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Abstract
A truss topology optimization problem under stress constraints is formulated as
a Mixed Integer Programming (MIP) problem with variables indicating existence
of nodes and members. The local constraints on nodal stability and intersection
of members are considered, and a moderately large lower bound is given for the
cross-sectional area of an existing member. A lower-bound objective value is found
by neglecting the compatibility conditions, where linear programming problems
are successively solved based on a branch-and-bound method. An upper-bound
solution is obtained as a solution of NonLinear Programming (NLP) problem
for the topology satisfying the local constraints. It is shown in the examples
that upper- and lower-bound solutions with small gap in the objective value can
be found by the branch-and-bound method, and the computational cost can be
reduced by using the local constraints.

Keywords Topology optimization; Mixed integer programming; Truss; Local
constraints; Stress constraints; Branch-and-bound method

1 Introduction.

In the widely used ground structure approach for topology optimization of trusses, the
necessary members and nodes are selected from the highly connected ground structure
with many nodes and members (Dobbs and Felton, 1969; Dorn et al., 1964). In this
approach, the cross-sectional areas are considered as continuous design variables and
a member with null cross-sectional area is to be removed after optimization with fixed
nodal locations.

One of the main difficulties in topology optimization under stress constraints is that
the constraints need not be satisfied by the member with vanishing cross-sectional

1This paper has appeared in: Struct. Multidisc. Optim., Vol. 29, pp. 190–197, 2005.
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area; i.e. the constraint does not exist for a member that does not exist (Kirsch,
1989, 1990; Sved and Ginos, 1968). If we consider a process of continuously decreasing
the cross-sectional area of a member from a finite positive value to 0, the constraint
suddenly disappears at the final state with null cross-sectional area. Therefore, the
optimization problem has discontinuity in the formulation of constraints. As a result,
the feasible region is not convex in general, and the optimal solution is often located
at a cusp or a ridge of the feasible region.

To overcome the difficulty due to discontinuity of the problem, several relaxation
methods as well as branch-and-bound-type iterative methods have been presented.
Sheu and Schmit (1972) developed a method for obtaining the lower-bound objective
value by ignoring the compatibility conditions and by solving a Linear Programming
(LP) problem with the member forces as design variables. An upper bound is com-
puted for the obtained topology by solving a NonLinear Programming (NLP) problem
considering the compatibility conditions.

Ringertz (1985) presented a method for problems with stress and displacement con-
straints, where a compatible set of strains and displacements is first calculated for spec-
ified cross-sectional areas. An NLP problem is solved under stress constraints while
fixing the displacements. Ringertz (1986) proposed, in another paper, an approach for
obtaining the lower-bound solution by solving an NLP problem under displacement
constraints only. The stress constraints are successively given for members that violate
the constraints.

A relaxation method has been presented by Cheng (1995) and Cheng and Guo
(1997) for obtaining a good approximate solution. In their approach called ε-relaxation
method, the stress constraint is relaxed for a member with small cross-sectional area. It
is very difficult, however, to determine appropriate value of the parameter for relaxing
the constraints, and to assign the initial solution to reach the globally optimal solution
as noted by Stolpe and Svanberg (2001). Therefore, they extended the method to
use an extrapolation approach (Guo and Cheng, 2000) which is similar to those in
Nakamura and Ohsaki (1992) and Ohsaki and Nakamura (1996). Stolpe and Svanberg
(2003) showed that stress constrained problem can be solved by a traditional nonlinear
programming approach. The solution obtained by them, however, is not a singular
optimum, and the performance of the method cannot be verified by their example.

Another difficulty in topology optimization is that the solution often turns out to be
an unrealistic design due to existence of unstable nodes, intersection of members, and
existence of extremely slender members. Those unrealistic designs cannot be prevented
if only the cross-sectional areas are considered as design variables. Topology cannot
be optimized if a moderately large lower bound is given for the cross-sectional area
of each member. An unstable node may be stabilized by simply fixing the pin-joint
or by adding a member that connects to the node. There is no proof, however, that
the design after modification is also a good approximate solution. Nakamura and
Ohsaki (1992) investigated the characteristics of optimal topologies under eigenvalue
constraints and showed that local instability and multiplicity of eigenvalues lead to
serious difficulties in finding optimal topologies. Since a solution that satisfies the
necessary conditions for optimality is also a globally optimal solution for eigenvalue
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constraints, there is no difficulty due to singularity or nonconvexity contrary to the
problem with stress constraints.

