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Summary:
Optimization methods are presented for design of shells and spatial structures. The
effectiveness of using optimization techniques are demonstrated by the following examples:

1. Shape design of ribbed shells.

2. Shape design of membrane structures.

3. Optimization of single-layer spatial truss against buckling.

4. Application of heuristic methods to optimization of space frames.

The readers may first see the numerical results to find what is possible by optimization.
In the appendix, overview of structural optimization in architectural design is presented,
and effectiveness of optimization is demonstrated by small examples.

Each chapter is a part of a published paper, or translation from a Japanese article. So
there might be some difficulties for understanding the details, inconsistency of the story,
etc., which the author hope not to lead to major difficulties for understanding the concepts
and results.
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Chapter 1

Introduction

Process of architectural design can be conceived as a kind of optimization, where architects and
structural designers (engineers) try to find their best or optimal shape and design. Especially for
spatial structures covering large space, optimization techniques can be effectively applied, because
we have rather small restriction for determining the shape, structural type, configuration, material,
etc., for designing such structures.

Furthermore, for flexible structures such as membranes and cable nets, the equilibrium analysis
itself can be done through optimization. The shape of membrane has been traditionally defined by
minimal surface that minimizes the area of the surface for given boundary. Also, shape of cable nets
can be determined using the principle of minimum potential energy.

On the other hand, structural and shape optimization has been extensively studied and applied in
the fields of mechanical engineering and aeronautical engineering. Empirical approaches to seek for
mechanically optimal shapes can be traced back to Greek or Roman Era. However, the first work of
structural optimization based on modern mathematics and mechanics may be shape optimization of
a column by Lagrange in 18th century. After 1970s, numerous number of computational approaches
have been developed for structural optimization, and now it is possible to optimize complex struc-
tures such as the shape and topology of three-dimensional mechanical parts, and airfoils considering
interaction between fluid and structure.

Among many types of architectural structures, optimization techniques can be effectively applied
to spatial structures where the performance of the structure greatly depends on the shape and
weight that can be optimized. In the following chapters, some optimization results are presented.
Chapters 2–4 are the parts of the following papers 2–4, respectively. The readers who are interested
in optimization of spatial structures can consult the references listed in each chapter, and also the
following website:

http://www.archi.kyoto-u.ac.jp/̃ ais/staff/ohsaki/index-e.html

1. M. Ohsaki, T. Ogawa and R. Tateishi, Shape optimization of curves and surfaces considering
fairness metrics and elastic stiffness, Struct. Multidisc. Optim., Vol. 24, pp. 449-456, 2003,
Erratum: Vol. 27, pp. 250-258, 2004.

2. M. Ohsaki and J. Fujiwara, Developability conditions for prestress optimization of a curved
surface, Comp. Meth. Appl. Mech. Engng., Vol. 192, pp. 77-94, 2003.

3. M. Ohsaki, Structural optimization for specified nonlinear buckling load factor, Japan J. of
Industrial and Appl. Math., Vol. 19, No. 2, pp. 163-179, 2002.
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Chapter 2

Shape optimization of curves and
surfaces considering fairness metrics
and elastic stiffness

2.1 Introduction.

Fairness metrics have been extensively used for automatic generation of curves and for interpolation of
points by a smooth curve. In the conventional approach, the square norms of curvature and variation
of curvature are minimized, respectively, to obtain the minimum energy curve and the minimum
variation curve [13, 14]. Subramainan and Suchithran [26] presented a method for adjusting the knot
vector of a B-spline curve based on the derivative of curvature in the process of designing ship hulls.
For surfaces, the principal curvatures, mean curvature, Gaussian curvature, and their derivatives can
be used for formulating the fairness metrics [2, 10, 11, 25].

After fairness or smoothness is defined, an optimization technique is to be applied to obtain an
optimal curve or surface that minimizes or maximizes the given fairness metric as objective function.
Evaluation of the derivatives of curvatures, however, needs much computational cost especially for
surfaces. Therefore, the fairness metrics involving differentiation of curvatures are not practically
acceptable for large and complex structures.

In addition to the conventional fairness metrics based on the curvatures, several advanced formu-
lations have been presented for designing smooth curves and surfaces [22, 23]. The fairness metrics
are classified into roundness, rolling, flattening, etc. There have been several practical applications
of those metrics to ship hull design [16]. Ohsaki and Hayashi [18] presented a modified version
of the roundness metric by Rando and Rourier for optimizing ribbed shells. It has been pointed
out, however, that the fairness metrics by Rando and Rourier do not always conform to the human
impressions [9, 18].

In most of the surface design methods, the surfaces are divided into several regions, each of which
is defined by a parametric surface such as Bézier patch and B-spline patch. In this case, constraints
should be given for continuity and intersection between the adjacent regions [2, 6]. Boundary condi-
tions should also be given to formulate a constrained optimization problem [17, 27]. The formulations
for continuity in curvatures of surfaces, however, are very complicated, and it is inconvenient that the
constraints should be modified and optimization problem itself should be reformulated depending on
the types of the desired surfaces; e.g., sometimes discontinuity is allowed between the tangent vectors
in the adjacent regions.

Optimization of curved structures such as arches and shells under mechanical constraints is called
shape optimization which has been extensively studied in the literature [24]. However, shape and
topology optimization based on the ground structure approach with fixed nodal locations of the
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Fig. 2.1: Unit tangent and normal vectors.

Fig. 2.2: Double circular arches with same cur-
vature.

finite element model is out of scope of the present paper. We only consider optimization of curves
and surfaces that represent arches and thin shells. Parametric surfaces such as Bézier surfaces and
B-spline surfaces are very useful for generating a smooth surface within small number of design
variables. Ramm [20] optimized a shell defined by the Bézier surface considering stress deviation or
fundamental frequency. The method has been extended to the problem with buckling constraints [21]
and optimization of membrane fabric structures [3]. Ohsaki et al. [19] presented a trade-off design
method between smoothness and elastic stiffness of an arch-type truss. Kegl and Antes [12] optimized
a single-layer truss under constraints on stresses considering geometrical nonlinearity. Ohsaki and
Hayashi [18] presented a method for generating round ribbed shells. In their method, however, the
number of ribs should be defined in advance, and the shell should be modeled by different number of
Bézier surfaces depending on the number of ribs. It is not convenient that the problem formulation
depends on the desired optimal shape.

In this paper, a method is presented for generating round curves and surfaces allowing disconti-
nuities in tangent vectors and curvatures. The distance of the center of curvature from the specified
point is used for formulating the objective function which is a continuous function of the design
variables through convex and concave shapes. Since the derivatives of curvatures are not used, a
ribbed shell can be generated without any trouble by specifying the center of curvature of the sur-
face or the isoparametric curves. Optimal shapes are also found under constraints on compliance
that is regarded as a mechanical performance measure. A multiobjective optimization problem is
solved by the constraint approach to generate a trade-off design between roundness and mechanical
performance.

2.2 Shape optimization of plane curves.

2.2.1 Problem formulation.

Let x(t) denote a plane curve defined by a parameter t ∈ [0, 1]. The fundamentals on geometry of
curves may be referred to; e.g., [5, 8]. Let r(t) denote the unit tangent vector of x(t). The unit
normal vector n(t) is defined as shown in Fig. 2.1 by rotating r(t) by π/2. The curvature of x(t)
is denoted by κ(t). The curvature of the curve shown in Fig. 2.1 has negative values, because the
center of curvature exists in the opposite direction of n(t) from a point along the curve.

The curvature is an intrinsic property of a curve that does not depend on parameterization.
Therefore, the fairness of a curve can be controlled through κ(t). In this section, we present an
optimization method for generating round curves for the given span length. A simple approach may
be to specify the desired value κ̄ of κ(t) and minimize the norm of deviation (κ(t) − κ̄)2. Moreton
and Séquin [15] noted, however, that a metric defined simply by κ(t) or its derivative with respect
to t is scale variant; i.e., it depends on the size of the curve, and the tangent vectors should be given
at the boundaries to obtain a desired shape by using such a metric.

For a single arch spanning two supports, the fundamental theorem of the local theory of curves
guarantees that the arch is uniquely determined by specifying κ(t) [5]. For double arches as shown in
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Fig. 2.3: Initial curve (a)

Fig. 2.4: Initial curve (b)

Fig. 2.2, they cannot be uniquely determined from κ(t); i.e., the tangent vectors at two ends should
be given. It is inconvenient, however, to specify tangent vectors especially if extended to surfaces.
Therefore, we use the center of curvature for generating round curves and surfaces without assigning
tangent vectors.

In a standard approach to generating a double arch as shown in Fig. 2.2, the total curve is divided
into two regions, each of which is defined by a parametric curve. In this case, however, the problem
formulation depends on the number of regions. If a sufficiently large number of regions are given, then
constraints should be assigned for continuity between the adjacent regions to generate an optimal
curve with smaller number of arches. The number of variables becomes unnecessarily large and the
continuity conditions for curvatures are very complicated for surface optimization. Therefore, we
present a unified approach by using a single Bézier curve to generating optimal curves with different
numbers of arches.

The center of curvature c(t) is defined for κ(t) �= 0 as

c(t) = x(t) +
1

κ(t)
n(t) (2.1)

The curve x(t) is defined as follows by the Bézier curve of order n [7]:

x(t) =
n∑

i=0

RiB
n
i (t) (2.2)

where Ri = (Rx
i , Ry

i ) and Bn
i (t) (i = 0, . . . , n) are the control points and the Bernstein polynomials

of order n, respectively.
In the following examples, n = 5 and the control polygon is as illustrated in thin lines in Fig. 2.3.

The (X,Y )-coordinates are also defined as shown in Fig. 2.3. Optimal shapes are found from two
different initial curves (a) and (b) as shown in Figs. 2.3 and 2.4, respectively, where curve (a) has
negative curvature, and curve (b) has regions with positive and negative curvatures. Based on the
symmetry property, the curve is defined by R0, R1 and R2. The vector consisting of all the variables
is denoted by R.

Let c0 denote the specified center of curvature. Differentiation with respect to t is indicated by
a dot. The length of the tangent vector ẋ(t) is denoted by g(t); i.e., ds = g(t)dt for the arc-length
parameter s. Let ( · ;R) indicate a function that depends on R. The square of distance between
c(t;R) and c0 is defined as

d(t;R) = ||c(t;R) − c0||2 (2.3)

where || · || is the Euclidean norm of a vector. The optimization problem may be simply formulated
as

P1: Minimize
∫ 1

0
d(t;R)g(t;R)dt (2.4)
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Center of curvature c0

Fig. 2.5: Optimal curve for c0 = (25,0).

