∑

i=1

piΦ
c
1i (8)

where Φc
1i is the ith component of the lowest eigenvector at the critical point. The

critical points are classified as

Limit point : β �= 0

Bifurcation point : β = 0
(9)

It can be seen from (8) and (9) that the buckling mode Φ1 is orthogonal to the load
vector for the bifurcation point. The details of the classification are not presented
here, because only (9) should be clearly stated for discussing the differences between
sensitivity analysis methods of limit point and bifurcation loads.

There are many numerical approaches for finding the critical points (66; 52; 10). The
critical point can be pinpointed within arbitrary accuracy by iteratively solving the
extended system formulated by (4) and (6) for r = 1, λ1 = 0. Since the computation of
critical points is beyond the scope of this review paper, it is assumed in the following
that the critical points can be found within arbitrary good accuracy.

3 Formulation of optimum design problem and dif-

ficulties due to snapthrough behavior.

3.1 Illustrative example of a 2-bar truss

To illustrate the difficulties in optimization of geometrically nonlinear structures con-
sidering buckling behavior, three cases as listed in Table 1 are solved for a 2-bar truss
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Fig. 2: Relation between u and Λ of the 2-bar truss.

Table 1: Formulations of optimization problems of a 2-bar truss.

Objective function Constraints

Case 1 min
A

u(Λ̄) V ≤ V̄

Case 2 min
A

V u(Λ̄) ≤ ū

Case 3 max
A

max
u

Λ(u) u ≤ ū, V ≤ V̄

as shown in Fig. 1. A proportional load Λp is applied in y-direction at the center node.
The solid and dashed lines are the members after and before deformation, respectively.

In the following examples, W = 1000 mm, H = W/
√

3, p = 1000 kN, and the elastic
modulus E is 200 kN/mm2. The units of force and length are kN and mm, respectively.
The length of each member before deformation is denoted by L0. The exact strain-
displacement relation is used, i.e. the length L of a member after deformation is
computed from the Euclid distance between the nodes, and the strain ε is defined as
(L − L0)/L0. The material property is assumed to be linear elastic.

By using the symmetry condition with respect to the y-axis, the truss has only
one design variable that is the cross-sectional area A of the two members. Since the
inequality constraints are satisfied in equality at the optimal solutions of the following
three trivial optimization problems, A is obtained directly from the constraints, and
no optimization process is needed for obtaining the optimal value of A.
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Let u denote the displacement in y-direction of the center node. The relation be-
tween u and Λ is as shown in Fig. 2. The limit point indicated by S is reached
as Λ is increased, and the equilibrium state jumps to T after dynamic deformation
called snapthrough. The solid and dashed curves indicate stable and unstable equi-
librium states, respectively. The equilibrium states before the limit point and after
snapthrough are indicated by ‘a’ and ‘b’, respectively. Note that the value of u at
the limit point, which is denoted by uc, is independent of A in this example, and
uc � 240.0. Therefore, it may not be admissible to formulate a problem considering
the displacement constraints at the limit point. It might seem that this indepen-
dence of the displacement at the limit point on the design variables is a very special
situation for this small model. However, it often happens that the critical state is
strongly related to the shape of deformation. The independence or insensitivity of the
deformation at the critical point on the design variables makes optimization process
complicated; i.e. the responses at the critical points cannot be modified effectively by
varying the design variables.

To investigate other difficulties relating to snapthrough, consider three optimization
problems as listed in Table 1, where a bar indicates a specified value, and V is the total
structural volume; i.e. V = 2AL0. For Case 1, the displacement u at Λ = Λ̄ = 1.0
is to be minimized. Since V is an increasing function of A and u(Λ̄) is a decreasing
function of A, the optimal value of A is computed from V (A) = V̄ .

If V̄ is sufficiently large, u(Λ̄) is in a small range, and the optimal value of A is
almost same as the geometrically linear case. The value of u(Λ̄) gradually increases as
V̄ is decreased, as shown in Fig. 3, and the equilibrium state at Λ = Λ̄ reaches the limit
point at V̄ = V̄ S � 1.05×105 denoted by ‘S’ in Fig. 3. Note that the curves ‘a’ and ‘b’
in this figure indicate that the equilibrium state at Λ = Λ̄ is in the regions ‘a’ and ‘b’,
respectively, in Fig. 2. By further decreasing V̄ from V̄ S, the equilibrium state jumps
to the post-buckling state ‘T’ defined in Fig. 2; i.e. u(Λ̄) increases discontinuously at
V̄ = V̄ S. Therefore, there exist discontinuities in optimal solution and the sensitivity
coefficient of u(Λ̄) with respect to A, which lead to divergence of optimization process
if a gradient-based optimization algorithm is used for a large structures with many
members.

Consider Case 2, where an upper bound ū is given for u(Λ̄) and V is to be minimized.
Let Λ̄ = 1 for simplicity. In this case, V decreases rapidly as ū is increased from a
small value as shown in Fig. 4 until reaching ū = uc at ‘S’. If ū ≤ uc, the equilibrium
state at Λ = Λ̄ is in region ‘a’ defined in Fig. 2. For ū ≥ uc, V has a constant value
because u(Λ̄) = uc should be satisfied at the optimal solution. At point ‘T’ in Fig. 4,
ū reaches the value of u denoted by u∗ at ‘T’ defined in Fig. 2. If buckling is allowed
at Λ < Λ̄, V decreases in the region u(Λ̄) > u∗ as shown in the dashed curve in Fig. 4.
However, if buckling is not allowed, ū = uc should be satisfied and V has a constant
value at the optimal solution for ū > u∗. Consequently, the optimal solution allowing
buckling before reaching the final load level is quite different from the solution where
buckling is not allowed.

For Case 3, the maximum value ΛM of Λ in the range u ≤ ū is to be maximized under
constraint V ≤ V̄ . Fig. 5 shows the relation between ū and ΛM for V̄ = 1.0 × 105.
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Fig. 4: Variation of the optimal structural volume of Case 2.