In this paper, the topology optimization problem under stress constraints is first
formulated as a Mixed Integer Programming (MIP) problem (Kravanja et al., 1998).
The local constraints such as constraints on nodal instability and intersection of mem-
bers are considered, and a moderately large lower bound is given for the cross-sectional
area of an existing member. The integer variables for indicating existence of nodes and
members are used. An LP problem is formulated by relaxing the integer variables and
by ignoring the compatibility conditions to obtain a lower-bound solution. An NLP
with fixed topology satisfying the local constraints is solved to find an upper-bound
solution. It is shown in the examples that upper- and lower-bound solutions with small
gap in objective value can be found by using the branch-and-bound method.

2 Topology optimization problem.

2.1 Governing equations

Consider an elastic truss subjected to multiple static loading conditions. The problem
is to obtain an optimal topology as well as member cross-sectional areas that minimizes
the total structural volume under constraints on stresses of members. The conventional
ground structure approach is used.

Let Pk denote the vector of kth set of nodal loads. The vector of axial forces for
Pk is written as Nk = {Nk

i }. In the following, a subscript is used for indicating a
component of a vector. The equilibrium equation is given as

BNk = Pk, (k = 1, 2, . . . , f) (1)

where f is the number of loading conditions, and B is called equilibrium matrix.
Let Uk denote the vector of nodal displacements against Pk. The elongation of

the ith member corresponding to Uk is denoted by dk
i . The compatibility condition

between Uk and dk
i is written as

B�
i Uk = dk

i , (i = 1, 2, . . . , m; k = 1, 2, . . . , f) (2)

where Bi is the ith column of B, m is the number of members, and ( )� indicates the
transpose of a vector. Hence the stress σk

i and axial force Nk
i of the ith member are

obtained from Uk as

σk
i =

E

Li
B�

i Uk, Nk
i = Aiσ

k
i ,

(i = 1, 2, . . . , m; k = 1, 2, . . . , f) (3)

where Li is the length of the ith member, and E is the elastic modulus. Eqs. (1) and
(3) are combined into the following stiffness equation:

K(A)Uk = Pk, (k = 1, 2, . . . , f) (4)
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where K(A) is the stiffness matrix that is a function of the vector A of the cross-
sectional areas.

Note that σk
i may easily be obtained by using (3) even for a member with Ai = 0

if the nodes at the two ends of the member exist and dk
i can be calculated from the

displacements of those nodes. If σk
i is defined as the axial force divided by Ai, however,

it cannot be computed for a member with Ai = 0.

2.2 Problem formulation

Consider a problem of minimizing the total structural volume V (A) defined by

V (A) =
m∑

i=1

AiLi (5)

The upper and lower bounds for σk
i are denoted by σU

i and σL
i , respectively. As it

is well discussed in the literature (Kirsch, 1989; Sved and Ginos, 1968), the main
difficulty of topology optimization under stress constraints exists in the discontinuity
of the problem formulation due to the fact that the constraint need not be satisfied
by a non-existent member.

Let yi ∈ {0, 1} denote a variable indicating by yi = 1 and yi = 0, respectively, the
existence and non-existence of the ith member. Stress constraints should be assigned
only for members with yi = 1.