Fig. 2.6: Intermediate curve during optimiza-
tion.

An optimal shape as illustrated in Fig. 2.5 can be obtained by solving P1 from the initial curve
(a). Details of the mathematical formulations will be shown in the examples. From the initial curve
(b), however, the curve in Fig. 2.5 has to be reached through an intermediate curve as illustrated in
Fig. 2.6 of which the center of curvature around the center t = 0.5 is far from c0 and even in the
opposite side of the curve. Therefore, the optimal solution of Fig. 2.5 cannot be obtained by solving
P1 from the initial curve (b).

Let T denote the region of t where κ(t) < 0 is satisfied. It is possible that the integration of
(2.4) is to be done only over the region T . In this case, however, there is no region for integration if
κ(t) > 0 is satisfied throughout the region. Therefore, a curve with positive curvature in t ∈ [0, 1] is
obtained from the initial curve (b) because P1 is a minimization problem with nonnegative objective
function and a solution with κ(t) > 0 throughout the region has vanishing objective value that leads
to an obvious and meaningless optimal solution. The problem may alternatively be written as

P2: Maximize
∫

t∈T

1
d(t;R)

g(t;R)dt (2.5)

In the process of solving P2, the design variables are to be modified so that d(t;R) is reduced
and κ(t) < 0 is to be satisfied in wider region of t. Therefore, as shown in the following examples, the
optimal curve in Fig. 2.5 is successfully obtained from the initial curve (b). Note that the objective
function diverges if d(t;R) = 0 is satisfied at a point. In order to prevent the divergence, the value
of 1/d(t;R) is replaced by d̄ if 1/d(t;R) > d̄, and P2 is reformulated as

P3: Maximize
∫

t∈T
min

{
1

d(t;R)
, d̄

}
g(t;R)dt (2.6)

In numerical implementation, the parameter region is divided uniformly by the interval ∆t, and
the value of t at the center of the ith region is denoted by ti. Upper and lower bounds for R are
given as RU and RL, respectively. Finally, the optimization problem to be solved is formulated as

P4: Maximize
∑
ti∈T

min
{

1
d(t;R)

, d̄

}
g(ti;R)∆t (2.7)

subject to: RL ≤ R ≤ RU (2.8)
H(R) ≤ 0 (2.9)

where H(R) ≤ 0 denotes the geometrical constraints given if necessary. The variations of the
objective values of P1 and P4 between the initial and the optimal solutions are compared in the
examples.

A round shape is generated by solving P4. The mechanically optimal shape, however, is quite
different from a round shape. Therefore, we next consider the trade-off between roundness and
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mechanical property defined by compliance (external work) against static loads. The arch is divided
into regions with equal parameter length which are modeled by standard beam elements. Let F and
U denote, respectively, the vectors of nodal loads and nodal displacements obtained by solving

KU = F (2.10)

where K is the linear elastic stiffness matrix, and dependence of all the variables on R is assumed.
The compliance W is defined by FTU. The specified structural volume is denoted by V̄ . The cross-
sectional area A is then given by A = V̄ /L where L is the total length of the arch. The optimization
problem is formulated as

P5: Minimize W (R) (2.11)

subject to: RL ≤ R ≤ RU (2.12)
H(R) ≤ 0 (2.13)

Since the roundness and the elastic stiffness defined by using the compliance can be conceived
as conflicting performance measures, a multiobjective optimization problem can be formulated for
optimizing the two objectives [4]. There are many approaches to obtaining all the possible Pareto
optimal solutions or to selecting the most preferred solution among the set of Pareto optimal solutions.
In this paper, a so called constraint method is used [4]. Let W̄ denote the specified upper bound for
W , and consider the following problem:

P6: Maximize
∑
ti∈T

min
{

1
d(t;R)

, d̄

}
g(ti;R)∆t (2.14)

subject to: W (R) ≤ W̄ (2.15)

RL ≤ R ≤ RU (2.16)
H(R) ≤ 0 (2.17)

Note that W̄ is given in view of the values of W of the optimal solutions of P4 and P5. A set of
Pareto optimal solutions can be generated by solving P6 for various values of W̄ .

2.2.2 Examples of curve optimization.

Optimal curves are found from the initial shapes (a) and (b), where the span length S is 50 m. The
curve is symmetric with respect to the line defined by Y = 25 m. The (X,Y )-coordinates of the
supports, which are fixed during optimization, are defined as shown in Fig. 2.3. In the following,
the unit of the length is m, which is omitted for brevity. The coordinates of R0, R1, R2 are
(0, 0), (10,20), (20,30), respectively, for initial curve (a), and (0, 0), (10,20), (20,0) for initial curve
(b). The variables are (X,Y )-coordinates of R1 and R2, and the number of variables is four. The
upper and lower bounds are 50 and −10, respectively, for the X-coordinates, and 50 and −20 for
the Y -coordinates. Optimization is carried out by IDESIGN 3.5 [1], and the sequential quadratic
programming method is used.

A constraint is given such that the X-component of the tangent vector ẋ(t) is nonnegative at the
center t = 0.5. The constraint is explicitly written as

Rx
0 + 3Rx

1 + 2Rx
2 ≤ 3S (2.18)

Note that Y -component of ẋ(t) vanishes at t = 0.5 due to the symmetry condition. Therefore,
||ẋ(t)|| = 0 and a cusp can exist at the center if (2.18) is satisfied in equality.

The optimal shape in Fig. 2.5 has been successfully found from the initial curve (b) by solving
P4 with c0 = (25,0), where d̄ = 1.0 and ∆t = 0.01. It may be observed from this result that the
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with respect to α.

optimal shape with κ(t) < 0 throughout the region can be found from an initial solution with convex
and concave regions.

Let RI and R̃ denote the control points corresponding to the initial curve (b) and the optimal
curve, respectively. In order to discuss the efficiency of using the formulation of P4, the intermediate
solutions R̂ between RI and R̃ are linearly defined by a parameter α as

R̂ = αR̃ + (1 − α)RI (2.19)

Let β1 and β4 denote, respectively, the objective functions of P1 and P4. Variation of 1/β4 with
respect to α is plotted in Fig. 2.7. It is seen from Fig. 2.7 that 1/β4 decreases; i.e. β4 increases; as
the curve approaches the optimal curve. Therefore, the optimal solution can be obtained by solving
P4. On the contrary, β1 is a discontinuous function of α as shown in Fig. 2.8. Although the objective
value has the minimum value at α = 1, it is very difficult to reach the optimal solution from the
initial solution (b).

If c0 = (12.5,0) is given for the left side with 0 ≤ t ≤ 0.5, the optimal curve as shown in Fig. 2.9
has been reached from the initial curve (a). It may be observed from these results that optimal
solutions with various types of curvature distributions can be obtained by specifying the center of
curvature, and curves with single and double arches can be obtained without any modification of
problem formulation or geometrical modeling.

Next, we consider compliance as a mechanical performance measure. The material is steel where
the elastic modulus E is 200.0 GPa and the weight density is 80.0 kN/m3. The cross-section of
the arch is sandwich, and the distance between the two flanges is denoted by h. In this case, the
extensional stiffness is EA and the bending stiffness is EAh2/4, where h = 1 m in the following. The
arch has pin supports, and is divided into 20 beam elements. Distributed load of 2.0 kN per unit
arc-length is applied in the negative Y -direction in addition to the self weight. The specified total
structural volume V̄ is 20.0 m3. The optimal solution for minimizing W is as shown in Fig. 2.10,
where the optimal value of W is 9.3117 × 102 kNm.

It is observed from Figs. 2.5 and 2.10 that the optimal shape for minimizing the compliance is
quite different from the round shape. The values of W for the optimal round curves in Figs. 2.5 and
2.9 are 7.5503×103 kNm and 9.8876×104 kNm, respectively. Problem P6 has been next solved with
c0 = (25.0,0) and W̄ = 1.0 × 103 kNm. Fig. 2.11 shows the obtained optimal shape. It is seen from
Fig. 2.11 that an intermediate solution between Figs. 2.5 and 2.10 has been obtained by considering
the trade-off between roundness and elastic stiffness.
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Center of curvature

Fig. 2.9: Optimal shape for c0 = (12.5,0).

Fig. 2.10: Optimal solution for minimizing com-
pliance (W = 7.5503 × 103 kNm).

Fig. 2.11: Optimal solution for c0 = (25,0) un-
der constraint on compliance (W = 1.0 × 104

kNm).

r  (u,v)

N(u,v)

r  (u,v)uv

Fig. 2.12: Unit tangent and normal vectors of a
surface.

2.3 Shape optimization of surfaces.

2.3.1 Problem formulation.

Consider a surface defined by parameters u and v as X(u, v). The fundamentals on geometry of sur-
faces may be referred to; e.g., [5, 8]. We use curvatures and unit normal vectors also for optimization
of surfaces. The unit normal vector of the surface is denoted by N(u, v). A line in u- or v-direction
in the parameter space corresponds to a curve in the physical space which is called an isoparametric
curve. Let ru(u, v) and rv(u, v) denote the unit tangent vectors of the isoparametric curves in u- and
v-directions, respectively. N(u, v) = ru(u, v) × rv(u, v) is defined as shown in Fig. 2.12.

Let κi(u, v) (i = 1, 2) denote the two principal curvatures at a point on a surface. The centers of
curvatures can be defined as

Pi(u, v) = X(u, v) +
1

κi(u, v)
N(u, v), (i = 1, 2) (2.20)

The formulation (2.20), however, can not be conveniently used for specifying the desired shape,
because two centers of curvatures exist at a point on the surface.