If ū is small enough, ΛM that is equal to Λ at u = ū is an increasing function of ū
as shown in Fig. 5. However, if uc ≤ ū ≤ u∗, ΛM has the constant value because Λ
takes the maximum value at the limit point. For ū ≥ u∗, Λ has the maximum value
in region ‘b’ defined in Fig. 2, and ΛM is an increasing function of ū. Note that the
plot in Fig. 5 is same as that of the snapthrough behavior in Fig. 2.

3.2 Illustrative example of a 24-bar truss

Consider a 24-bar truss as shown in Fig. 6 to discuss more general situation. The
numbers with and without parentheses, respectively, are the numbers of members and
nodes. The nodal coordinates are as listed in Table 2. A concentrated load is applied
in the negative z-direction at node 1 located at the center. Let Ai denote the cross-
sectional area of the ith member. The members are divided into two groups; i.e.
members 1-6 that are connected to the center node are in group 1, and the remaining
members are in group 2. The cross-sectional areas are assigned by using the scalar A
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Fig. 6: A 24-bar truss.

and the ratio α as

Ai = A, (i = 1, 2, . . . , 6)

Ai = αA, (i = 7, 8, . . . , 24)
(10)

Let u denote the displacement in the negative z-direction of node 1. The relation
between u and Λ for α = 1 is plotted in Fig. 7. It can be seen from Fig. 7 that a
limit point is reached as Λ is increased. Fig. 8 shows the relation between α and the
displacement uc at the limit point for designs satisfying V = 7000. It can be observed
from Fig. 8 that uc is very insensitive to the design modification as suggested in the
example of the 2-bar truss.

Consider the same optimization problems 1-3 as listed in Table 1. For a fixed value
of α, V is an increasing function of A. On the other hand, u(Λ̄) and max

u
Λ(u) are

8



Table 2: Nodal coordinates (mm) of the 24-bar truss.

Node Number x y z
1 0.0 -5000.0 0.0
2 -4330.0 -2500.0 0.0
3 -1250.0 -2165.0 621.6
4 1250.0 -2165.0 621.6
5 4330.0 -2500.0 0.0
6 -2500.0 0.0 621.6
7 0.0 0.0 821.6
8 2500.0 0.0 621.6
9 -4330.0 2500.0 0.0
10 -1250.0 2165.0 621.6
11 1250.0 2165.0 621.6
12 4330.0 2500.0 0.0
13 0.0 5000.0 0.0
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Fig. 7: Equilibrium path of the 24-bar truss for α = 1.

non-increasing function of A. Therefore, the constraint V ≤ V̄ or u(Λ̄) ≤ ū is satisfied
in equality at the optimal solution, and the value of A can be obtained from the
constraint for each case. This way, α can be taken as the design variable for Cases
1-3, and the properties of sensitivity coefficients of u(Λ̄) and max

u
Λ(u) with respect to

α are discussed in the following.
Let Λ̄ = 0.3 and V̄ = 7000 for Case 1. u(Λ̄) is plotted in Fig. 9 with respect to α for

designs satisfying V = V̄ . It is seen from Fig. 9 that u(Λ̄) is a discontinuous function
of α. If α is very large, the members 1-6 around the center have small cross-sectional
areas, and a limit point is reached as Λ is increased before reaching Λ̄. On the other
hand, if α is very small, the circumferential members 7-12 have small cross-sectional
areas and members 1-6 can easily rotate. Therefore, a limit point exist at a small load
level also for this case. ‘a’ and ‘b’ in Fig. 9 indicate that Λ reaches Λ̄ in the regions
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‘a’ and ‘b’, respectively, shown in Fig. 7. u(Λ̄) has minimum value at α � 0.47 which
corresponds to the optimum design.

For Case 2, the value of V satisfying the constraint u(Λ̄) = ū is a discontinuous
function of α, because u at Λ = Λ̄ for fixed V is a discontinuous function of α as
observed from Fig. 9. Let ū = 45.0 and V̄ = 7000 for Case 3. The load factors at the
limit point and at u = 45.0 are plotted in Fig. 10, respectively, in solid and dashed
curves. Note that the limit point load coincides with Λ at u = 45.0 at α � 0.41,
where the sensitivity coefficient of max

u
Λ(u) with respect to α varies discontinuously.

Note also that the value of u that takes the maximum value of Λ is discontinuous with
respect to α at α � 0.41. Therefore, convergence of optimization method will not be
guaranteed if a gradient-based method is used.
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4 Sensitivity analysis of responses at the critical

points.

4.1 Sensitivity analysis at regular states.

The formulations of sensitivity analysis at regular (noncritical) states are presented to
provide the basic equations for sensitivity analysis at the critical points. Only elastic
conservative systems are considered. The path-dependent problems with material
nonlinearity can be consulted to Kleiber (25). It is known that the consistent tangent
operators should be used in deriving sensitivity equations for creep problem (65) and
general rate-independent elasto-plastic problem (64).

If the responses such as displacements and stresses are monotonically increasing
functions of the load factor, sensitivity coefficients of nonlinear responses of elastic
structures can be obtained from the information at the final load level; i.e. no in-
cremental process is needed for design sensitivity analysis (7) although the responses
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should be found incrementally or by direct iteration at the final load level if the itera-
tion converges. Fig. 11 illustrates the variation of the equilibrium path with respect to
the modification of the design variable Ai by ∆Ai from A0

i . The purpose of design sen-
sitivity analysis is to obtain the rate of variation of the responses at a fixed load level
Λ = Λ0 with respect to the variation of a design variable such as the cross-sectional
area of a member or a coordinate of a node.

Let a tilde indicate partial differentiation of the explicit terms; i.e.