One of the drawbacks in topology optimization based on the ground structure ap-
proach is that an unstable optimal truss is often obtained. A node connecting only two
colinear members is unstable to the transverse direction of the members. An unstable
solution can be avoided by introducing the lower bound for the number of members
connected to an existing node, and by assigning a moderately large lower-bound AL

i

for the cross-sectional area of an existing member. Then the constraints for Ai are
given as

AL
i yi ≤ Ai ≤ AU

i yi, (i = 1, 2, · · · , m) (6)

where AU
i is the upper bound for Ai. Note from (6) that Ai = 0 should be satisfied if

yi = 0.
Let xr ∈ {0, 1} be the variable indicating non-existence and possible existence of

the rth node, respectively, by xr = 0 and xr = 1. The upper and lower bounds for
the number of members connected to the rth node, if exists, are denoted by CU

r and
CL

r , respectively. Note that CU
i is given to prevent existence of a highly connected

node. The set of indices of members connected to the rth node in the initial ground
structure is denoted by Jr, and the following constraints are given:

xrC
L
r ≤

∑

i∈Jr

yi ≤ xrC
U
r , (r = 1, 2, . . . , s) (7)
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where s is the number of nodes including the supports. Note from (7) that yi = 0
should be satisfied by all the members connected to a removed node with xr = 0.
xr = 1 indicates existence of the rth node if one of AL

i (i ∈ Jr) has moderately large
value.

In practical situations, intersection of members should also be avoided although
those members are needed in the initial ground structure so as not to restrict the
design space. The ith pair of mutually intersecting members in the ground structure
is denoted by Si (i = 1, . . . , q). The following constraints are to be satisfied:

∑

j∈Si

yj ≤ 1, (i = 1, 2, . . . , q) (8)

The topology optimization problem is then formulated as a mixed integer program-
ming problem as

MIP :

minimize
A,y,x,Uk,σk,Nk

V (A) =

m∑

i=1

AiLi

subject to σL
i yi ≤ σk

i yi ≤ σU
i yi,

(i = 1, 2, · · · , m; k = 1, 2, · · · , f) (9)

σk
i =

E

Li
B�

i Uk,

(i = 1, 2, . . . , m; k = 1, 2, . . . , f) (10)

Nk
i = Aiσ

k
i

(i = 1, 2, . . . , m; k = 1, 2, . . . , f) (11)

BNk = Pk, (k = 1, 2, . . . , f) (12)

AL
i yi ≤ Ai ≤ AU

i yi, (i = 1, 2, · · · , m) (13)

xrC
L
r ≤

∑

i∈Jr

yi ≤ xrC
U
r , (r = 1, 2, . . . , s) (14)

∑

j∈Si

yj ≤ 1, (i = 1, 2, . . . , q) (15)

yi ∈ {0, 1}, (i = 1, 2, · · · , m) (16)

xr ∈ {0, 1}, (r = 1, 2, · · · , s) (17)

The objective value of MIP is denoted by V MIP. This way, by using the integer
variables xr and yi, various local and practical constraints can be incorporated. In
the following, (15) is called constraint on member intersection. For the case where at
least one of the AL

i has a moderately large value, (14) with (13) is called constraint on
nodal instability, and (13)-(15) are referred to as local constraints.
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2.3 Lower-bound solution

A relaxed problem of MIP is to be formulated as an LP to find the lower bound of
V MIP. It is obtained by relaxing integer variables xr and yi to continuous ones and
by neglecting the compatibility constraint (10). The other constraints (12),(13), (14),
and (15) remain imposed in the relaxed problem. The relaxed problem so defined is
reformulated so as not to use σk. The constraint (9) is rewritten by using variables
Nk

i . In fact, if yi > 0, (9) leads to

σL
i ≤ σk

i ≤ σU
i , (i = 1, 2, · · · , m; k = 1, 2, · · · , f) (18)

and by multiplying Ai,

Aiσ
L
i ≤ Nk

i ≤ Aiσ
k
i (i = 1, 2, · · · , m; k = 1, 2, · · · , f) (19)

is derived. Note that (19) is satisfied for yi = 0 because the constraint (13) is imposed
in the relaxed problem. Therefore, (19) is satisfied for 0 ≤ yi ≤ 1 if (9) is satisfied.

