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Abstract

This paper presents a unified formulation of the fabrication costs, or the cost of nodes (connections),
in truss topology optimization. This formulation is readily incorporated into an existing mixed-integer
programming approach to compliance optimization with self-weight load. We perform preliminary
numerical experiments to show how the optimal topology depends on different cost functions.
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1 Introduction

The fabrication costs of structures can be significantly influenced by design decisions made during early
stages of the design process. Therefore, it is of great importance to incorporate the fabrication cost into
structural optimization. For truss topology optimization based on the ground structure approach, recent
work has proposed including the fabrication cost into the problem formulation by assuming that this cost
is proportional either to the number of members (bars) or to the number of nodes (connections) [1, 9, 10].

The number of existing members and the number of existing nodes are not differentiable with respect
to the design variables (the member cross-sectional areas). This is the major difficulty in incorporating
such a cost function into truss topology optimization, because nonsmoothness of the cost function forbids
direct application of a gradient-based optimization method. As a remedy, Asadpoure et al. [1] proposed to
make use of a regularized Heaviside function. Similarly, Torii et al. [10] used a negative power function.
Kanno and Fujita [7] proposed an approach based on the alternating direction method of multipliers
(ADMM). More heuristic manners for taking the truss design complexity into account can be found in,
e.g., He and Gilbert [4] and the references therein.

In this paper, we introduce the �p-norm constraint on a vector consisting of the degrees of nodes to deal
with some different fabrication-cost functions in a unified manner. Here, the degree of a node is defined
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as the number of members connected to the node. The presented formulation includes the cost functions
proportional to the number of members [1] and the number of nodes [7, 9, 10] as two particular cases.
Another interesting case is that the cost of a node is assumed to increase dramatically as the degree of a
node increases. Although such a cost function seems to be realistic, to the best of the authors’ knowledge
it cannot be found in literature on truss topology optimization.

We incorporate the presented formulation in a straightforward manner into a mixed-integer second-
order cone programming (MISOCP) approach to truss topology optimization considering the self-weight
load [8]. We present numerical examples to illustrate how the difference in the fabrication-cost function
affects optimal truss designs.

2 Degree of node and topology of truss

Following the conventional ground structure approach, consider an initial truss having m candidate mem-
bers, n nodes, and d degrees of freedom of the nodal displacements. Let x1, . . . , xm denote the member
cross-sectional areas, which are the design variables to be optimized. The conventional compliance
minimization problem is written as

minimize π(x) (1a)
subject to l�x ≤ V̄, (1b)

where π(x) is the compliance of the truss, li (i = 1, . . . ,m) is the undeformed member length, and V̄ is the
specified upper bound for the structural volume. To avoid presence of extremely thin and thick members,
we consider the constraints

xe ∈ {0} ∪ [xmin, xmax], e = 1, . . . ,m, (2)

where xmin and xmax are the specified lower and upper bounds, respectively, of member cross-sectional
areas.

As for an external load, consider the sum of a fixed load and member self-weight loads. A ground
structure includes, in general, some overlapping members, but we prohibit the presence of overlapping
members in a final truss design. It is known that the compliance minimization problem with this setting
can be recast as an MISOCP problem [8]. This MISOCP formulation uses binary design variables te
(e = 1, . . . ,m) satisfying

te = 0 ⇔ xe = 0, (3a)
te = 1 ⇔ xe ∈ [xmin, xmax]. (3b)

Namely, vector t represents the truss topology.

Let δv denote the degree of node v (v = 1, . . . , n). To describe the relation between δ and t , it is
convenient to use the incidence matrix of an undirected graph. Consider a corresponding relation
between the structural elements and the graph elements, where a member and a node of the ground
structure are regarded as an edge and a vertex of an undirected graph, respectively. The incidence matrix
B = (Bve) ∈ Rn×m of this graph is defined by [3]

Bve =

{
1 if node v is connected to member e,
0 otherwise.

(4)
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Then we readily see that the relation

δ = Bt (5)

holds.

3 Cost of nodes

Let φ : Z≥0 → R denote the cost function of a node. It is natural to assume that φ(0) = 0 and φ(δv) > 0
(δv = 1, 2, . . . ). Moreover, for any δv = 1, 2, . . . , we assume that φ satisfies one of the following four
properties:

(i) φ(δv + 1) − φ(δv) = 0.

(ii) φ(δv + 1) − φ(δv) = φ(δv) − φ(δv − 1).

(iii) φ(δv + 1) − φ(δv) > φ(δv) − φ(δv − 1).

(iv) (φ(δv + 1) − φ(δv))/(φ(δv) − φ(δv − 1)) → ∞.