∂F̃

∂Ai
=

∂F(U,A)

∂Ai
(11)

By differentiating (4) with respect to Ai for a fixed value of Λ, and by using (5), the
following relation is derived:

K(U,A)
∂U(A)

∂Ai
= Λ

∂p̃(A)

∂Ai
− ∂F̃(U,A)

∂Ai
(12)

The right-hand-side terms in (12) are the differentiation of the explicit terms of A,
which can be easily obtained; e.g. p is a linear function of Ai if it represents the
self-weight and Ai is a cross-sectional area of a member or the thickness of a plate
element.

The sensitivity equation (12) at a regular state has a similar form as geometrically
linear problems. However, K depends on U for geometrically nonlinear case. The
equivalent nodal loads F is also a nonlinear function of U, although it is a linear
function of U for a geometrically linear case. The computation of K and F depends
on the definitional of strains and stresses. The readers may consult Refs (54; 36) for
the details to concentrate in this paper on sensitivity analysis and optimization related
to geometrically nonlinear buckling problems.

The dependence of F on Ai for fixed U are known before constructing the element
stiffness matrix. The tangent stiffness matrix K has been factorized at the final step of

analysis. Therefore,
∂U(A)

∂Ai
can be computed from (12) within very small additional

computational cost.

4.2 Sensitivity analysis at critical states.

There have been numerous number of researches for sensitivity analysis of critical
loads of elastic conservative systems. The purposes of those papers are to investigate
the variation of critical load with respect to initial imperfections such as material
defects and manufacturing errors. On the other hand, sensitivity analysis has been
developed in the field of optimization to compute the variation of the critical loads with
respect to design modification. Since those results are mathematically equivalent, the
valuable results in general theory of elastic stability can effectively be used in design
sensitivity analysis for structural optimization (42). In this paper, we concentrate
on application to structural optimization, and the topics related only to imperfection
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sensitivity analysis are not included. We also exclude linear buckling loads, because
there have been good review papers; e.g. by Seyranian et al. (57) especially for
sensitivity analysis of multiple buckling loads.

Sensitivity coefficients of limit point loads can be found easily only from the equi-
librium equations. By differentiating (4) with respect to Ai at the limit point Λ = Λc

and by considering Λc as function of Ai, the following relation is derived:

K
∂U

∂Ai
=

∂Λc

∂Ai
p + Λc ∂p̃

∂Ai
− ∂F̃

∂Ai
(13)

where (5) has been used. By premultiplying the lowest eigenmode Φc
1 to the both sides

of (13), and by using λ1 = 0 at the limit point for (6), the sensitivity coefficient of the
limit point load is obtained as

∂Λc

∂Ai
=

Φc�
1

∂F̃

∂Ai
− ΛcΦc�

1

∂p̃

∂Ai

Φc�
1 p

(14)

Note from (9) that the denominator of (14) vanishes at a bifurcation point. Therefore,
(14) is valid only for a limit point (47), and the sensitivity coefficients of the limit point
load can be found without computing the sensitivity coefficients of displacements as
observed from (14).

There have been many studies on design sensitivity analysis of critical load factors.
However, the sensitivity equations derived for the limit point loads are essentially same
as those derived in the field of stability analysis of elastic conservative systems (59; 61).
Furthermore, there have been numerous number of papers on imperfection sensitivity
analysis of bifurcation loads.

It is important to note that the bifurcation points usually exist in the case where
the structure to be designed has a symmetry property. Therefore, for the purpose
of optimum design, only symmetric design modification, which is regarded as a spe-
cial type of imperfection, should be considered for calculating sensitivity coefficients.
Fig. 12 illustrates symmetric and antisymmetric design modification of a symmetric
frame that can be conceived as initial imperfections.

Suppose the initial perfect symmetric system has a bifurcation point. For a design
modification corresponding to symmetric imperfection, the critical point of a modified
symmetric structure is still a bifurcation point as illustrated in Fig. 13, where the
dashed line and curve are the fundamental equilibrium path and the bifurcation path
of the original perfect structure, respectively, and the solid curves are the bifurcation
paths of the modified imperfect structures. The horizontal axis Ua represents an anti-
symmetric component of displacements. Since the bifurcation path is symmetric with
respect to Λ-axis and Λ decreases along the bifurcation path, this bifurcation point
is called symmetric unstable bifurcation point. The imperfection that preserves the
bifurcation property is categorized as minor imperfection or second order imperfec-
tion (53; 61), and the variation of the bifurcation load factor is a linear function of the
imperfection parameter.

13



Symmetric imperfection Antisymmetric imperfection

Perfect

Fig. 12: Classification of imperfections that are considered as design modifications.

On the other hand, for a design modification corresponding to asymmetric imper-
fection, the critical point of a modified antisymmetric structure is a limit point as
illustrated in Fig. 14 if the bifurcation point of the perfect structure is symmetric and
unstable. In this case, the imperfection is called major imperfection or first order im-
perfection, and imperfection sensitivity of the critical load factor is infinity given by
the well-known 2/3-power law (26). Sensitivities relating to minor and major imper-
fections, respectively, are also called regular sensitivity and singular sensitivity (34).
If the bifurcation point is stable, the critical point along the fundamental path dis-
appears as discussed in Section 6. Suppose we formulate an optimization problem to
maximize the bifurcation load factor. A path-following analysis to find the bifurca-
tion load should be carried out at each iterative step of optimization. However, the
analysis may not stop if asymmetric design modification is allowed. Therefore, the
feasible design should be strictly limited to be symmetric to prevent any divergence
in the optimization process.

Since sensitivity analysis of bifurcation loads with respect to minor imperfection
is practically important for application to structural optimization, two methods are
briefly presented in the following.

Fig. 15 illustrates the variations of λ1 for designs defined by Ai = A0
i and Ai =

A0
i + ∆Ai. Since the bifurcation load factor Λc is defined as the value of Λ at which
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Fig. 14: Equilibrium paths of imperfect systems corresponding to asymmetric imper-
fections for an unstable symmetric bifurcation point.