Hence, the relaxed LP of MIP is formulated as

LP :

minimize
A,y,x,Nk

V (A) =

m∑

i=1

AiLi

subject to BNk = Pk, (k = 1, 2, . . . , f)

Aiσ
L
i ≤ Nk

i ≤ Aiσ
U
i

(i = 1, 2, · · · , m; k = 1, 2, · · · , f)

AL
i yi ≤ Ai ≤ AU

i yi, (i = 1, 2, · · · , m)

xrC
L
r ≤

∑

i∈Jr

yi ≤ xrC
U
r , (r = 1, 2, . . . , s)

∑

j∈Si

yj ≤ 1, (i = 1, 2, . . . , q)

0 ≤ yi ≤ 1, (i = 1, 2, · · · , m)

0 ≤ xr ≤ 1, (r = 1, 2, · · · , s)

which is a linear programming problem, where the global optimality of the solution is
guaranteed. The variables of LP are A,y,x and Nk.
Remark 1 In the case where a statically determinate truss satisfying the local con-
straints is obtained by solving LP, the solution gives the globally optimal topology. If
a statically indeterminate truss is obtained, V LP is a lower bound of the true optimal
objective value of MIP, because the solution of MIP satisfies all the constraints of LP.
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2.4 Upper-bound solution

Given a set I of existing members, the following NLP0I is defined. If NLP0I is feasible,
its objective value gives an upper bound of V MIP since the solution of NLP0I satisfies
all the constraints of MIP.

NLP0I :

minimize
A,Uk,σk,Nk

V (A) =
∑

i∈I
AiLi

subject to σL
i ≤ σk

i ≤ σU
i ,

(i ∈ I; k = 1, 2, . . . , f) (20)

σk
i =

E

Li
B�

i Uk,

(i ∈ I; k = 1, 2, . . . , f) (21)

Nk
i = Aiσ

k
i , (i ∈ I; k = 1, 2, . . . , f) (22)

BNk = Pk, (k = 1, 2, . . . , f) (23)

AL
i ≤ Ai ≤ AU

i , (i ∈ I) (24)

Alternatively, as stated in Section 2.1, Uk can be found from (4) by combining (1)
and (3), and σk

i can be found from (3). Hence σk
i can be regarded as implicit functions

of A. If the stiffness matrix K is singular, i.e. the truss is unstable, Uk need not be
found because the solution is infeasible. Therefore, NLP0I is alternatively written as

NLPI :

minimize
A

V (A) =
∑

i∈I
AiLi

subject to σL
i ≤ σk

i (A) ≤ σU
i

(i ∈ I; k = 1, 2, · · · , f)

AL
i ≤ Ai ≤ AU

i , (i ∈ I)

The optimal objective value of NLPI is denoted by V NLPI . In the following, the
subscript I of NLPI is often omitted when I can be understood from the context.

Stolpe and Svanberg (2003) stated that the discontinuity in stress constraints can be
avoided, for a problem with single loading condition, by simply assigning constraints
as (19) on member forces instead of stresses. If Ai = 0, (19) is obviously satisfied by
N1

i = 0. However, stresses should be between σL
i and σU

i if Ai has a small positive
value. In fact, the solution found by Stolpe and Svanberg (2003) is not singular, and
satisfies all the stress constraints, and a singular optimal topology with violating stress
constraints by vanishing members cannot be found by a conventional NLP algorithm
for a multiple loading case.
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3 A branch-and-bound algorithm.

A branch-and-bound algorithm for solving MIP is proposed. The idea is based on the
standard principle of branch-and-bound algorithms.

Throughout the entire process of the algorithm, the best feasible solution and its
objective value (denoted by V U) is maintained which gives an upper bound of the orig-
inal problem. The algorithm successively decomposes the problem into subproblems
by fixing integer variable yi to 0 and 1, respectively, and maintains a set A of active
subproblems.

In a general step, the algorithm first picks up a problem P from A, and solves the
relaxed LP of P which gives a lower-bound solution. Let R and I denote the set of
nodes and members, respectively, where xr > 0 and yi > 0 hold in the lower bound
solution. The topology conforming to the LP solution is defined by regarding the set
of members i ∈ I as the existing members and the set of nodes r ∈ R as the existing
nodes. If such topology satisfies (14) and (15), then an upper bound V U of the optimal
objective value of MIP is obtained by solving NLPI after specifying the members I
corresponding to the topology. In particular, if this upper bound is smaller than V U,
V U is updated. If the lower bound solution does not satisfy (14) or (15), the algorithm
does not solve NLPI .