If the Gaussian curvature K(u, v) = κ1(u, v)κ2(u, v) is used, the center of curvature can be
uniquely determined as follows for K(u, v) > 0 [11]:

C(u, v) = X(u, v) +
1√

K(u, v)
N(u, v) (2.21)

Note that the surface of Fig. 2.12 has two negative principal curvatures and K(u, v) > 0.
The surface X(u, v) is defined by the tensor product Bézier surface as [7]

X(u, v) =
n∑

i=0

m∑
j=0

Ri,jB
n
i (u)Bm

j (v) (2.22)
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where Ri,j = (Rx
i,j , R

y
i,j) (i = 0, . . . , n; j = 0, . . . ,m) are the control points, and n = m = 5 in the

following examples.
Let C0 denote the specified center of curvature for the definition (2.21). The parameters u and v

∈ [0, 1] are divided into regions with uniform interval by ∆u and ∆v, respectively, and the parameter
values at the centers of the regions are denoted by ui and vj. The determinant of the first fundamental
matrix of the surface is denoted by G(u, v). Note that N(u, v) defined in Fig. 2.12 is in the same
direction irrespective of the sign of the principal curvatures. Let U denote the region where both of
the principal curvatures are negative. The square of distance between C(ui, vj ;R) and C0 is defined
as

D(ui, vj ;R) = ||C(ui, vj ;R) − C0||2 (2.23)

The optimization problem for specified center of curvature is formulated as

P7: Maximize
∑

(ui,vj)∈U

min
{

1
D(ui, vj ;R)

, d̄

}

×
√

G(ui, vj ;R)∆u∆v (2.24)

subject to: RL ≤ R ≤ RU (2.25)
H(R) ≤ 0 (2.26)

A round surface is obtained by solving P7.
The center of curvature can alternatively be defined by the isoparametric curves for generating a

ribbed shell. Let κu(u; v) denote the curvature of the isoparametric curve in u-direction, where the
argument (u; v) indicates that the parameter is u, but the curve is defined for each specified value of
v. The unit normal vector is denoted by nu(u; v). Note that κu(u; v) of a curve in three dimensional
space always has nonnegative value. The center of curvature of the isoparametric curve is given for
the region κu(u; v) �= 0 as

cu(u; v) = X(u, v) +
1

κu(u; v)
nu(u; v) (2.27)

cv(u; v) can be defined similarly.

2.3.2 Examples of surface optimization.

Optimal shapes have been found from the initial shapes (a) and (b) as shown in Figs. 2.13 and 2.14,
respectively. We only consider the surfaces that are symmetric with respect to the planes defined
by X = 25 and Y = 25. The (X,Y,Z)-coordinates are defined as shown in Fig. 2.13. Based on
the symmetry conditions, the surface is defined by nine control points Ri,j , (i = 0, 1, 2; j = 0, 1, 2).
For the initial shape (a), R0,0 = (0, 0, 0), R0,1 = (0, 10, 0), R0,2 = (0, 20, 0), R1,0 = (10,0, 0),
R1,1 = (10,10, 20), R1,2 = (10,20, 20), R2,0 = (20,0, 0), R2,1 = (20,10, 20), R2,2 = (20,20, 20). For
the initial shape (b), R2,2 = (20,20,−10) and the remaining control points are same as those of (a).
The control polygons are plotted in thin lines in Figs. 2.13 and 2.14.

The three components of R0,0 are fixed during the optimization process. The control points
along the boundary can move only in the vertical planes in which the boundary curves are located.
The upper and lower bounds are 50 and 0, respectively, for X,Y -coordinates, and 60 and −20 for
Z-coordinates. The parameters are divided by ∆u = ∆v = 0.0125. The upper bound d̄ in (2.24) is
1.0. Geometrical constraints are given so that the X- and Y -components of the tangent vectors of
the isoparametric curves in u- and v-directions, respectively, have nonnegative values at the points on
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Z

Fig. 2.13: Initial solution (a). Fig. 2.14: Initial solution (b).

Fig. 2.15: Optimal solution for C0 = (25,25, 0). Fig. 2.16: Optimal solution for C0 =
(12.5,12.5,0).

the planes of symmetry defined by u = 0.5 and v = 0.5. These constraints are then written explicitly
as

Rx
0,j + 3Rx

1,j + 2Rx
2,j ≤ 3Sx, (j = 0, 1, 2) (2.28)

Rx
i,0 + 3Rx

i,1 + 2Rx
i,2 ≤ 3Sy, (i = 0, 1, 2) (2.29)

where Sx and Sy are the span lengths in X- and Y -directions, respectively, which are equal to 50.0
m.

The optimal solution for C0 = (25,25, 0) is as shown in Fig. 2.15 which has been obtained from
the initial solution (b) as shown in Fig. 2.14. A round surface has been successfully reached from a
partially concave initial shape. Note that there exist concave regions at four corners. Roundness in
almost all the domain, however, has been increased by sacrificing smoothness at the corners of the
optimal shape.

An optimal shape of Fig. 2.16 has been found for C0 = (12.5,12.5,0) from the initial shape (a);
i.e., a ribbed shell with discontinuity in the tangent vector can be found from a convex initial shape.
Therefore, optimal shape with various curvature distributions can be generated by solving P7 from
different types of initial shapes.

Consider next a problem of minimizing the compliance under static loads. The curved shell is
assumed to be sufficiently thin so that only membrane stresses should be considered. The standard
nine-degree-of-freedom triangular element with uniform stresses and strains is used [28]. The pa-
rameter space (u, v) is divided into 20 × 20 regions with same interval. The shell is subjected to
distributed load 100.0 N in negative Z-direction per unit area of the surface. The material is steel,
and all the displacement components including rotations are fixed along the boundary. The specified
structural volume is 10.0 m3.

The optimal solution is as shown in Fig. 2.17, where the compliance is 5.6934 × 103 kNm. It is
seen from Fig. 2.17 that the optimal shell has a kind of cylindrical shell with parabolic cross-section
in each direction of X and Y . The value of W for the shells in Figs. 2.15 and 2.16 are 6.2064 × 104

kNm and 5.9848×104 kNm, respectively. The trade-off solution for C0 = (25,25, 0) and W̄ = 7.0×103

11



Fig. 2.17: Optimal shape for minimizing compli-
ance (W = 5.6934 × 103 kNm).

Fig. 2.18: Optimal shape under compliance con-
straint (W = 7.0 × 103 kNm).

Fig. 2.19: Optimal shape for specified center of curvature of isoparametric curve.

kNm is as shown in Fig. 2.18 which is between the shapes in Figs. 2.15 and 2.17.
Finally, a ribbed shell is generated by using the center of curvature of the isoparametric curve

given by (2.27). The inverse of the square of the distance between cu(u; v) and the line defined by
X = 12.5, Z = 0 for the region u ∈ [0, 0.5] and v ∈ [0, 1] has been minimized to obtain the optimal
shape in Fig. 2.19, where d̄ = 1.0 has also been used, and the integration has been carried out only
for the region with κu(u; v) < 0. It is observed from Fig. 2.19 that a ribbed shell can be generated by
specifying the center of curvature of the isoparametric curve without any modification of modeling
method of the surface.

2.4 Conclusions.

A unified approach has been presented for generating round shells with and without ribs from initial
shapes with various distributions of curvature. The conclusions drawn from this study are summa-
rized as follows:

1. A smooth convergence of the objective function to the optimal objective value has been demon-
strated in the example of a curve optimization by using the objective function defined by the
inverse of distance of the center of curvature from the specified point, where the region of the
integration of the objective function is restricted by the signs of principal curvatures.

2. Dependence of the optimization result on the initial shape can be successfully avoided by using
the proposed formulation, and round curves and surfaces with different numbers of arches and
ribs can be generated by specifying the center of curvature without any modification of problem
formulation or modeling method.

3. The shape of a ribbed shell or a double arch cannot uniquely be defined only by the curvature
distribution and the boundary conditions.

12



4. The optimal shape for minimizing compliance under constraint on structural volume has been
shown to be a doubly curved shell that consists of cylindrical shell in two directions.

5. The constraint approach can be successfully used for obtaining a trade-off design between round
and mechanically efficient shapes.

6. A ribbed cylindrical shell can be generated by specifying the distribution of the center of
curvature of the isoparametric curves.

It may be observed from these results that the center of curvature is an intrinsic property that di-
rectly corresponds to the shape of the curves and surfaces, and various round shapes with and without
ribs can be generated by specifying the center of curvatures within a unified problem formulation.
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[15] Moreton, H. P. and Séquin, C. H. (1993). Scale-invariant minimum-cost curves: Fair and robust
design implements. Computer Graphics Forum, 12(3), 473–484.

13



[16] Nowacki, H. and Reese, D. (1983). Design and fairing of ship surfaces. In R. E. Barnhill and
W. Bohem, editors, Surfaces in CAGD, pages 121–134. North-Holland.
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Chapter 3

Developability Conditions for
Prestress Optimization of a Curved
Surface

3.1 Introduction.

Curved surfaces in engineering fields such as membrane fabric structures are made by stretching
and connecting pieces of plane sheets. Prestresses are given so that the surface retains stability and
stiffness against external loads. One of the main difficulties in designing the membrane structures
is that the shape of self-equilibrium is to be formed only by membrane (in-plane) stresses, because
the flexural stiffness of the fabric is negligibly small. Another difficulty is that the curved surface
should be formed from plane sheets by stretching only the boundaries of the sheets. In the traditional
methods of designing membrane structures, an equilibrium surface is first found without considering
the conditions for the surface to be reduced to plane sheets by removing the prestresses [1–5]. This
process is called form-finding analysis. After equilibrium shape and prestresses are determined, the
approximate plane sheets are obtained by cutting the surface along the geodesic lines, and by reducing
the stresses at equilibrium [6].

One of the drawbacks of this approach are that the feasible shape is often limited to the surface
with constant stress, and the equilibrium shape obtained by actually connecting the plane sheets
might be far from the specified shape. Another drawback is that the distribution of the stress after
pretensioning may not be uniform as expected. The initial shape and stresses may be improved by
optimizing the shape of each cutting pattern through an iterative process involving incremental and
iterative deformation analysis with geometrical nonlinearity [7, 8]. In this case, however, substantial
computational effort is needed if the number of membrane elements is increased.

Development of curved surfaces to plane sheets has been extensively investigated also in textile
fabrication for shoes and clothes. Optimum development can be defined by minimum strain energy
in the fabrication process [9–12]. There are several methods to obtain cutting patters from strip
models [13, 14]. In those papers, however, no explicit condition has been utilized for flattening the
surface discretized by using a finite element model.

Ohsaki et al. [15] and Ohsaki and Uetani [16] presented an inverse method where the conditions
for the surface to be reduced to plane sheets, which are simply called developability conditions, are
incorporated in the process of finding equilibrium shape with minimum stress deviation from the
target distribution. Their method consists of two levels of optimization problems. The stresses are
first optimized at the lower-level problem for the given shape of the surface under constraints on
equilibrium and developability conditions. In the upper-level problem, the equilibrium shape that
has been specified in the lower-level problem is optimized to further improve the stress distributions.
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Fig. 3.1: Definition of coordinates by the tangent plane of each element.

The trade-off between shape and stress deviations can be incorporated in the objective function, if
necessary. In their method, however, the surface should be discretized by triangular finite elements
with uniform stresses, and the developability conditions are written in terms of stresses. Therefore,
their method seems to depend strongly on the method of finite element discretization.