λ1 = 0 is satisfied, the sensitivity of Λc can be obtained as the differential coefficient of
Λ under constraint λ1 = 0. Consider first a general case of λ1 �= 0, and let λ∗ denote
the specified value for λ1. The values corresponding to λ1 = λ∗ are denoted by ( )∗.
By differentiating (5)-(7) with respect to Ai for λ1 = λ∗, the following relations are
derived (43):

∂F̃

∂Ai
+ K∗∂U∗

∂Ai
= Λ∗ ∂p̃

∂Ai
+

∂Λ∗

∂Ai
p (15)

∂K̃

∂Ai
Φ∗

1 +
n∑

j=1

∂K

∂Uj

∂U∗
j

∂Ai
Φ1 + K∗∂Φ∗

1

∂Ai
= λ∗∂Φ∗

1

∂Ai
(16)

2Φ∗�
1

∂Φ∗
1

∂Ai
= 0 (17)
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Note that Λ∗, U∗ and Φ∗
1 are considered as function of Ai, and the sensitivity coef-

ficients
∂Λ∗

∂Ai

,
∂U∗

∂Ai

and
∂Φ∗

1

∂Ai

for fixed λ1 can be obtained from (15)-(17), because we

have 2n + 1 unknowns and 2n + 1 linear equations. However, since K is singular at a
critical point, the set of equations (15)-(17) are singular at the bifurcation point (44).

Several methods have been presented for preventing this singularity. Ohsaki and
Uetani (43) presented an interpolation technique to find the sensitivity coefficients
of the bifurcation load factor Λc. Let ΛI and ΛII denote two load factors near Λc

satisfying λ1(Λ
I) > 0 and λ1(Λ

II) < 0 as illustrated in Fig. 15. For simplicity, define
the eigenvalues as λI

1 = λ1(Λ
I), λII

1 = λ1(Λ
II). The value of Λc is approximated by

interpolation as

Λc � λI
1Λ

II − λII
1 ΛI

λI
1 − λII

1

(18)

By differentiating (18) for fixed values of λI and λII,

∂Λc

∂Ai

�
λI

1

∂ΛII

∂Ai

− λII
1

∂ΛI

∂Ai

λI
1 − λII

1

(19)

is obtained. Hence
∂Λc

∂Ai
can be found from

∂ΛI
1

∂Ai
and

∂ΛII
1

∂Ai
that can be computed from

(15)-(17) by incorporating λ∗ = λI
1 and λ∗ = λII

1 , respectively. The accuracy within
more than five digits of (19) has been confirmed in Ref. (43).

Note that the second term in the left-hand-side of (16) is the differentiation of ma-
trix K with respect to the vector U, which is equivalent to third order differentiation
of the total potential energy. Computation of third order differential coefficients re-
quires substantial computational cost and large effort for programming (9; 51). In the

16



practical situation, the responses of geometrically nonlinear structures are computed
by an incremental approach that utilizes tangent stiffness which is the second order
differential coefficients of the total potential energy. Therefore, it is practically useful
if computation of third order terms can be avoided.

The second term in the left-hand-side of (16) can be rewritten as

n∑

j=1

∂K

∂Uj

∂Uj

∂Ai

Φr =
n∑

j=1

∂(KΦr)

∂Uj

∂Uj

∂Ai

(20)

and a finite difference approach can be used for sensitivity computation of the vec-
tor KΦr at element level with respect to Uj , which is known as semi-analytical ap-
proach (12; 9). Reitinger et al. (51) presented a semi-analytical approach for sensi-
tivity analysis of critical loads, and developed an optimization algorithm considering
the effect of initial imperfection. Mróz and Haftka (34) also derived rigorous forms of
sensitivity analysis of limit point loads and bifurcation loads. Examples of optimum
design with limit points have been presented in Mróz and Piekarski (35). In their
approach, computation of the third order differentiation of the total potential energy
is also required for bifurcation loads.

Another approach for avoiding singularity of K is to linearly estimate the bifurcation
point from a moderately smaller load level (67; 37). The tangent stiffness matrix can
be divided into linear part KL(A) and nonlinear part KN(Λ,A). Then the eigenvalue
problem is written as

[KL(A) + KN(Λc,A)]Ψ = 0 (21)

where Ψ is normalized as

Ψ�KLΨ = 1. (22)

Note that Ψ is not normalized by KN because KN is not positive or negative definite.
Let Λ∗ denote a load factor that is moderately smaller than Λc. Assume KN(Λ,A)

can be linearly estimated with respect to Λ at Λ = Λ∗ as

KN(Λ,A) =
Λ

Λ∗KN(Λ∗,A) (23)

and let µ = Λ/Λ∗. Then (21) is rewritten as

[KL(A) + µcKN(Λ∗,A)]Ψ = 0 (24)

where µc = Λc/Λ∗.
By differentiating (24) with respect to Ai, and by using (24) and (22), the following

equation is derived:

∂µc

∂Ai

= µcΨ�∂KL

∂Ai

Ψ + µcΨ�
n∑

j=1

∂(KLΨ)

∂Uj

∂Uj

∂Ai

+ (µc)2Ψ�∂K̃N

∂Ai
Ψ + (µc)2Ψ�

n∑

j=1

∂(KNΨ)

∂Uj

∂Uj

∂Ai

(25)
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Note that
∂Uj

∂Ai
can be computed from (12). The derivatives of the matrix K need

not be computed, and only the derivatives of the vectors KLΨ and KNΨ should be
computed, where a semi-analytical approach can be effectively used. However, (24)
is an approximate relation neglecting the difference of deformation shape between
Λ = Λ∗ and Λ = Λc. Furthermore, the choice of the appropriate value of Λ∗ will be
very difficult.