In any case, the problem is then decomposed into two subproblems P0 and P1,
respectively, by specifying yj = 0 and 1 for some j ∈ I with 0 < yj < 1, and add these
two subproblems to A. The entire procedure terminates when all subproblems are
terminated. The termination condition for the subproblem is (i) the optimal value of
the relaxed LP problem is larger than the current upper bound V U or (ii) the relaxed
LP is infeasible.

Let V L denote the lower bound given by the LP solution, and V0 and V1 the lower
bounds obtained for P0 and P1, respectively. Since P0 and P1 are obtained by restrict-
ing yj to 0 and 1, respectively, the feasible region of P strictly includes the union of
those for P0 and P1. Thus, V L ≤ min{V0, V1} follows, and the value min{V0, V1} may
be used as the more exact lower bound. Therefore, in the algorithm, when both of
subproblems P0 and P1 terminate, V L is updated to min{V0, V1}. Notice that such
update scheme of the lower bound does not improve the output quality, but the value
V L obtained after the termination of all subproblems will be used to evaluate how
close the upper bound solution obtained by the proposed algorithm is to the exact
optimal solution.

The algorithm is summarized as follows:
Step 0 Initialize the upper bound V U as V U = ∞. Let the set A of the active

problems consist of the original MIP.
Step 1 Select a problem P from A and remove it from A.
Step 2 Select a member j from I with 0 < yj < 1 of the solution of the relaxed LP P̄

of P , and solve LP denoted by P̄0 and P̄1 of the subproblems P0 and P1, respectively,
of P by specifying yj = 0 and 1.

Step 3 Let V0 and V1 denote the optimal objective values of P̄0 and P̄1. If V0 > V U,
yi = 1 and terminate P0. If V1 > V U, yi = 0 and terminate P1.
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Fig. 1: A 5-bar truss.

Step 4 If the topology conforming to the LP solution satisfies all the local constraints,
compute the objective value of NLPI , denoted by V NLPI , after specifying the set I
of the existing members as I = {j | j = 1, 2, . . . , m, yj > 0}.

Step 5 If V NLPI < V U, update V U to V NLPI .
Step 6 If V0 and/or V1 is less than V U, add P0 and/or P1, respectively, to A and go

to Step 1.
Step 7 If A �= ∅ go to Step 1.
Step 8 Output the best value of V U. Compute the lower bound V L backward from

the bottom of the branching tree so that V L of the parent problem P is updated by
min{V0, V1} if V L < min{V0, V1}.

Remark 2 At the first stage of the branching process, we can obtain an upper bound
V U by fixing yi appropriately for all the members existing in the lower bound solution
so that the local constraints are satisfied. Note that it is not recommended to try all the
possible combinations of yi satisfying local constraints. Letting yi = 1 for the member
with the larger cross-sectional area between the pair of intersecting members in an LP
solution will lead to a good upper-bound solution. If this process is skipped, simply set
V U = ∞ at the beginning of the branching step.
Remark 3 We can use the local constraints before solving LP: i.e. xr = 1 if a member
exists such that yi = 1 (i ∈ Jr); xr = 0 if yi = 0 for all the members in Jr; yi = 0
(i ∈ Sr) if yj = 1 (j ∈ Sr, j �= i).
Remark 4 Under the assumption that exact optimal solutions for all NLPIs can be
obtained, global optimality of the solution found by the proposed branch-and-bound
algorithm is guaranteed. However, since the NLPI solved is a nonconvex problem, it is
hard to theoretically guarantee that the NLPI can be solved exactly. If it is known that
the obtained solution of NLPI is within error ε from the optimal, the solution output
by the proposed branch-and-bound algorithm is also within error ε from the optimal.
Remark 5 Since different feasible solutions of LP might lead to the same topology for
solving the NLPI , the topologies solved by NLP are stored in a list, and the NLPI is
not solved if the topology matches one in the list.
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Fig. 2: A 3 × 2 plane grid.
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Fig. 3: Initial LP solution for the 2 × 2 plane grid.