In this chapter, we summarize the method in Refs. [15] and [16] to present the developability con-
ditions by local coordinates. The effectiveness of using the developability conditions is demonstrated
in numerical examples.

3.2 Developability conditions by local coordinates.

Consider a surface discretized to finite elements. Let P denote a tangent plane at the center of each
element. Fig. 3.1 illustrates the case of four elements. Let (x, y) denote the orthogonal coordinates
on P of an element on S. The coordinate normal to P is denoted by z. The location of the ith node
of the element is given as (xi, yi, zi), and the derivative of z-coordinate of S in the (x, y)-directions
at the ith node are written as dxi and dyi, respectively. Similarly, the nodal displacements in the
(x, y, z)-directions are denoted by (ui, vi, wi), and gxi and gyi denote the derivatives of displacements
in z-direction at ith node with respect to x and y, respectively. The following relations should be
satisfied for the curved element to be reduced to a plane:

wi = −zi (3.1)
gxi = −dxi (3.2)
gyi = −dyi (3.3)

Note that compatibility along the lines or curves between the elements is not included in (3.1)-(3.3).
For a given shape of S, zi, dxi and dyi are to be specified, and by using (3.1)-(3.3), the unknown
nodal displacements are ui and vi at each node. Let ue denote the vector of independent components
of nodal displacements after constraining the rigid body rotation and translation. If we use the
standard assumption of large deformation-small strain, the strain vector at a point in the element
can be defined as a linear function of ue that is written as εe(ue;x, y). The compatibility conditions
along the boundaries between the elements are given as follows by the vector u that consists of ue

of all the nodes on S.

• Compatibility of arc elongation:
Let ei denote the arc connecting elements a and b. The strain in elements a and b along the curve
ei between the two elements are denoted by εa and εb, respectively. Then the compatibility
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Fig. 3.2: Definition of local coordinates.

condition is written as ∫
ei

εadei =
∫

ei

εbdei (3.4)

which may be written in the following form:

Gu = 0 (3.5)

because the strain is assumed to be a linear function of the nodal displacements.

• Compatibility around a node:
Let I denote the set of indices of the elements that connect to node c. The angle between the
arcs connecting to node c of the element i on S is denoted by Θc

i . Since the sum of the angles
around a node on P should be equal to 2π, the increment of the angle θc

i due to removal of the
stresses should satisfy ∑

i∈I

(Θc
i − θc

i ) = 2π (3.6)

Since the shear strain is a linear function of u, (3.6) is simply written as

Hu = h (3.7)

3.3 Triangular element of uniform stress.

It is shown in this section that the developability conditions of local formulation are equivalent to the
conditions in terms of stresses presented in Refs. [15] and [16] if the triangular element with uniform
stresses is used.

Let i, j, k denote the three nodes of an element. The local coordinates (x, y) are defined for
S as shown in solid lines in Fig. 3.2 where the node i is taken as the origin. The strain vector
corresponding to the local coordinates is defined as εe = {εe

x, εe
y, γ

e
xy}�. The displacement vector ue

after constraining the rigid body rotation and translation is given as ue = {uj , uk, vk}�, where uj,
uk and vk are as defined in Fig. 3.2. The relation between εe and ue is given as [17]

εe = Cue (3.8)

The constitutive relation between εe and the corresponding stress vector σe of the element is
given as

σe = Dεe (3.9)
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From (3.8) and (3.9), σe is defined in terms of ue as

σe = DCue (3.10)

which is written as

σe = Feue (3.11)

Since Fe is a regular matrix, ue is written inversely as

ue = [Fe]−1σe (3.12)

Eq. (3.11) is assembled to the total surface to derive the relation

σ = Fu (3.13)

The compatibility (3.4) of arc elongation is simply written as

εa = εb (3.14)

and (3.5) is written in terms of σ as

GF−1σ = 0 (3.15)

The increments of angle is also written in linear forms of stresses under assumption of small defor-
mation [15, 16], and the compatibility of the angle is written in terms of stresses as

HF−1σ = h (3.16)

3.4 Stress optimization problem.

Consider a problem of constructing a curved surface of specified shape from plane sheets so as to min-
imize stress deviation under equilibrium conditions and developability conditions. The equilibrium
conditions are written as

Sσ = 0 (3.17)

where S is the equilibrium matrix defined by the nodal coordinates on the surface.
Let σ0 denote the target stress vector. The optimization problem for minimizing the stress

deviation is stated as follows if stresses are taken as independent variables:

PL: minimize P (σ) =
1
2
(σ − σ0)�(σ − σ0) (3.18)

subject to (3.15) − (3.17) (3.19)

Since PL is a quadratic programming problem with linear equality constraints, it can be solved by
the Lagrangian multiplier method.

Eqs. (3.15)-(3.17) are combined to

Aσ = a (3.20)

and the Lagrangian is defined as

Π = P (σ) + λ�{Aσ − a} (3.21)
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Fig. 3.3: A frame-supported HP-type membrane (Model 1).

where λ is the vector of Lagrange multipliers.
From the stationary conditions of Π with respect to σ and λ, the following equations are derived:

σ + A�λ = σ0 (3.22)
Aσ = a (3.23)

From (3.22),

σ = −A�λ + σ0 (3.24)

which is incorporated into (3.23) to lead to

AA�λ = Aσ0 − a (3.25)

The multipliers λ are obtained from (3.25), and σ is to be found by incorporating them into (3.24).
It is easily seen that σ is converted to u by (3.13), and the number of elements in σ and u are same if
the triangular element of uniform stresses and strains are used. Therefore the same result is obtained
by considering u as independent variables.

3.5 Examples.

In the following examples, the membrane material is orthotropic elastic and the elastic moduli in
x- and y-directions are 806.05 MPa and 267.05 MPa, respectively. The shear modulus is 69.825
MPa, and the Poisson’s ratio νxy is 0.90550. The thickness of membrane is 0.08 cm. The target
stresses are 6.125 MPa for σx and σy, and 0 for τxy. Compatibility in the total edge length along the
cutting lines is considered in the local formulation.

Consider an HP-type membrane structure (Model 1) as shown in Fig. 3.3(a), where the boundary
consists of four rigid beams. The internal shape is defined as

Z =
(X2 − Y 2)H

W 2
(3.26)
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Table 3.1: Optimization results (Model 1).

Stress deviation (MPa)2 105.2539
Stress (MPa) σx σy τxy

Average 6.1157 6.1183 0.0000
Maximum 8.0484 7.9188 1.4065
Minimum 4.0812 4.5843 −1.4065

Standard deviation 0.8603 0.8173 0.4863

Table 3.2: Result of shape analysis after regeneration of cutting patterns (Model 1).

Stress deviation (MPa)2 104.0868
Stress (MPa) σx σy τxy

Average 6.0271 6.0497 0.0006
Maximum 7.8916 7.8235 1.3548
Minimum 3.9391 4.4416 −1.3471

Standard deviation 0.8495 0.8176 0.4701

Fig. 3.4: Element numbers for Model 1.

where W = 32.0 m and H = 6.4 m in the following example. The membrane is divided into eight
sheets, and optimization is carried out for a half of the surface by considering symmetry conditions.
The cutting pattern is as shown in dotted lines in Fig. 3.3(b). The warp direction of each element
coincides with the edge that is closest to the X-direction, and the fill (weft) direction is normal to
the warp direction; i.e., the effect of shear deformation is neglected in the process of defining the
directions of fabrics at equilibrium. The plane P for global formulation is the XY -plane for all the
cutting sheets.

The optimization results as shown in Table 3.1. The element numbers are assigned as shown in
Fig. 3.4 for those in Y ≥ 0. Figs. 3.5(a)-(c) show the equilibrium shape, the optimal shapes of plane
sheets and the optimal stresses, respectively. It can be seen fron this result that a shape with small
stress deviation can be found by the propose method.

Since the developability conditions used in the local formulation is a linear approximation that is
valid for small strains, there exist slight errors in the unstressed shape of the elements. Therefore, the
cutting patterns should be regenerated as follows before carrying out shape analysis for verification
purpose:

1. Find the optimal stresses based on the local formulation.

2. Remove the stresses of all the elements independently to obtain pieces of unstressed triangles.
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(a)
(b)

(c)

Fig. 3.5: Optimization results by local formulation (Model 1): (a) equilibrium shape, (b) cutting
pattern, (c) stresses.

3. Place a triangle on a plane.

4. Find a triangle of which locations of two nodes are already defined.

5. Adjust the length of the edge between the two nodes with the lengths of remaining two edges
unchanged, and place the triangle on the plane.

6. Insert an edge between two nodes that are already placed on the plane and are not connected.

7. Go to 3 if all the triangles have not been placed.

The results of shape analysis for the optimum stresses are as shown in Table 3.2. The stress
distributions are also plotted in Fig. 3.6. It is seen from Table 3.2 that the stresses are fairly equal
to those in Table 3.1, which means that the errors due to linear approximation is negligibly small,
and the stress distributions that are close to the optimal values can be attained.

Consider next a frame-supported membrane (Model 2) as shown in Fig. 3.7 that has larger
curvature and more complex surface than Model 1. The geometrical parameters are w = 4.0 m,
h1 = 1.5 m and h2 = 1.0 m. The boundaries are assumed to be rigid, and the internal shape has been
obtained by shape analysis for the given target stresses. The membrane consists of ten triangular
parts, each of which is divided into two cutting sheets as shown in Fig. 3.7(c). The warp direction of
each element coincides with the edge that is closest to the X∗-direction defined in Fig. 3.8 for each
triangular part.

The optimization results are as shown in Table 3.3. The element numbers are assigned as shown
in Fig. 3.9. The optimal shapes of plane sheets and the optimal stresses are as shown in Figs. 3.10. It
is seen from these results that the shape with small stress deviations can be found by the proposed.
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Fig. 3.6: Result of shape analysis for the optimal solution by local formulation (Model 1).

Fig. 3.7: A frame-supported membrane (Model 2).

The results of shape analysis after regeneration of the cutting patterns are listed in Table 3.4.
The stress distributions are as shown Fig. 3.11. It is seen from Table 3.4 that the stresses are fairly
equal to those in Table 3.3.

3.6 Conclusions.

General formulations have been presented for developability conditions of surfaces to plane sheets
based on the displacements in the local coordinates. It has been shown that the conditions based on
the local formulation are extension of those by Ohsaki et al. [15] and Ohsaki and Uetani [16], where
the stresses are defined in terms of local displacements and the unstressed shapes of the triangular
elements are found by releasing the stresses at equilibrium.