If Ψ can be assumed to be independent of U, which is not correct in general, the
second term in the right hand side of (25) vanishes, and the fourth term can be
approximated as

µcΨ�
n∑

j=1

∂(KNΨ)

∂Uj

∂Uj

∂Ai
� µc

n∑

j=1

Ψ�∂(KN)

∂Uj
Ψ

∂Uj

∂Ai
(26)

Since KN is a function of internal forces or stresses,
∂(KN)

∂Uj

can be computed easily in

an element level.
Noguchi and Hisada (36) developed a sensitivity analysis method compatible to a

cylindrical arc-length method (8) for tracing the equilibrium path. In their method,
Φc�

1 in (14) is replaced by v defined by

v = K−1∆U (27)

where ∆U is the displacement increment in the process of tracing the equilibrium path.
Since K is singular at the critical point, v should be evaluated at the equilibrium state
near the critical point. Kwon et al. (30) extended this approach to be compatible
with one- and two-point approximations for detecting the critical points along the
equilibrium path by incremental approach.

It should be noted here again that the design modification or imperfection given for
applying any of the design sensitivity analysis method of bifurcation loads shown in
this section should correspond to a minor imperfection. Otherwise, the critical point
of the modified or imperfect structure is a limit point, and obviously the sensitivity
coefficients are infinity (61); i.e. the critical loads of imperfect systems should be
estimated by 1/2- or 2/3-power law.

5 Difficulties in optimization of geometrically non-

linear structures.

Difficulties in optimization against buckling are mainly related to discontinuities in de-
sign sensitivity coefficients. The difficulties corresponding to the snapthrough behavior
have been demonstrated in Section 3. Discontinuous properties have been extensively
studied for linear buckling loads (14; 57), and optimality criteria methods have been
developed for optimization under multiple eigenvalue constrains. Discontinuity can be
successfully avoided if the SDP problems are successively solved (22; 29).
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For nonlinear buckling problems, difficulties also exist due to multiple buckling loads,
which are called coincident critical points or compound branching (63). Ohsaki (38)
showed that optimization usually leads to a structure with coincident critical points,
and several bifurcation points are located at the limit point for a shallow latticed
dome. The coincident critical points of this type are called hill-top branching points
(60; 20; 41).

To demonstrate discontinuities in optimum design with respect to the problem pa-
rameters, and in sensitivity coefficients with respect to the design variables, optimum
designs are found for a 4-bar truss as shown in Fig. 16. The truss has four symmet-
rically located bars and a vertical spring attached at the center node. Let L = 1000
mm, E = 200 GPa, p = 1000 kN. The units of force and length are kN and mm also
for this example. The extensional stiffness of the spring is denoted by D. The exact
strain-displacement relation is used. The four members have the same cross-sectional
area A, and the truss is symmetric with respect to the xz-plane and yz-plane. The
total structural volume V is to be minimized under constraints on the critical load
factor. Only the height H is chosen as design variable. The critical point is a limit
point if H is sufficiently small, and is a bifurcation point if H has a moderately large
value.

Consider the truss without spring; i.e. D = 0. First we fix A to investigate the
relation between H and Λc. Fig. 17 shows the relation between H and Λc for A = 100.
It is observed from Fig. 17 that Λc increases as H is increased from 1500, because
the critical point is a limit point, and the snapthrough behavior may be prevented if
H has a larger value. At H = H∗ � 1540, the truss has a hill-top branching point
that has a bifurcation point at the limit point. In the range H > H∗, the bifurcation
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Fig. 18: Relation between height and structural volume of the 4-bar truss with constant
cross-sectional area (D = 0).

load factor decreases as H is further increased because stiffness decreases against the
bifurcation mode with lateral displacement of the center node.

Suppose a constraint is given as

Λc = 1 (28)

Since Λc is an increasing function of A, the value of A can be calculated directly from
(28) for each value of H . Fig. 18 shows the relation between H and V satisfying (28).
It is seen from Figs. 17 and 18 that H = H∗ is the optimal solution, because V has
the minimum value, and a truss that has a hill-top branching point is obtained as a
result of optimization.

The eigenvalues of the tangent stiffness matrix are plotted in Fig. 19 with respect
to the displacement w in z-direction at the center node of the optimal solution. Note
that the eigenvalue corresponding to the bifurcation type buckling decreases to 0 at
the hill-top branching point, but increases to positive values as w is further increased.
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The bifurcation point of this type is called degenerate critical point. Therefore, in this
case, the optimal solution has a degenerate hill-top branching point (38; 39).

If a gradient based optimization algorithm is used, we have to assume that the opti-
mal solution and the intermediate solutions during optimization of complex structures
may have coincident and/or degenerate critical points. Since the design sensitivity of
the degenerate critical point is unbounded even for a design modification correspond-
ing to a minor imperfection as illustrated in the following example, this fact leads to
a serious difficulty in optimization by mathematical programming approach.

To illustrate an optimal solution with degenerate critical point, consider next a 4-bar
truss with spring, where D = 20 kN/mm. Fig. 20 shows the relation between H and V
satisfying (28). The truss has a degenerate critical point at ‘b’, where H = H∗ � 1540,
and the blank circle at ‘a’ indicates this point is not included in the plot, i.e. V is
a discontinuous function of H at H = H∗. Fig. 21 shows the relation between the
eigenvalues of the tangent stiffness matrix and w for H = H∗. Note that the eigenvalue
corresponding to the bifurcation type buckling decreases to 0 at ‘b’ before reaching
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the limit point ‘a’, but increases as w is further increased. The degenerate critical
point at ‘b’ disappears if H is slightly decreased from H∗ and the lowest critical point
jumps to point ‘a’ in Fig. 21. Therefore, the sensitivity coefficient of Λc with respect
to H is unbounded at H = H∗. Based on rigorous mathematical definition, there is no
optimal solution for this problem, because the truss with degenerate critical point is
located at the boundary of an open domain. Since the degenerate critical point is not
sensitive to an imperfection, as shown in the following section, the value of H that is
slightly smaller than H∗ is regarded as an optimal solution from the engineering point
of view.