As illustrated in Figure 1a, property (i) means that the cost is irrelevant to the degree of a node. This
cost model has been often used in literature [7, 9, 10]. Figure 1b depicts property (ii). This model can
be found in Asadpoure et al. [1]. The cost is assumed to be proportional to the degree, i.e., φ(δv) = aδv
with a positive constant a. In several practical situations, it is more realistic to assume that the cost of a
node dramatically increases as its degree increases. Property (iii) covers such situations, as illustrated in
Figure 1c. For example, φ(δv) = aδrv with r > 1 satisfies property (iii). Property (iv) corresponds to the
extreme case of property (iii), and highly prohibits use of a node with a large degree: It concerns only
the nodes with the largest degree in a truss design.

0 2 4

(a)

0 1 2 3 4 5

(b)

0 1 2 3 4 5

(c)

Figure 1: Cost functions of a node.

Assume that the costs of a support node and a free node are same if they have the same degree. The total
cost of nodes in each case is evaluated as follows.

(i) The total cost of nodes is proportional to the number of nodes used in a truss design, i.e., the
number of nonzero entries of δ, denoted ‖δ‖0. Although ‖δ‖0 is not a proper norm, it is often
called the �0-norm of δ.
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(ii) The total cost of nodes is proportional to the �1-norm of δ, i.e., ‖δ‖1 = |δ1 | + · · · + |δn |. It is worth
noting that (5) and the definition of B imply ‖δ‖1 = 2‖ t ‖1, and hence the total cost is proportional
also to the number of members.

(iii) Assume that φ(δv) = aδ2v, where a > 0 is a constant. Then the total cost is proportional to the
square of the �2-norm of δ, i.e., ‖δ‖2

2 = δ
2
1 + · · · + δ2n.

(iv) The total cost of nodes is a monotone function of the �∞-norm of δ, i.e., ‖δ‖∞ = max{|δ1 |, . . . , |δn |}.

4 Mixed-integer programming formulation

From the observation made in section 3, we can see that the upper bound constraint on the cost of nodes
is written as

‖δ‖p ≤ c̄ (6)

with p = 0, 1, 2, or ∞ and constant c̄ > 0. Our preliminary numerical experiments suggest that
handling constraint (6) directly within the framework of mixed-integer programming (MIP) is not efficient.
Specifically, when c̄ is small, a MIP solver spends huge computational time even for small-scale problem
instances. This is because, for a small value of c̄, the optimization problem has only few feasible solutions,
and hence a solver has to explore a vast number of branch-and-bound nodes before finding the first feasible
solution.

As a remedy, we use the �1-exact penalty function

ρmax{‖δ‖p − c̄, 0} = min
y
{ρy | y ≥ ‖δ‖p − c̄, y ≥ 0} (7)

with a sufficiently large penalty parameter ρ > 0, instead of using constraint (6). In the formulation with
this penalty function, the number of feasible solutions does not depend on c̄. Therefore, it is likely that
this formulation is more suited for application of a MIP solver. In practice, we add constraint

‖δ‖p ≤ y + c̄, (8)
y ≥ 0 (9)

to the MISOCP formulation in Kanno and Yamada [8], and add ρy to the objective function. The
resulting problem is still an MISOCP problem, because we can treat constraint (8) within the framework
of MISOCP as follows.

(i) p = 0: Analogous to Kanno and Fujita [7, section 3.2] and Kanno [6].

(ii) p = 1: (8) is reduced to a linear inequality constraint
n∑

v=1
δv ≤ y + c̄.

(iii) p = 2: (8) is a second-order cone constraint.

(iv) p = ∞: (8) is reduced to linear inequality constraints δv ≤ y + c̄ (v = 1, . . . , n).

Remark 1. It is known that, for any rational number p ∈ (1,∞), a constraint in the form (8) can be
represented as some second-order cone constraints [2, section 3.3.1]. Therefore, any cost function in the
form φ(δv) = aδpv with rational p ∈ (1,∞) can be handled within the framework of MISOCP. �
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5 Numerical examples

The numerical examples presented in this section were computed on a 2.2 GHz Intel Core i7 processor
with 8 GB RAM. We solved MISOCP problems with CPLEX ver. 12.8.0 [5]. We set parameters of
CPLEX as follows. The MIQCP strategy parameter was two (linear programming relaxations were
solved), the integrality tolerance and the relative MIP gap tolerance were 0, and the MIP emphasis was
BESTBOUND (a branch-and-bound strategy emphasizing to improving the best bound value was adopted).
The penalty parameter was ρ = 103. The Young’s modulus and the mass density were 200 GPa and
7800 kg/m3, respectively.