Fig. 4: Initial upper-bound solution for the 2 × 2 plane grid.

4 Examples.

In the following examples, the units of force, length, area, volume and stress are kN,
cm, cm2, cm3 and MPa, respectively.

LP is solved by HOPDM Ver. 2.13 (Gondzio, 1995) that uses higher-order primal-
dual method. NLP is carried out by NLPQL implemented as DNCONG in IMSL
library (Visual Numerics, 1997), where the sequential quadratic programming is used.
It has been confirmed that the same optimal solutions can be found in the following
examples by using IDESIGN Ver. 3.5 (Arora and Tseng, 1987) starting from different
initial solutions. Therefore, the nonconvexity of the NLPI is small, and the globally
optimal solution of NLPI can be found for almost all the cases. Sensitivity coefficients
of stresses and displacements with respect to the cross-sectional areas are computed
analytically using well-established method of design sensitivity analysis (Haug et al.,
1986). Optimization has been carried out on Xeon 2.8GHz with 1GB memory.
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Consider for verification purpose the 5-bar truss as shown in Fig. 1 which was solved
in Cheng and Guo (1997). The number with and without parentheses indicate the
member number and node number, respectively. Two loading conditions are consid-
ered, where the loads (Px, Py) = (5,−50) are applied at nodes 3 and 4, respectively.
The upper and lower bounds for stresses are ±20 for member 2 and ±5 for the re-
maining members. The bounds of the cross-sectional areas are AL

i = 0.0, AU
i = 20.0.

The local constraints are not given for comparison purpose. However, from stability
requirements, CL

r should be 1 for the supports and 2 for the loaded nodes. xr should
be 1 for all the nodes and supports.

The initial LP solution has intersecting members 3 and 4. The member 4 has been
selected as the branching member. The optimal objective value of P̄0 is 33.500. Since
the optimal truss of P̄0 is statically determinate, V U is also 33.500. The optimal
objective value of P̄1 is 32.500. All the members exist in the solution of P̄1, and
the value of V NLPI is 39.986. After solving LP and NLPI 15 times and 4 times,
respectively, the best upper bound solution is (A1, A2, A3, A4, A5) = (1.0000, 2.5000,
10.0000, 0.0, 14.1421) with V U = 33.500, which agrees with the result in Cheng and
Guo (1997). The lower bound V L is 32.500 which is slightly smaller than V U. Note that
the numbers of LP and NLP problems to be solved are large for this small example,
because the local constraints are not considered for comparison purpose. It is shown
in the following example that the numbers of LP and NLP solutions are drastically
reduced by incorporating the local constraints.

Next we consider a 3 × 2 grid as shown in Fig. 2. The lengths of the members
in x- and y-directions are 200. Irrespective of the numbers of divisions, two loading
conditions are considered, where the loads in the negative y-directions are applied at
the node at the lowest end (node 12 in Fig. 2) and the node left to the lowest end
(node 9 in Fig. 2), respectively. The magnitude of each load is 1000.

In the following examples, the bounds for the stress are ±200.0, and CU
r = 6.

The value of CL
r is 1 for the supports, 2 for the node at the lowest end, and 3 for

the remaining nodes. Note that these lower bound are defined naturally from the
requirements of stability and equilibrium, and they do not unnecessarily restrict the
design space.

Optimal topology has been first found for the 2 × 2 grid. The LP solution at the
first step is as shown in Fig. 3, where the width of a member is proportional to its
cross-sectional area. The objective value V LP is 7.0000 × 103. To obtain an initial
upper-bound solution, member 1 indicated in Fig. 3 is removed because it has smaller
cross-sectional area in the pair of intersecting members. Note that this selection is
heuristic. However, only a good upper bound is to be found at this stage as commented
in Remark 2. After removing member 1, the node connected by members 2 and 3 is
removed because it violates the local constraint (14) with CL

r = 3. Hence, members 2
and 3 are removed, and members 4 and 5 are to be removed in a similar manner as
described in Remark 3. The NLPI is solved by fixing the values of yi and xr to find
an upper bound solution as shown in Fig. 4, where V NLPI is 8.0000 × 103.