The developability conditions have been applied to an optimization problem for minimizing stress
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Fig. 3.8: Local coordinates (X∗, Y ∗) for defining warp and fill directions (Model 2).

Fig. 3.9: Element numbers for Model 2.

Table 3.3: Optimization results (Model 2).

Stress deviation (MPa)2 55.1235
Stress (MPa) σx σy τxy

Average 6.1311 6.1251 0.0035
Maximum 7.9364 6.7655 0.4371
Minimum 4.8519 5.2822 −0.4186

Standard deviation 0.5809 0.2876 0.1442

Table 3.4: Result of shape analysis after regeneration of cutting patterns (Model 2).

Stress deviation (MPa)2 60.3382
Stress (MPa) σx σy τxy

Average 6.2733 6.2388 0.0031
Maximum 8.1066 6.9113 0.4418
Minimum 4.9530 5.3753 −0.4224

Standard deviation 0.5813 0.2987 0.1435

deviation of a finite element model from the target values. Since any arbitrary shape cannot be
realized by simply stretching the plane sheets, there is an upper bound in number of elements for
discretizing the surface.

The performances of the proposed formulations have been investigated in the numerical examples.
It has been shown that the stresses can be estimated fairly accurately by the proposed formulation;
i.e. the stress obtained from the regenerated cutting patterns are very close to the optimal stresses.
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(a)

(b)

Fig. 3.10: Optimization results (Model 2): (a) cutting pattern, (b) stresses.

Fig. 3.11: Result of shape analysis for the optimal solution (Model 2).
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Chapter 4

Structural Optimization for Specified
Nonlinear Buckling Load Factor

4.1 Introduction.

In the design process of dome structures and high-rise buildings, it is important to assign appropriate
cross-sectional properties of members so that the structures have enough safety considering insta-
bility against possible large design loads. In the field of structural engineering, such an instability
phenomenon is called buckling. For column-type structures such as transmission towers and high-rise
buildings, linear eigenvalue formulation is usually applied in the design process because the effect of
deformation before buckling, which is called prebuckling deformation, is negligible. For shallow dome
structures, however, the effect of prebuckling deformation is usually to be incorporated in evaluating
the buckling loads. In this chapter, we consider an optimization problem for determining the stiff-
ness distribution of an elastic finite dimensional structure under nonlinear buckling constraints. The
applied loads are quasi-static and proportional, and are defined by the parameter called load factor.

Optimization of structures for specified linear buckling load factor has been extensively inves-
tigated including the case where the optimum design has multiple or repeated eigenvalues [1–5].
Recently, there have also been many studies for optimum design for specified nonlinear buckling load
factor considering prebuckling deformation [6–10].

Nonlinear buckling of a structure is defined as a critical point of the equilibrium path which is
classified into a limit point and a bifurcation point as shown briefly in the following section. It is
easy to find optimum designs for specified limit point load factor by using a gradient based mathe-
matical programming approach, because the sensitivity coefficients of the limit point load factor with
respect to the design variables such as cross-sectional areas and nodal coordinates are bounded [10].
For a symmetric structure subjected to symmetric proportional loads, the sensitivity coefficients of
bifurcation load factor are not bounded for an asymmetric modification of design variables which is
classified as major imperfection [11]. On the contrary, a symmetric design modification is classified
as minor imperfection [12] where the sensitivity coefficients are bounded even for a bifurcation point.
Ohsaki and Uetani [13] presented a method of finding sensitivity coefficients of the bifurcation load
factor of a symmetric structure, and applied it to optimum design of trusses [17].

It is well known that an optimum design under buckling constraints often has multiple critical
load factors. In this case, it is very difficult to obtain the optimal solution even for linear buckling
load constraints [5]. In the field of nonlinear stability analysis, critical points with multiple null
eigenvalues of tangent stiffness matrix are called coincident critical points [16]. Although it have
been suggested by Thompson and Hunt [14] that the maximum load factor should be carefully
determined for the case of coincident critical points, some researchers believe that obtaining such a
structure is meaningless. Recently, the author has presented sensitivity analysis and optimization
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Fig. 4.1: Equilibrium path in (Q,Λ)-space and classification of critical points.

methods for problems with coincident critical load factors, and showed some examples of a small
truss [15]. To the author’s knowledge, no method of has been presented for sensitivity analysis and
optimization corresponding to coincident nonlinear critical points of a moderately large structure
with practically acceptable number of degrees of freedom.

In this chapter, the author’s method of design sensitivity analysis and optimization of geometri-
cally nonlinear structures are applied to a truss with moderately large number of degrees of freedom.
The results are compared with those by linear eigenvalue formulation, and the imperfection sensitivity
properties of the optimal designs are discussed in detail.

4.2 Nonlinear stability analysis.

Consider a finite dimensional elastic conservative system where the equilibrium state is determined
by stationary condition of the total potential energy. The structure is subjected to a set of quasi-
static proportional loads P ∈ Rf defined by the constant vector P0 ∈ Rf and the load factor Λ as
P = ΛP0, where f is the number of degrees of freedom. The vector of state variables such as nodal
displacements is denoted by Q ∈ Rf . The total potential energy Π(Q,Λ) is a function of Q and Λ.

Let Si denote partial differentiation of Π with respect to Qi. Stationary condition of Π with
respect to Qi leads to the following equilibrium equations:

Si = 0, (i = 1, 2, · · · , f) (4.1)

The trajectory of equilibrium state in (Q,Λ)-space is called equilibrium path. The path that origi-
nates the undeformed initial state is called fundamental equilibrium path as illustrated in Fig. 4.1.
Let t denote a parameter that defines a point along the equilibrium path. t may represent Λ, Qi, or
the arc-length of the path, and is written in general form as

t = g(Q,Λ) (4.2)

The Hessian of Π with respect to Qi is denoted by S = [Sij ] ∈ Rf×f which is called stability
matrix or tangent stiffness matrix. The rth eigenvalue λr(t) and eigenvector Φr(t) = {φri(t)} ∈ Rf

of S(t) along the fundamental equilibrium path are defined by

f∑
j=1

Sijφrj = λrφri, (i = 1, 2, · · · , f) (4.3)
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where Φr is normalized by

f∑
j=1

(φrj)2 = 1 (4.4)

Note that the eigenvalues λr are numbered in increasing order; i.e. λ1 is the lowest eigenvalue.
An equilibrium state that satisfies (4.1) is stable if λ1 > 0, and is unstable if λ1 < 0. The value of Λ

corresponding to λ1 = 0 is called critical load factor or buckling load factor, and such an equilibrium
state indicated by t = tc is called critical point. In the following, the values corresponding to t = tc

is denoted by a superscript ( )c.
The critical points are classified into limit points and bifurcation points as illustrated in Fig. 4.1.

At a limit point, a so called snap-through takes place to a stable equilibrium state as shown in
Fig. 4.1(a). At a bifurcation point, there exists a branch that bifurcates from the critical point. A
parameter β is defined by

β =
f∑

j=1

φc
1jP

0
j (4.5)

For the case where Sij does not depend explicitly on Λ, the critical points are classified by using β
as [14]

Limit point: β �= 0 (4.6)
Bifurcation point: β = 0 (4.7)

4.3 Optimum design problem.

Consider a truss defined by the vector of cross-sectional areas A = {Ai}. The upper and lower
bounds for Ai are denoted, respectively, by AU

i and AL
i . The specified lower bound of the critical

load factor Λc is denoted by Λ̄c. For the case of coincident buckling, the buckling constraint may be
written as

Λc
j(A) ≥ Λ̄c, (j = 1, 2, · · · , s) (4.8)

where Λc
j is the jth buckling load factor along the fundamental equilibrium path, and s is the

sufficiently large number for possible multiplicity. In this case, the buckling load factors of suffi-
cient number should be obtained at each step of optimization. For the initial solution, however,
Λc

2,Λ
c
3, . . . ,Λ

c
s may be far above Λc

1, and substantial computational effort is needed for finding all the
necessary buckling load factors and their design sensitivity coefficients by tracing the fundamental
equilibrium path.

Therefore, the optimization problem for minimizing the objective function C(A) is formulated
as [15]

Minimize C(A) (4.9)
subject to Λc

j(A) ≥ Λ̄c, (j = 1, 2, · · · , q) (4.10)

λc
r(A) ≥ 0, (r = q + 1, q + 2, · · · , s) (4.11)

AL
i ≤ Ai ≤ AU

i (4.12)

where q is the multiplicity of the critical load factor of the current design during optimization. In
this case, the path-following analysis can be terminated at the first critical point.

In the following examples, the optimization problem is solved by using a standard gradient-based
approach, where design sensitivity analysis is carried out by the method proposed in [15].
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Table 4.1: Nodal coordinates (cm) of the spherical truss.

Node number x y z

1 0.0 0.0 461.880
2 239.087 0.0 430.404
3 119.543 207.055 430.404
4 461.880 0.0 338.120
5 400.0 230.940 338.120
6 230.940 400.0 338.120
7 653.197 0.0 191.317
8 613.805 223.407 191.317
9 500.378 419.867 191.317
10 326.599 565.685 191.317
11 800.0 0.0 0.0
12 772.741 207.055 0.0
13 692.820 400.0 0.0
14 565.685 565.685 0.0
15 400.0 692.820 0.0

Table 4.2: Total volumes and critical load factors of the optimum designs.

Concentrated load Distributed load
(Case 1) (Case 2)

Volume (×106cm3) 1.2677 3.0704
Λc

1 99.961 99.998
Λc

2 99.952 100.409
Λc

3 99.728 100.409
Λc

4 – 101.148
Λc

5 – 101.148
Λc

6 – 102.340
Linear buckling load 228.153 135.230

4.4 Examples.

Optimum designs are found for a spherical truss as shown in Fig. 4.2. The radius of the circle where
the supports are located is 800.0 cm, and the height is 461.880 cm. The coordinates of the nodes in
one of the six equal parts as numbered in Fig. 4.3 are listed in Table 4.1. The objective function is
the total structural volume. AL

i is equal to 1.0 cm2 for all the members, and AU
i is not given. The

elastic modulus of the members is 205.8 GPa. Based on the symmetry property, the members are
divided into 14 groups of which members have the same cross-sectional area.

Lagrangian formulation with Green’s strain is used for defining the strain-displacement rela-
tion [22]. The total potential energy has been symbolically differentiated by using Maple V Release
5 [23]. The fundamental equilibrium path is traced by the displacement increment method. The spec-
ified buckling load factor is 100.0. Optimum designs are found by the method of modified feasible
direction [24].
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Fig. 4.3: Node numbers of the spherical truss.