Consider the problem instance outlined in Figure 2, which shows a ground structure and fixed external
load. The nodes are aligned on a 1 m × 1 m grid. This ground structure has n = 15 nodes and m = 105
members (i.e., every pair of two nodes is connected by a single member). We apply a downward vertical
force of 50 kN at the bottom rightmost node, and set xmax = 2500 mm2 and xmin = 200 mm2. The upper
bound for the structural volume is V̄ = 1.6 × 107 mm3.

Figure 3 shows the obtained solution for the problem without considering the cost of nodes, where the
width of each member is proportional to its cross-sectional area. For the problems with the constraint on
the cost of nodes, the solutions obtained by CPLEX for p = 0, 1, 2, and ∞ are collected in Figures 4, 5, 6,

Figure 2: Problem setting of numerical examples.

Figure 3: The obtained solution without considering the cost of nodes. ‖δ‖0 = 11, ‖δ‖1 = 42,
‖δ‖2 =

√
166 and ‖δ‖∞ = 5.

(a) ‖δ‖0 = 8 (b) ‖δ‖0 = 7 (c) ‖δ‖0 = 6 (d) ‖δ‖0 = 5

(e) ‖δ‖0 = 4 (f) ‖δ‖0 = 3

Figure 4: The obtained solutions with p = 0.
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(a) ‖δ‖1 = 26 (b) ‖δ‖1 = 20 (c) ‖δ‖1 = 16 (d) ‖δ‖1 = 14

(e) ‖δ‖1 = 8 (f) ‖δ‖1 = 4

Figure 5: The obtained solutions with p = 1.

(a) ‖δ‖2
2 = 94 (b) ‖δ‖2

2 = 90 (c) ‖δ‖2
2 = 70 (d) ‖δ‖2

2 = 62

(e) ‖δ‖2
2 = 56 (f) ‖δ‖2

2 = 44 (g) ‖δ‖2
2 = 36 (h) ‖δ‖2

2 = 30

(i) ‖δ‖2
2 = 28 (j) ‖δ‖2

2 = 18 (k) ‖δ‖2
2 = 16 (l) ‖δ‖2

2 = 12

(m) ‖δ‖2
2 = 6

Figure 6: The obtained solutions with p = 2.

(a) ‖δ‖∞ = 4 (b) ‖δ‖∞ = 3 (c) ‖δ‖∞ = 2

Figure 7: The obtained solutions with p = ∞.
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Figure 8: Variation of the compliance with respect to the cost of nodes.

and 7, respectively.∗1 We found these solutions with varying the value of c̄. Figure 8 shows the variation
of the compliance with respect to the cost of nodes. Here, the smallest compliance value corresponds to
the solution shown in Figure 2, i.e., the solution without considering the cost of nodes. We can observe
in Figure 8 that the cost of nodes can often be reduced at the expense of only small increase of the
compliance. In contrast, the solutions shown in Figure 6k, Figure 6l, and Figure 6m have relatively large
values of the compliance, as observed in Figure 8c.

Difference in the results for different cost functions is observed, for example, as follows. The solutions
in Figure 4a and Figure 5a have the same number of nodes. Since the �0-norm does not take the nodal
degrees into account, the Figure 4a has one node with degree five. This node is replaced with a node
with degree four in Figure 5a. Thus, the sum of the degrees of nodes is reduced by adopting the �1-norm.
Next, consider the solutions in Figure 5c and Figure 6f, both of which have ‖δ‖1 = 16. We see that one
node with degree two in Figure 5c is divided into two nodes with degree one in Figure 6f. Thus, use of
the �2-norm decreases the number of nodes with relatively large degrees, although this may possibly yield
increase in the number of nodes. A similar observation can be made for the solutions in Figure 5b and
Figure 6e. With the �∞-norm, the number of nodes is not taken into account. Accordingly, the solutions
in Figure 7a and Figure 7b have relatively large numbers of nodes.

6 Conclusions

In this paper, we have shown that several cost functions of nodes in truss topology optimization can be
expressed as a unified form of a norm constraint on the vector of the degrees of nodes. We have shown
that this constraint can be incorporated into a global optimization approach based on MISOCP. In the

∗1In Figure 5d, the bottom rightmost node is counted so that it has one degree. However, this node does not connect members.
In the present formulation, no distinction between such a free node with degree one and a pin-support with degree one (e.g., the
left nodes in Figure 5f) is made.
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numerical examples, we have observed how the difference in the nodal cost function affects optimal truss
designs.
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