The branch-and-bound process is carried out to find the final upper-bound solution
as shown in Fig. 5, where V U = 7.9000 × 103. The optimization results are listed
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Table 1: Optimization results.

No. of m DOF AL
i AU

i No. of No. of No. of V U V L CPU
division steps LP NLP time (s)
2 × 2 20 14 200 800 121 64 5 7.9000 × 103 7.8000 × 103 2.02
3 × 2 29 20 200 800 942 571 6 1.2900 × 104 1.2800 × 104 18.95
3 × 3 42 28 200 800 5874 3483 23 1.2467 × 104 1.2467 × 104 147.84
4 × 4 72 46 200 800 64890 42831 7 1.7067 × 104 1.7067 × 104 3072.84
4 × 4 72 46 200 600 68656 42707 73 1.8373 × 104 1.7916 × 104 2513.06
4 × 4 72 46 400 800 41001 26580 3 2.1507 × 104 2.1507 × 104 1794.08

Fig. 5: Final upper-bound solution for the 2 × 2 plane grid.

Fig. 6: Final lower-bound solution for the 2 × 2 plane grid.

in the first row of Table 1, where No. of steps means the number of nodes of the
branching tree. In this example, only 121 topologies have been searched, whereas
the total number of the possible topologies are 220 � 1.0 × 106. The final lower-
bound solution is as shown in Fig. 6, where V L = 7.8000 × 103. Since this truss is
statically indeterminate, the axial forces obtained by solving LP are not correct. The
maximum absolute value of the ratio of stress to the upper or lower bounds is 1.1111
if the compatibility conditions are considered; i.e. the solution does not satisfy stress
constraints. Hence V L has smaller value than V U. However, the difference between
V L and V U is very small and the good upper-bound solution has been found after
solving NLPI only 5 times.

The problem without local constraints have been also solved to compare the compu-
tational costs. The numbers of steps, LP, and NLP are 529, 350, and 58, respectively,
and CPU time is 5.05.

The optimization results for 3 × 2, 3 × 3 and 4 × 4 grids are shown in the second,
third and fourth rows of Table 1, respectively. The final upper-bound solutions are as
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Fig. 7: Final upper-bound solution for the 3 × 2 plane grid.

Fig. 8: Final upper-bound solution for the 3 × 3 plane grid.

Fig. 9: Final upper-bound solution for the 4 × 4 plane grid.

shown in Figs. 7-9. Note that V L = V U is satisfied for 3 × 3 and 4 × 4, because the
lower-bound solutions are statically determinate.

The number of LP steps and CPU time increase drastically as the size of the problem
such as the number of members is increased. The number of NLP steps, however, is
independent of the problem size, because it depends on the quality of the initial upper-
bound solution.

If AU
i is decreased to 600 for the 4× 4 grid, the optimization results are as shown in

the fifth row of Table 1. The number of NLP steps is increased to 73. However, it is
difficult to suggest a relation between the computational cost and the constraints or
the size of the feasible region, because the CPU time for AL

i = 400 is almost half of
that for AL

i = 200 as shown in the last row of Table 1.
If we do not consider the local constraints for the 3× 2 truss, the numbers of steps,

LP, and NLP are 2364, 1468, and 391, respectively, and CPU time is 72.28. We can
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observe from these results that the computational cost can be drastically reduced by
using the local constraints.

5 Conclusions.

A branch-and-bound method has been presented for obtaining upper- and lower-bound
solutions of optimal topology of trusses under stress constraints. A rigorous problem
is first defined as a MIP problem with 0-1 variables indicating existence of nodes and
members. The constraints on member intersection and nodal instability, which are
referred to as local constraints, are also considered. A moderately large lower bound
is given for the cross-sectional area of an existing member to prevent an unrealistic
optimal solution.

The MIP problem is converted to an LP problem by relaxing the integer variables
and by ignoring the compatibility conditions between stresses and displacements. It
has been shown in the examples that good upper and lower bounds can be found
by using the proposed method. Computational cost can be drastically reduced by
introducing local constraints to obtain practically acceptable optimal topologies.
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