Fig. 4.4: Optimum design for concentrated load
(Case 1).
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Fig. 4.5: Relation between deflection of center
node and load factor (Case 1).

4.4.1 Case 1: concentrated load

Consider Case 1, where a nodal load ΛP 0 with P 0 = 9.8 kN is applied in the negative z-direction of
the center node. The optimal cross-sectional areas are as shown in Fig. 4.4, where the width of each
member is proportional to its cross-sectional area. It is observed from Fig. 4.4 that the members
near the center have large cross-sectional areas. The total volume and the first three buckling load
factors along the fundamental equilibrium path are as listed in the first column of Table 4.2. Note
that three buckling load factors are closely located at the optimum design. The values of β of the
modes corresponding to three critical points have been computed from (4.5) to find that a limit point
and two bifurcation points almost coincide. Note for this case that Sij does not explicitly depend
on Λ. Let tcj denote the value of t at Λc

j . In this example, a limit point is reached at t = tc1, and Λ
decreases as t is increased from tc1. Then two symmetric bifurcation points are found slightly beyond
the limit point. Therefore, Λc

2 and Λc
3 are a little less than Λc

1 as observed in Table 4.2.
The linear buckling load factor of the optimum design is 228.153 which is more than twice of the

specified nonlinear buckling load factor. The deflection δ of the center node at buckling is 33.7296 cm.
Therefore, prebuckling deformation is very large and should be properly incorporated in evaluating
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Fig. 4.7: Imperfection sensitivity for the limit-
point-type mode of Case 1

the buckling loads of a single-layer spherical truss as shown in Fig. 4.2 subjected to a concentrated
load. Λ and λr are plotted with respect to δ, respectively, in Figs. 4.5 and 4.6. Note that the curve
a in Fig. 4.6 corresponds to a limit point. The curve b is duplicate and corresponds to bifurcation
points. This type of coincident buckling is called hill-top branching [14].

Fig. 4.7 is the plot of maximum loads of imperfect systems. The nodes are dislocated in the
direction of the symmetric buckling mode corresponding to the limit-point-type instability, where
the mode is normalized so that the maximum absolute value of the components is equal to 1. The
horizontal axis is the imperfection parameter c which is the scaling factor to be multiplied to the
normalized mode. For c > 0, the imperfection of the center node is in the negative z-direction, and
the critical point of the imperfect system is a limit point. In this case, the imperfection sensitivity
coefficient is bounded. For c < 0, the critical point is a bifurcation point and this type of imperfection
corresponds to a minor imperfection [12]. Therefore, the imperfection coefficients are also bounded
even for the maximum load factors defined by the bifurcation points.

Fig. 4.8 shows the imperfection sensitivity in the direction of the antisymmetric buckling mode
corresponding to the bifurcation-type instability. In this case, the imperfection corresponds to a
major imperfection, and the imperfection coefficients are not bounded at c = 0. It should be noted,
however, the magnitude of reduction of maximum load factor for this case is in the same order as
symmetric imperfection in a finite range, e.g. c = 1 cm, of the imperfection parameter. Therefore,
imperfection sensitivity at the perfect system corresponding to c = 0 is not important in practical
situation, and minor imperfection should be properly considered in evaluating the maximum loads
of imperfect systems.

Fig. 4.9 shows the imperfection sensitivity in the direction of the limit-point-type mode of the
initial design with Ai = 20.0 cm2 for all the members. Since the critical point is a simple limit point,
the maximum load factor is linear with respect to the imperfection parameter. The reduction of the
maximum load, e.g., for c = 1 cm is in the same order as that for the optimum design. Therefore the
imperfection sensitivity does not increase as a result of optimization. Note that interaction between
the modes corresponding to two symmetric bifurcation points as demonstrated through the Augusti
model [14] has not been observed.

An optimum design has been also found under linear buckling constraints by using the semi-
definite programming approach proposed in Ref. [21]. The total structural volume is 2.75730 ×
105 cm3, and the nonlinear buckling load factor of the optimum design is 21.6916. Let ANL and
ALIN denote the optimum cross-sectional areas, respectively, under nonlinear and linear buckling
constraints. Note that ALIN is almost proportional to ANL which has been shown in Fig. 4.4. If we
scale ALIN to satisfy Λc

1 = 100, then the total volume is 1.27224 × 106 cm3 which is only slightly
more than that of ANL as shown in Table 4.2. Therefore, for this case, it is practically acceptable to
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Fig. 4.10: Optimum design for distributed load
(Case 2).
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Fig. 4.11: Relation between deflection of center
node and eigenvalues (Case 2).

obtain an optimum design under linear buckling constraint and just scale it up to have approximate
optimum design under nonlinear buckling constraints.

4.4.2 Case 2: distributed loads

The optimal cross-sectional areas for Case 2 where the nodal load ΛP 0 with P 0 = 9.8 kN is distributed
in the negative z-direction of each node is as shown in Fig. 4.10. It is observed from Fig. 4.10 that
the cross-sectional areas are almost uniformly distributed except those for the members connected
to the supports. The total volume and the first six critical load factors are as listed in the second
column of Table 4.2. The linear buckling load factor of the optimum design is 109.866 which exceeds
the specified nonlinear buckling load factor only about 10 %. Therefore, the effect of prebuckling
deformation is not very large for the case of distributed loads. The value of δ is 16.4354 cm which is
about half of that of Case 1. In Case 2, however, the deflection of each node at buckling is almost
proportional to the height at the undeformed state, whereas only the nodes around the center moves
in Case 1. Therefore the effect of prebuckling deformation in Case 1 is larger than that in Case 2.

The total structural volume and the nonlinear buckling load factor of ALIN is 1.90953 × 105cm3

and 622.270, respectively. Note that ALIN is similar to ANL which has been shown in Fig. 4.10. If we
scale ALIN to satisfy Λc

1 = 100, then the total volume is 3.06865 × 106cm3 which is slightly smaller
than that for the nonlinear buckling constraints. This result suggests that the optimization process
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for nonlinear buckling constraints did not converge to a strictly optimal solution, and it is desirable
to obtain the design under linear buckling constraints and scale it up to have the optimum design
in a good accuracy because the prebuckling deformation for this case is not dominant in practical
sense.

The relation between δ and λr is as shown in Fig. 4.11. In this case, six buckling load coefficients
have almost same values, and the sixth critical point is a limit point. It should be noted, however,
that the closely spaced value of Λc

j does not mean coincidence of the critical point around a limit
point, because Λ takes a local maxima along the equilibrium path at the limit point, and Λ at different
points along the path may have closely spaced values.

4.5 Conclusions.

The conclusions drawn from the present paper are as follows:

1. The author’s method of design sensitivity analysis of coincident nonlinear critical loads and the
formulation of optimum design under nonlinear buckling constraints are applicable to a finite
dimensional system with moderately large degrees of freedom.

2. Optimum designs with closely spaced critical points can be found without any difficulty for a
spherical truss.

3. For optimal spherical trusses exhibiting hill-top branching, the buckling modes do not inter-
act strongly with each other because the closely located critical points are a limit point and
symmetric bifurcation points. It has also been confirmed that interaction between symmetric
bifurcation points as demonstrated through the Augusti model [14] does not exist in the exam-
ples of the spherical truss. Based on numerical experiments for dome-type trusses, the optimum
designs tend to exhibit hill-top branching. Therefore, if a special method can be developed for
finding optimum designs with hill-top branching, it will reduce the costs for optimizing the
dome-type structures.

4. The magnitude of reduction of maximum load factor due to a symmetric imperfection that is
classified as minor imperfection may be in the same order as that due to an antisymmetric
imperfection that is classified as major imperfection. Therefore, the fact that the imperfection
sensitivity of the bifurcation load factor is unbounded is not important in practical situation.
Minor imperfection should be properly considered in evaluating the maximum loads of imperfect
systems.

5. The optimum designs under linear and nonlinear buckling constraints are almost same for the
case of distributed loads where the effect of prebuckling deformation is small. Although the
effect of prebuckling deformation is very large for a spherical truss that carries a concentrated
nodal load, an approximate optimum design may successfully be obtained by scaling the opti-
mum design under constraints on linear buckling loads. Therefore, in practical point of view,
computational cost can be reduced by only using the linear formulation. It is desired that nu-
merical experiments should be carried out for many other structures to confirm the applicability
of the approximate method.
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Chapter 5

Heuristic methods for optimization of
spatial frames.

5.1 Introduction.

In the process of architectural design, the cross-sectional properties are selected from lists or catalogs
of the standard sections. Therefore, the optimization problems are formulated as combinatorial
optimization problem that is generally classified as (mixed) integer programming problem.

It is very easy to solve a combinatorial optimization problem if the number of variables is small.
However, the computational cost increases as an exponential function of the problem size, and it is
not possible to solve a practical problem with a practically admissible computational time. If the
upper and lower bounds of the objective values can be easily found, the branch-and-bound method
can be used to find the globally optimal solution. However, for the structural optimization problem,
the relaxed nonlinear programming problems are non-convex for which the global optimality is not
guaranteed.

Recently, with the rapid development of computer hardware and software technologies, we can
carry out structural analysis many times to obtain optimal solutions. Furthermore, in the practical
design process, it may be enough to obtain an approximate optimal design.

Heuristic approaches have been developed to obtain approximate optimal solutions within rea-
sonable computation time, although there is no theoretical proof of convergence. The most popular
approach is the genetic algorithm (GA), which is a multi-point method that has many solutions at
each iterative step. Since computational cost at each analysis is not very small, multi-point may not
be appropriate for optimization of large structures. In this chapter, single-point heuristics such as
greedy method, simulated annealing, taboo search, are applied to optimal design of a spatial frame,
and their performances are compared.

5.2 Structural optimization with discrete variables.

Suppose a list of standard sections is given, and let the cross-sectional properties of the jth section
are denoted by (A0

j , I
0
j , Z0

j ), where A0
j is the cross-sectional area, I0

j is the second moment of area,
and Z0

j is the sectional coefficient. Ji = j (i = 1, 2, . . . ,m) indicates that jth section is assigned to
the ith member, where m is the number of members; i.e. the mechanical properties of the frame is
defined by the integer vector J = {Ji}. In the following, the components of a vector are indicated by
subscripts.