Consider again the 24-bar truss as shown in Fig. 6 with uniformly distributed load;
i.e. pi = −1.0 for nodes 1-7, where pi denotes the load in z-direction at node i.
Suppose the constraint is given as V = 7000 and we maximize the nonlinear buckling
load factor Λc. The parameter α is used for defining the ratios of cross-sectional areas
as (10) also for this example. Fig. 22 shows the relation between Λc and α. If α is
small, the critical point is a bifurcation point, whereas the critical point is a limit point
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Fig. 23: Interpolation for coincident critical points.

if α is large. At α � 0.92, the limit point and the bifurcation point coincide and Λc

takes the maximum value; i.e. the optimum solution has a hill-top branching point.
At the coincident critical points, methods of sensitivity analysis and optimization

for simple critical point cannot be used, because the eigenmodes of the tangent stiff-
ness matrix cannot be determined uniquely from (6). If the interpolation approach
(18) is used, nonuniqueness of the eigenmode can be avoided because the eigenvalues
λr of the tangent stiffness matrix do not exactly coincide at the two load levels ΛI

and ΛII, respectively, below and above the coincident critical points as illustrated in
Fig. 23. In this case, two sets of load factors (ΛI

1, Λ
II
1 ) and (ΛI

2, Λ
II
2 ) can be defined

based on continuity of the eigenmodes. Symmetry properties of the modes can be used
effectively. Then the sensitivity coefficient of critical load factor can be computed from
(19) for each mode (38). Note that the hill-top branching points can not be found
by the load increment method. In this case, the parameter Λ should be replaced by
another parameter such as nodal displacement or arc-length parameter (38).

6 Imperfection sensitivity of optimal solution.

If a structure has an unstable symmetric bifurcation point, the maximum load is
drastically reduced from the bifurcation load as illustrated in Fig. 14 due to small
initial asymmetric imperfection corresponding to inevitable errors in nodal locations
and material defects in manufacturing and fabrication processes. The structures of
this type is said to be imperfection sensitive. It is known that maximum loads of
shells and latticed frames found by experiments are far below the theoretical estimate
of the bifurcation loads of the perfect systems. Extensive research has therefore been
done on imperfection sensitivity analysis since the pioneering work by Koiter (26).

For optimization problems under constraints on bifurcation loads, the reduction of
maximum load can be incorporated in the formulation of optimization problem by
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utilizing the well-known formula of imperfection sensitivity based on the perturbation
theory (51; 44). Let ξ denote the parameter defining the magnitude of imperfection.
The vector of initial imperfection such as dislocation of nodes is defined by ξ and
the mode vector b as ξb0. Then the maximum load ΛM(ξ) of an imperfect structure
exhibiting unstable symmetric bifurcation is defined by using the bifurcation load Λc

0

of the perfect structure and the coefficient C(b0,A) > 0 as

ΛM(ξ) = Λc
0 − C(b0,A)ξ

2
3 (29)

It is seen from (29) that the reduction of maximum load is proportional to ξ
2
3 and the

coefficient is a function of the design variable A and the imperfection mode b0. The
imperfection mode that reduces the maximum load most drastically for a given norm
is called critical imperfection (18).

The maximum load reduced due to the critical imperfection of the possible norm
can be incorporated in the formulation of the optimization problem (44; 58). However,
it is not practically acceptable to derive analytical form of critical imperfection from
(29) and differentiate it to find the sensitivity coefficients. Therefore, a semi-analytical
approach may be used, or the sensitivity of C(b0,A) can be simply neglected in the
optimization process (44).

Note that the 2/3-power law in (29) does not mean that the reduction of the max-
imum load for the imperfection with the norm of practical interest is always large.
Obviously, the reduction will be small if the coefficient C(b0,A) is sufficiently small.
Ohsaki (40) pointed out that a minor (symmetric) imperfection is sometimes more
critical than the major (asymmetric) imperfection. Therefore reduction of the bifur-
cation load due to a minor imperfection should also be incorporated in the problem
formulation.

It is well known that imperfection sensitivity is further enhanced by interaction
of buckling modes corresponding to coincident critical points (63; 17; 16). Danger
in optimizing imperfection sensitive structures against buckling has been widely dis-
cussed (62; 46). Interaction between local and global modes are also important for
framed structures (28; 27) and composite structures (31). The effect of interaction is
theoretically defined by using the third and fourth order differential coefficients of the
total potential energy, which is summarized as
1. Let ΦA and ΦB denote two bifurcation modes corresponding to coincident bifurcation

points. Suppose ΦA and ΦB are related to asymmetric and symmetric bifurcation
and interaction between the two modes cannot be neglected. In this case, the struc-
ture is said to be semi-symmetric (63; 17). Then an imperfection in the direction
of ΦA leads to a minor imperfection for ΦB, and the bifurcation load corresponding
to ΦB is drastically reduced as the deformation in the direction of ΦA is rapidly
increased; i.e. a bifurcation point may exist before reaching the limit point along
the equilibrium path of an imperfect system. Interaction of this type is called third
order interaction.
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bifurcation point.

2. Consider a structure that has two symmetric bifurcation points, and suppose the
bifurcation paths are stable if the two bifurcation points do not coincide; i.e. the
fourth order differential coefficients of the total potential energy in the directions of
bifurcation modes are positive. If a cross-term of the fourth differential coefficient is
negative, there may be an unstable secondary bifurcation point along the bifurcation
path near the first bifurcation point. In this case, another pair of bifurcation paths
can exist if two bifurcation points coincide, and the new paths may be unstable due
to interaction of two modes. Interaction of this type is called fourth order interaction
that can be observed in a simple example called Augusti model (63).