The constraints on the response displacements and stresses against static loads are given as

gj(J) ≤ 0, (j = 1, 2, . . . , n) (5.1)
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where gj is a function of J, and n is the number of constraints.
We consider inequality constraints only, because the constraints given by building codes are

formulated as inequality. The objective function such as total structural volume is also a function of
J which is written as V (J). Hence the optimization problem is formulated as

minimize V (J) (5.2)
subject to gj(J) ≤ 0, (j = 1, 2, . . . , n) (5.3)

Ji ∈ {1, 2, . . . , r}, (i = 1, 2, . . . ,m) (5.4)

where r is the number of standard cross-sections which is same for all members, for brevity.

5.3 Overview of heuristic methods.

Heuristics are based on local search [1] which consecutively moves to a neighborhood solution if
it improves (decrease for a minimization problem) the value of the objective function, where the
neighborhood solutions are generated by modifying the value of one or several variables to neighboring
values. Since it is not always possible to find an optimal solution by simple local searches, heuristic
approaches have been proposed to improve the convergence properties.

The basic algorithm of a single-point heuristic approach can be written as

Basic algorithm of heuristic approach

Step 1 Assign initial solution.

Step 2 Generate neighborhood solutions, and select a solution based on a local search algorithm.

Step 3 Update the solution in accordance with the algorithm.

Step 4 Go to Step 2 if not converged.

For the initial solution, we can assign either specified or randomly generated values. An optimal
solution by another approach can be modified to be used as the initial solution; e.g. the nearest
discrete solution from the optimal solution with continuous variables can be used. The neighborhood
solutions are the set of solutions that can be reached from the current solution by the specified
operation; e.g. the rank of the cross-section of a randomly selected member can be increased or
decreased to obtain a neighborhood solution.

Heuristic approaches can be classified to deterministic and probabilistic approaches. The most
simple deterministic approach is the greedy method described as

Greedy method

Step 1 Assign an initial solution that does not satisfy the constraints; e.g. choose the smallest value
for all variables for the case where the constraint functions gj(J) are decreasing functions of J.

Step 2 Move to a neighborhood solution which most efficiently improves the objective function and
constraints.

Step 3 Go to Step 2 if one of the constraints is not satisfied.

The reverse approach that starts from a solution satisfying all the constraints and reduces the ob-
jective value consecutively is called stingy method which is described as
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Stingy method

Step 1 Assign an initial solution that satisfies all the constraints; e.g. choose the largest value for
all variables for the case where the constraint functions gj(J) are decreasing functions of J.

Step 2 Move to a neighborhood solution which most efficiently reduces the objective function.

Step 3 Go to Step 2 if all the constraints are satisfied.

The convergence property to the global optimal solution may be enhanced if several solutions
are searched before moving to a neighborhood solution, However, in this case a so called cycling can
occur where two neighboring solutions are chosen iteratively. The taboo search has been developed
to prevent cycling. In the taboo search, the solutions that have been already searched are included in
the taboo list of prohibited solutions. A neighborhood solution that does not improve the objective
function can also be selected to improve the ability of reaching the global optimal solution.

In the case where inequality constraints are assigned, the following penalty function is used to
evaluate the solution:

V ∗(J) = V (J) +
n∑

j=1

αj [max(gj(J), 0)]2 (5.5)

where αj is a penalty coefficient, and no penalty is given if gj ≤ 0 and the constraint is satisfied.
The algorithm of taboo search is summarized as

Taboo search

Step 1 Assign initial solution and initialize the taboo list.

Step 2 Generate neighborhood solutions and move to the best solution among them that is not
included in the taboo list.

Step 3 Add the solution to the taboo list.

Step 4 Remove the oldest solution in the taboo list if the length of the list exceeds the specified
value.

Step 5 Go to Step 2 if the termination condition is not satisfied.

The simplest probabilistic approach is the random search which works as

Random search

Step 1 Randomly set the initial solution.

Step 2 Move to the randomly generated neighborhood solution.

Step 3 Go to Step 2 if the termination condition is not satisfied.

Although the random search is not efficient in view of convergence to the global optimal solution, it
is simple and easy to implement.

The simulated annealing (SA) has been developed to prevent converging to local optimal solution
by allowing the move to a solution that does not improve the objective function, where the probability
of accepting such a solution is defined by the amount of increase (for minimization problem) of the
objective function. The term simulated annealing comes from the fact that it simulates the behavior
of the metals in annealing process. The basic algorithm is as follows:
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Simulated annealing

Step 1 Randomly generate the initial solution, and set the temperature parameter.

Step 2 Randomly generate a neighborhood solutions.

Step 3 Move to the neighborhood solution if it improves the objective value. If it does not improve,
accept it by the probability defined by the increase (for minimization problem) of the objective
value.

Step 4 Decrease the temperature parameter.

Step 5 Go to Step 2 if the termination condition is not satisfied.

5.4 Optimization of single-layer spatial frame.

Consider a 132-bar single-layer spatial frame as shown in Fig. 5.1 subjected to static loads, where the
all nodes are on a sphere. The open angle is 20 degree, and the span length is 32 m. The members
in the longitudinal direction have the same length. The members are rigidly jointed at the nodes,
and pin jointed at the supports. The node numbers and nodal coordinates are as shown in Fig. 5.2
and Table 5.1, respectively.
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Table 5.1: Nodal coordinates. (cm)

Node number x y z
1 0.0 0.0 282.124
2 407.722 0.0 264.322
3 203.860 353.098 264.322
4 812.342 0.0 211.052
5 703.508 406.170 211.052
6 406.170 703.508 211.052
7 1210.778 0.0 122.722
8 1137.760 414.110 122.722
9 927.510 778.274 122.722
10 605.388 1048.564 122.722
11 1600.0 0.0 0.0
12 1545.482 414.110 0.0
13 1385.640 800.0 0.0
14 1131.370 1131.370 0.0
15 800.0 1382.640 0.0

The elastic modulus is 200 kN/mm2, and the weight density is 7.7 × 10−5 N/mm2. The concen-
trated load 40 kN is applied in the negative z-direction at each node, and self-weight is additionally
considered.

The objective function to be minimized is the total structural volume, and the constraints are
given for the members stresses with upper bound 50 N/mm2. In the following, the ratio of maximum
absolute value of the stresses among all members to the upper-bound stress is called stress ratio.

The members have cylindrical cross-sections, where the external and internal radii are denoted
by R and r, respectively. For simplicity, we assume the relation between R and r as

r = 0.96R (5.6)

Therefore, all the cross-sectional properties such as cross-sectional area and second moment of area
are defined by R. The members are divided into ten groups as shown in Fig. 5.3, and the external
radius of the members in group i is denoted by Ri. A list R0 is given as follows, from which Ri of
each group is to be selected:

R0 = {60,120,180,240} (5.7)

where the unit of length is mm.
Optimal solution is first found by considering Ri as continuous variables. Optimization is carried

out by a nonlinear programming program IDESIGN Ver. 3.5 [1], where the sequential quadratic
programming (SQP) is used. The lower bound for Ri is 60 mm, and the upper bound is not given.
The optimal solution is as listed in the 2nd column of Table 5.2. Note that the number of analyses is
1233, which is very large, because the finite difference approach is used for design sensitivity analysis.

The nearest value of Ri from the continuous solution is selected from the list R0. The rank of Ri

corresponding to the maximum stress ratio is increased consecutively. Result of this greedy method
(type 1) is listed in the 3rd column of Table 5.2, where the number of analyses is 4 for the greedy
method added by 1233 for SQP to result in 1233 + 4 = 1237.

To confirm the accuracy of the heuristic methods, the global optimal solution has been found by
enumerating all the solutions. The result is listed in the 4th column of Table 5.2. Note that the
simple greedy method (type 1) could reach a good approximate solution.

Next we consider a greedy method (type 2) starting from Ri = 60 mm for all the members. The
result is listed in the 5th column of Table 5.2. On the other hand, if we use the stingy method
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Table 5.2: Optimal external radius (Part 1)

Group Continuous Greedy type 1 Enumeration Greedy type 2 Stingy
1 184.2 4 4 4 4
2 60.0 1 1 1 1
3 156.3 3 3 4 3
4 116.2 2 2 1 2
5 109.2 2 2 3 3
6 153.0 3 3 4 4
7 126.9 3 3 3 3
8 117.9 2 2 1 1
9 60.0 2 1 2 2
10 144.5 3 3 3 3

V (m3) 2.504 3.831 3.766 3.996 4.005
Maximum stress ratio 1.000 0.9957 0.9746 0.9409 0.8961

No. of analyses 1233 1237 489331 16 14

Table 5.3: Optimal external radius (Part 2)

Member group SA Random search Taboo search Enumeration near Greedy type 3
continuous solution

1 4 4 4 4 4
2 2 1 1 1 1
3 3 3 3 3 4
4 2 2 2 2 2
5 2 2 3 2 3
6 3 3 3 3 4
7 3 3 2 3 3
8 2 2 3 2 1
9 1 2 2 1 2
10 3 3 3 3 3

V (m3) 3.831 3.766 3.870 3.766 4.157
Maximum stress ratio 0.9980 0.9746 0.8961 0.8441 0.9746

No. of analyses 2000 2000 100 2256 1244

starting from the initial solution Ri ≡ 240 mm, the result is as shown in the 6th column of Table 5.2.
In this case, the stingy method reached a better solution than the greedy method (type 2). The
number of analyses is very small for both methods.

The result by SA is listed in the 2nd column of Table 5.3, where the penalty parameter is 1011

which is same for all the examples below. The initial value of the temperature parameter is 1, which
is multiplied by 0.99 at each iterative step. We tried 10 cases with 200 steps for each case. Therefore,
the number of analyses is 2000. The result by a random search is listed in the 3rd column of Table 5.3,
where the number of analyses is also 2000. Note that the random search has better performance than
SA for this example.

The result by a taboo search is as shown in the 4th column of Table 5.3, where the length of
the taboo list is 50, and the number of the neighborhood solutions is 20 for general case. A good
approximate solution has been found by the taboo search.

The 5th column of Table 5.3 shows the result of enumeration in the neighborhood of the continuous
solution. In this example, there exists a global optimal solution in the neighborhood of the continuous
solution.

Finally a greedy method (type 3) has been tried starting from the value of Ri in the list that
does not exceed the continuous solution. The result is listed in the 6th column of Table 5.3. In this
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Table 5.4: Comparison of performances of the heuristic approaches

R̄ = 60 R̄ = 58 R̄ = 56 R̄ = 54 R̄ = 52 R̄ = 50
Greedy (type 1) 3.831 3.831 3.836 3.567 3.557 3.186
Enumeration 3.766 3.682 3.565 3.314 3.259 3.092
Greedy (type 2) 3.996 4.026 3.754 3.709 4.249 4.434
Stingy 4.005 3.743 3.621 4.634 4.297 5.092
SA 3.831 3.682 3.587 3.514 3.259 3.137
Random search 3.766 3.682 3.586 3.314 3.273 3.102
Taboo search 3.996 3.682 3.565 3.314 3.259 3.092
Enumeration near continuous solution 3.766 3.728 3.709 3.721 3.450 3.102
Greedy (type 3) 4.157 3.831 3.836 3.567 3.557 4.037

case, no good solution has been found by this approach.
The optimization results presented above, however, strongly depend on the geometry of the

structure, available values of Ri, load level, etc. In the following we parametrically vary the available
values of Ri, and compare the performances of the heuristic approaches.

Let R̄ denote the unit value of available Ri, and define the list R0 as

R0 = {R̄, 2R̄, 3R̄, 4R̄} (5.8)

The optimal objective values for R̄ = 60, 58, 56, 54, 52, 50 by each method are listed in Table 5.4,
where the underline indicates the global optimal solution. The following observation can be obtained
from Table 5.4:

1. SA and random search can reach global solution or a good approximate solution.

2. Greedy methods and stingy method may find a solution that has very large objective value.

3. It often happens that the global solution does not exist in the neighborhood of the continuous
solution.

5.5 Conclusions

The basic concepts of heuristic methods have been presented, and a variety of methods have been
applied to the optimization problem under stress constraints of a spatial frame.

We limited the scope within one-point search methods such as SA and greedy method. Application
of the genetic algorithm, which is the most popular multi-point search method, may be found in many
monographs and papers.

From the numerical experiences, the possibility of obtaining the global optimal solution is very
large, if several simple approaches are tried.
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Appendix A

Overview of Structural Optimization

A.1 What is structural optimization?

The definition, roles, and classification of structural optimization are summarized in this chapter. The
whole process of structural design may be regarded as that of seeking the best set of design variables
under given design requirements, where the variables that can be determined by the designers are
called design variables that include the cross-sectional areas, locations of members and nodes of
frames and trusses. The basic strategy of structural design may be simply stated as

• Find his/her best solution by modifying the design variables based on the experience and
trial-and-error process.

However, the following questions may arise:

• How the best solution defines?

• How can we modify the design variables if the solution is not preferable?

Optimization can answer these questions.
The structural optimization problem is regarded as an application of optimization problems to

the field of structural design[1–3]. The optimization problems have been mainly developed in applied
mathematics and management science where the related fields are called operations research (OR).

In the traditional design process, arbitrary initial values are given for the design variables, and the
response analysis is carried out. The variables are then modified if the design requirements are not
satisfied. In this process, however, the variables are modified based on the experience and intuition
of the designers and engineers; i.e. there is no general criterion for design modification. Furthermore,
the design process is terminated if all the requirements are satisfied, and no effort is done for finding
better solutions.

On the other hand, structural optimization provides us with the following benefits:

• The solution can be found automatically and efficiently satisfying all the constraints on the
responses such as stresses and displacements, and simultaneously minimizing the objective
function such as total structural volume.

• The optimization tool helps decision making of the designer; i.e. it is not an automatic design
tool that has negative impressions to the structural engineers and designers.

• The designers can spend more time for the jobs of higher level if optimization tools are effectively
used for decision making.

• Even if the optimal solution cannot be used directly in design practice, the solution gives insight
to the better design.
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A.2 General formulation of optimization problem.

The optimization problem can be formally formulated as
Cost minimization problem:

minimize objective function (cost, weight, volume)
subject to constraints on mechanical performances

where subject to means under constraints on, and the mechanical performance includes member
stresses, nodal displacements, etc. The minimization problem can be alternatively written as

objective function → minimize

The constraints are determined from building codes. The total structural volume (or weight) is
usually given as the objective function, because

• Generally reduction of the weight leads to less cost, especially for spatial structures where the
self-weight has the large portion of the design loads.

• Irrespective of the definition of the objective function, it is important that a solution satisfying
all the constraints, called feasible solution, is obtained after optimization.

If the concept of minimum weight is not acceptable, the following formulation will be better:
Performance maximization problem:

maximize mechanical performance
subjectto upper bound for cost (weight, volume)

Consider, e.g., the problem of minimizing the structural volume under constraints on stresses and
displacements against static loads. The design variables are the cross-sectional areas of the members.
Let σ and U denote the vectors of member stresses and nodal displacements. The cross-sectional
area and the length of the ith member is denoted by Ai and Li, respectively. The optimization
problem is formulated as

Truss optimization problem:

minimize
m∑

i=1

AiLi

subject to σL ≤ σ ≤ σU

UL ≤ U ≤ UU

AL ≤ A ≤ AU

where m is the number of members, and the upper and lower bounds are denoted by the superscripts
U and L, respectively.

If A is continuous, then the truss optimization problem is a nonlinear programming problem. On
the other hand, if the cross-sectional area is selected from a list or a catalog, then the problem is a
combinatorial optimization problem that can be solved by mixed integer programming approaches
or heuristics such as genetic algorithms and simulated annealing [4, 5].
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(simulation)

Fig. A.1: Relation among optimization, response analysis and design sensitivity analysis.

A.3 What is needed for structural optimization?

The solution methods of structural optimization may be divided to gradient-based mathematical
programming approach and heuristics. In the latter approach, the optimal solutions can be found if
analysis can be done many times. In the former approach, design sensitivity analysis to compute the
gradients of objective and constraint functions with respect to the design variables should be carried
out. Analysis and sensitivity analysis are consecutively done and the design variables are modified
in accordance with the optimization algorithm as illustrated in Fig. A.1.

There are many freewares for mathematical programming that can be found in websites, e.g.

• NEOS(Network-Enabled Optimization System): http://www-neos.mcs.anl.gov/

• Netlib: http://www.netlib.org/

• GAMS: http://www.gams.com/

Therefore, the structural engineers just have to use the software packages or libraries to obtain
optimal solutions. However, fundamental knowledge of optimization is important because

• If you do not know the class of the problem to be solved, you cannot find an appropriate
software.

• If you need to modify the input parameters for optimization, you should know the meaning of
the parameter.

• If you do not have any expertise, you just abandon optimization when no solution could be
found by simply setting the input parameter as default value.

A.4 What can we get from optimization?

In view of code-based design, effectiveness of using optimization approach may be summarized as

• Solution satisfying all the constraints are obtained, if the problem is appropriately formulated.

• Optimization is very helpful for special structures, such as space frames, where even a designer
with enough experience cannot find a feasible design.

• If we start from a solution found by an expert, the solution cannot be worse after optimization,
and usually a better solution can be found.

Furthermore, in view of decision making,
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Fig. A.2: Classification of structural optimization based on design variables.

PP

Fig. A.3: Topology optimization.

• The trade-off relation between the cost and performance, as well as the process of decision
making, can be made clear, if optimization is carried out several times by modifying the input
parameters such as the cost coefficients and upper bound of responses.

The most positive way of using optimization may be

• Find new structural system and shape by optimization.

• Realize innovative structure that cannot be found without optimization.

A.5 Classification of structural optimization.

There are several approach to classification of structural optimization problems. One of the tradi-
tional classification for trusses and frames is as shown in Fig. A.2. The cross-sectional properties
are optimized in cross-sectional optimization (sizing optimization). The shape optimization includes
geometry optimization (configuration optimization) and topology optimization [6], where the nodal
locations and member connectivity are optimized, respectively.

A process of topology optimization under stress constraints is illustrated in Fig. A.3, where the
dotted lines indicate the removed members after optimization. This approach of removing unneces-
sary members from the highly connected initial structure is called ground structure approach.

Fig. A.4 illustrates the process of geometry optimization, where the gray rectangles indicate
feasible regions of the nodes. In geometry optimization the feasible regions of the nodes are restricted
so that the topology of the structure does not change. Therefore, simultaneous optimization of
topology and geometry is very difficult [7].

In the following, effectiveness of topology optimization and geometry optimization is demon-
strated using a simple beam supported by a cable as shown in Fig. A.5. The objective is to design
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Fig. A.4: Geometry optimization.
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Fig. A.5: Coat-hanger problem.
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Fig. A.6: Relation between the angle of the cable and the optimal structural volume.

a frame to hang a object of 1000 N at a place 1 m from the wall. This type of problem is called
coat-hanger problem.

Constraints are given for the stresses, and the total structural volume is to be minimized. Let θ
denote the angle between the cable and the beam. Then the length of the cable is 1/ cos θ m, and
the absolute values of the axial forces of the beam and the cable are 1000/ tan θ N and 1000/ sin θ
N, respectively.

If we decrease the cross-sectional areas, then the structural volume decreases, but the stresses
increase. Therefore, there exist optimal cross-sectional areas under stress constraints. For the upper-
bound stress 50 N/mm2, the stresses are equal to the upper bound, and the structural volume V has
the minimum value 200/ tan θ + 200/(sin θ cos θ) mm3, when the cross-sectional areas of the cable
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Fig. A.7: Example of topology for the case where H/W is small.

Fig. A.8: Optimal cross-sectional areas for four units.

Table A.1: Relation between the number of units and the optimal structural volume.

Number of units 2 3 4 5 6
Optimal structural volume m3 16.20 15.33 15.30 15.60 16.07

and the beam are 200/ tan θ mm2 and 200/ sin θ mm2, respectively.
If we can modify θ in addition to the cross-sectional areas; i.e. if we consider shape optimization,

the relation between θ and the optimal structural volume is as shown in Fig. A.6. We can see from
Fig. A.6 that V takes the minimum at θ � 55◦.

However, in a practical situation, θ cannot be equal to 55◦ due to the restriction of the height of
the ceiling. Obviously, if height H is small, the configuration as Fig. A.7(a) is not recommended, and
a frame as Fig. A.7(b) will be better. Therefore, we next consider a truss for hanging an object. Since
the truss in Fig. A.7(b) is statically determinate, an optimal design can be obtained by assigning the
cross-sectional areas so that the absolute values of the stresses of all members are equal to the upper
bounds.

Optimal solutions have been found for the number of units 2, 3, 4, 5 and 6, where H/W = 0.2.
The relation between the number of units and the optimal structural volume is as listed in Table A.1.
It is observed from Table A.1 that the structural volume takes minimum when the number of units
is 4, and the optimal cross-sectional areas are as shown in Fig. A.8, where the width of each member
is proportional to its cross-sectional area. This way, the objective values can be further reduced by
optimizing the topology.
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