3. Consider a thin-walled shell or a frame structure. Suppose the critical load factors
corresponding to local mode ΦL and global mode ΦG coincide. Then an imperfection
in the direction of ΦL leads to rapid increase of deformation in the direction of ΦL,
which is also regarded as imperfection for ΦG. Consequently, deformation in the
direction of ΦG increases, and as a result the deformation in the direction of ΦL

is enhanced. By continuing this process, the maximum load factor is drastically
reduced. This interaction of local and global modes should be classified as third or
fourth order interaction.
Although it is widely recognized that the coincidence of critical points may lead

to an extremely imperfection sensitive structure, it should be noted here that they
are not always imperfection sensitive. For shallow space trusses, optimization leads
to hill-top branching, as demonstrated in Section 5, where several bifurcation points
exist at a limit point (43). It has been shown, however, the hill-top branching point
is not imperfection sensitive (60; 20; 19); i.e. the maximum load factor of imperfect
structure are piecewise linear function of the imperfection parameter. Therefore, the
maximum loads can be effectively increased by optimizing the perfect system against
nonlinear buckling loads (38).

Another difficulty arises for the case of stable bifurcation. Fig. 24 illustrates the
fundamental equilibrium paths and bifurcation paths of perfect and imperfect systems
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corresponding to a major imperfection for the case where the perfect system has a sta-
ble symmetric bifurcation point. The horizontal axis Ua represents an antisymmetric
component of displacements. It is seen from Fig. 24 that the critical point disappears
due to a major imperfection. Therefore, there may be several possibilities as follows to
formulate an optimization problem that has stable symmetric bifurcation points (40):
1. Existence of stable bifurcation point may be allowed before reaching the specified

load level Λ̄, because there always exist asymmetric initial imperfection and Λ can
reach Λ̄ without experiencing any unstable behavior.

2. The maximum load should be defined by the constraints on displacements and/or
stresses. Therefore, constraints on buckling load are not necessary.

3. Even if the bifurcation point is stable, the deformation above the bifurcation load of
an imperfect system may me unexpectedly large, because real deformation process
is dynamic. In this case, the constraints on buckling loads should be incorporated.
Stable optimal solutions can be found by introducing constraints on stability of the

bifurcation points that are defined by the fourth-order differential coefficients of the
total potential energy (48; 4; 11; 5).

It has been shown in the previous section that existence of a degenerate critical
point leads to serious difficulty in optimization process due to discontinuity in design
sensitivity coefficients. However, in practical point of view, degenerate critical point
may cause no serious trouble. For example, consider again the optimal 4-bar truss
with spring (D = 20 kN/mm) as shown in Fig. 16, where the relation between λr and
w has been plotted in Fig. 21. The perfect system has a degenerate critical point
at Λ � 32.0. Imperfections of ±1.0 mm have been given in x-direction at the center
node of the truss. Fig. 25 shows the relation between Λ and the displacement u in
x-direction of the center node. It is seen from Fig. 25 that u has a very large value
around the degenerate critical point. However, the absolute value of u decreases as Λ
is further increased. Therefore, the structure is stable, and there is no bifurcation path
or snapthrough behavior. The existence of degenerate critical point can be neglected
if the deformation along the equilibrium path is within the specified tolerance.
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7 Examples of a flexible truss.

In this section, optimization results are presented for a flexible truss allowing large
deformation and snapthrough before reaching the final state. It will be shown that
snapthrough behavior can be effectively incorporated to obtain a bistable structure
that cannot be realized within the range of small deformation. There are only few
researches that extensively utilize the effect of large deformation. Bruns et al. (6)
and Sekimoto and Noguchi (56) presented methods utilizing the effect of snapthrough.
However, no bistable mechanism has been generated in their studies.

Consider a plane truss as shown in Fig. 26. Let Ua denote the displacement in the
specified direction of node a where a forced displacement is given. A lower-bound Ūb

is assigned for the displacement Ub in the specified direction of node b to ensure the
flexibility of the truss. The design requirements for the optimization problem are given
as
1. A large deformation is realized within small external force by utilizing the snapthrough

behavior, where deformation is controlled by the forced displacement for Ua in the
specified direction at node a.

2. The final state is defined such that a displacement Ub in the specified direction at
node b reaches the prescribed value Ūb.

3. At the final state, the external load P f
a corresponding to U f

a vanishes, where the
superscript ( )f indicates a value at the final state.

4. An obstacle is supposed to be placed as shown in Fig. 26 so that node a contacts
the obstacle exactly at the final state and the equilibrium state can be stabilized by
applying a small force to fix the node to the obstacle.

5. The truss has enough stiffness at the initial state; i.e. the linear responses U0
i

for some selected displacement components for the unit loads Pi = 1, respectively,
should be less than the specified value Ū0

i , where the superscript ( )0 indicates a
value corresponding to a unit load.

6. The truss has enough stiffness also at the final state after fixing the node a to
the obstacle; i.e. the incremental responses U f0

i for some selected displacement
components for the unit loads Pi = 1, respectively, at the final state should be less
than the specified value Ū f0

i , where the tangent stiffness is used for computing the
displacements.
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7. The initial undeformed state can be easily recovered by applying a small external
force at node a at the final state.

8. The design variables are the vectors of cross-sectional areas A = {Ai} and nodal
locations X = {Xi}.

9. The total structural volume V (A,X) is minimized as the objective function.
Hence, the optimization problem is formulated as

minimize V (A,X) (30)

subject to P f
a(A,X) ≤ 0 (31)

U0
i (A,X) ≤ Ū0

i , (i ∈ I0) (32)

Uf0
i (A,X) ≤ Ūf0

i (i ∈ I f0) (33)

AL
i ≤ Ai ≤ AU, (i = 1, 2, . . . , nA) (34)

XL
i ≤ Xi ≤ XU

i , (i = 1, 2, . . . , nX) (35)

where XU
i and XL

i are upper and lower bounds for Xi. I f0 and I0 are the lists of
displacement components to be considered for evaluating the stiffness. nA and nX are
the numbers of variable components in A and X, respectively. The upper bound AU

i

for Ai is sufficiently large, and the lower bound AL
i is a very small value so that the

member with Ai = AL
i after optimization is to be removed.

Consider a 3 × 2 plane grid truss as shown in Fig. 27. The truss has 29 members
and 12 nodes indicated by blank circles including supports. The pairs of intersecting
members are not connected with each other. Let W = 200 mm, H = 100 mm, E = 200
GPa. The units of force and length are kN and mm also for this example. The
equilibrium path is traced by a displacement increment method, where the norm of
unbalanced loads is kept within small value at each increment by carrying out iterative
correction using the linear stiffness matrix at the undeformed state. Note that the
solution of the equilibrium equation diverges if the full Newton-Raphson method is
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Fig. 28: Optimal cross-sectional areas of the 3× 2 plane truss (undeformed configura-
tion).

used. The accuracy of the results has been confirmed by comparing with those by
ANSYS Ver. 7.0. Optimization is carried out by IDESIGN Ver. 3.5 (1), where the
sequential quadratic programming is used, and the sensitivity coefficients are computed
by the finite difference approach. The purpose of the following examples is to present
optimal solutions that cannot be achieved if geometrically linear formulation is used,
and the computational efficiency is not discussed.

The truss in Fig. 27 represents one of two symmetric parts with respect to the x-axis
of equipment composed of bar elements. By applying a vertical load Λp (p = 100) in
y-direction at node 7, node 1 should move in negative y-direction and be located at
the specified position when node 7 reaches an appropriately located obstacle that is
illustrated by a gray rectangle in Fig. 27. The node 7 should not move after releasing
the load, and should be fixed at the surface of the obstacle by applying small additional
load. After reaching this final state, the truss should have enough stiffness, so that
small displacement of node 1 should result in a sufficiently large reaction force at node
1.

Let Uix and Uiy denote the displacements in x- and y-directions at node i. U7y is
taken as the path parameter for the analysis. The final deformed state is defined by
U1y = −500. Constraints are given as

U0
7y ≤ Ū0

7y

U f0
7x ≤ Ū f0

7x

U f0
7y ≤ Ū f0

7y

(36)

where Ū0
7y = 10, Ūf0

7x = Ūf0
7y = 50.

Let (xi, yi) denote the coordinates of node i defined in Fig. 27. The design variables
are the cross-sectional area Ai of each member, xi for i = 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, and
yi for i = 5, 6, 7, 8, 9, 10, 11, 12. The lower and upper bounds for Ai are 0.01 and 1000,
respectively. The location of node i for the initial configuration of the optimization
process shown in Fig. 27 is denoted by (x0

i , y
0
i ). The feasible regions for xi and yi are

given as x0
i − ∆x ≤ xi ≤ x0

i + ∆x and y0
i − ∆y ≤ yi ≤ y0

i + ∆y, respectively, if xi or
yi is chosen as design variable, where ∆x = ∆y = 20.
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Fig. 29: Optimal cross-sectional areas of the 3 × 2 plane truss (final configuration).

-0.1

0

0.1

0.2

0.3

0 20 40 60 80

L
oa

d 
fa

ct
or

Displacement

Fig. 30: Relation between U7x and Λ of the optimal truss.

The optimal truss is as shown in Fig. 28, where the width of each member is propor-
tional to its cross-sectional area, and V = 50.282. The deformed final configuration
is also shown in Fig. 29. The vertical displacement of node 1 reaches 50 at U7y � 76.
The relation between U7y and Λ is plotted in Fig. 30. If an obstacle is located at the
final location of node 7 corresponding to U7y � 76, this final configuration is retained
by applying a small force, because Λ vanishes at the final state. This way, a bistable
structure can be generated by optimization utilizing snapthrough behavior.

8 Concluding remarks.

Difficulties in optimization for geometrically nonlinear buckling behavior have been
summarized, and a new optimization results of flexible truss has been presented. The
conclusions drawn from this study are summarized as follows:
1. Design sensitivity analysis for regular states can be carried out easily based on the

response quantities at the final load level. However, sensitivity coefficients at the
critical states cannot be obtained similarly, because the tangent stiffness matrix
is singular at the critical point. Furthermore, the sensitivity coefficients may be
unbounded at a limit point, or at a degenerate critical point even for a symmetric
design modification that corresponds to a minor or second order imperfection.

2. The critical point disappears if the perfect system has a stable symmetric bifurcation
point. In this case, the maximum load may be defined in reference to displacements
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and stresses of imperfect systems with specified norm of critical imperfection. How-
ever, symmetric minor imperfection may be more critical than asymmetric major
imperfection.

3. The optimized structure may be extremely sensitive to imperfection due to modal
interaction at the coincident critical points if only bifurcation points coincide. How-
ever, the imperfection sensitivity of hill-top branching points that have bifurcation
points at a limit point are not sensitive to initial imperfection. The difference be-
tween the two cases should be clearly noted in discussing the validity of obtaining
optimal solutions under constraints on nonlinear buckling loads.

4. A snapthrough behavior can be effectively utilized for obtaining a flexible optimal
design that cannot be achieved by a geometrically linear structure. A bistable
structure can be effectively generated by optimization.
There is no globally convergent optimization algorithm for large structural systems

if geometrical nonlinearity is considered. Since nonlinear path-following analysis itself
is computationally costly, heuristic or trial-and-error approach that requires equilib-
rium analysis many times before reaching the optimal solution should be avoided.
Understanding the cause of discontinuity and divergence will be the first step toward
a globally convergent algorithm.
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[29] M. Kočvara. On the modelling and solving of the truss design problem with global
stability constraints. Structural Optimization, 23:189–203, 2002.

32



[30] T. S. Kwon, B. C. Lee, and W. J. Lee. An approximation technique for design
sensitivity analysis of the critical load in non-linear structures. Int. J. Num. Meth.
Engng., 45:1727–1736, 1999.
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