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Abstract
An optimization method is presented for tensegrity lattices composed of eight truncated octahedral units.
The stored strain energy under specified forced vertical displacement is maximized under constraint on 
the structural material volume. The nonlinear behavior of bars allowing buckling is modeled as a bi-
linear elastic material. As a result of optimization, a flexible structure with degrading vertical stiffness 
is obtained to be applicable to an energy absorption device or a vertical isolation system.  
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1. Introduction
Tensegrity structures are a class of self-standing pin jointed structures consisting of thin bars (struts) 
and cables stiffened by applying prestresses to their members [1, 3]. Because the bars are not 
continuously connected, i.e., they are topologically isolated from each other, these structures are usually
too flexible to be used as load-resisting components of structures in mechanical and civil engineering 
applications. However, by exploiting their flexibility, tensegrity structures can be utilized as devices for 
reducing impact forces, isolating dynamic forces, and absorbing energy, to name a few applications [5]. 
Lattice structures consisting of tensegrity units are extensively studied to construct a flexible large-scale 
structure [7, 8]. Wave-propagation properties are also studied [6, 9]. 

In this study, an optimization method is presented for a recently introduced tensegrity lattice whose unit 
cell consists of eight truncated octahedral units with threefold symmetry [5]. The objective function to 
be maximized is the strain energy under specified forced vertical displacement. It is demonstrated in the 
numerical examples that a stiff structure with degrading tangent stiffness is obtained by maximizing the 
strain energy. We also show that, for cases where instabilities are present, adding horizontal bars 
effectively stabilizes the structure.

The remainder of the paper is organized as follow. In Sections 2 and 3 we introduce the basic properties 
and the configurations of the structure to be studied. In Section 4 we formulate the optimization problem, 
followed by numerical case studies in Section 5. The conclusions of this work are laid out in section 6. 

2. Basic properties of truncated octahedral tensegrity structure
Consider a regular truncated octahedral tensegrity structure as shown in Fig 1(c). The vertices of the 
octahedron in Fig. 1(a) is removed to generate the truncated octahedron in Fig. 1(b). The members of 
the tensegrity structure consist of cables and bars, which have tensile and compressive forces, 
respectively. The cables of the truncated octahedral tensegrity are classified into the edge cables lying 
on the original edges of the truncated octahedron and the cutting cables lying on its cut edges. The bars
are located inside of the truncated octahedron. Hence, a regular truncated octahedral tensegrity structure 
consists of 24 nodes, 12 bars, 24 cutting cables, and 12 edge cables.
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(a)                                                   (b)                                                          (c)

Figure 1: Generation of regular truncated octahedral tensegrity structure; (a) regular octahedron,
(b) truncated octahedron, (c) truncated octahedral tensegrity. 

Due to symmetry of the structure, members in each of three types have the same length, and have the 
same prestress, and accordingly, have the same force density, which is defined as the axial force divided 
by the member length. Denote the force densities of the edge cables, cutting cables, and bars as eq , cq ,
and bq , respectively. Define a and b as 

e b e b,
2 2

q q q qa b+ −
= = (1) 

where 0b > is to be satisfied. For the self-equilibrium of a tensegrity structure in 3-dimensional space,
its force density matrix necessarily has four zero eigenvalues [1, 3]. From this non-degeneracy condition, 
we have the force density cq of cutting cables solved as follows [2]: 

2 2 4 2 2 4

c
5 14

4
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a
− + + +

= (2) 

for which we need 0a > for proper signs for the force densities as well as super-stability of the resulting 
structure. The scaling parameter β is used to adjust the level of force densities as βq . Since the force 
density matrix is also scaled by β at the same time, the self-equilibrium equations remain to be satisfied
by the same configuration. 

It is known that a regular truncated octahedral tensegrity has only one mode of prestress and 19 
infinitesimal mechanisms. Furthermore, this structure is known to be super-stable when e 1.0q = and 

b1 0q− < < , which means that it is always stable irrespective of material properties as well as level of 
prestress [4], if yielding of cables and buckling of bars are not considered. 

Eight units of regular truncated octahedral tensegrity structures are combined to obtain the tensegrity 
lattice as shown in Fig. 2. The units are combined symmetrically with respect to the horizontal plane 
and the two vertical planes. The four nodes of each truncating section are connected to those of another 
unit, where one of the duplicate cables at each connection is removed. Hence, the number of members 
is 336, and the number of nodes is 96 in this eight-unit tensegrity lattice.
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(a)                                                        (b)               

Figure 2: Undeformed shape of eight-unit tensegrity lattice; (a) plan/elevation, (b) diagonal view. 

3. Large-deformation analysis under forced vertical displacement
In this work, a large-deformation analysis and optimization is carried out for the eight-unit tensegrity
lattice in Fig. 2. For more details about the generation of this structures and its fundamental mechanical 
properties we refer the reader to reference [5]. Let 0l and l denote the length of a member before and 
after deformation, respectively, under axial force f . We are particularly interested in the deformation 
regime for which bars undergo buckling. A bilinear elastic model is used for representing buckling 
behavior of a bar. The relation between compressive axial force | |f and axial contraction 

0| | | |l l l∆ = − of a bar is shown in Fig. 3, where bf is the Euler buckling load. Stiffness EA of the bar
is zero after buckling. When the member is in prebuckling range, its strain energy is calculated from

2
0

0
( )

2
EAS l l
l

= − (3) 

After buckling, its strain energy is obtained as 
2

b 0 0
b

b
02

f l f lS f l l
EA EA

= + − − (4) 

Figure 3: Bilinear elastic buckling model between compressive axial force | |f and contraction | |l∆ of a bar. 

The Euler buckling stress for the bars is computed from the slenderness ratio, and tension in bars is 
allowed. The yield stress of cables is assumed to be sufficiently large so that cables remain in elastic 
range, and its strain energy is computed from Eq. (3). Slackening of cable is checked after obtaining the 
optimal solution. Tangent stiffness matrix is derived as the sum of linear stiffness matrix and geometrical 
stiffness matrix. Forced displacement is applied incrementally, and unbalanced forces are reduced using 
Newton iteration at each step. 
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4. Formulation of optimization problem 
Let bL  and cL denote the total lengths of bars and cables, respectively. The cross-sectional areas of 
bars and cables are denoted by bA  and cA , respectively, which are chosen as design variables. Objective 
function is the strain energy S stored before reaching the specified vertical displacement at the top layer. 
Here, for simplicity, the strain due to initial prestress is included in evaluation of the total strain energy.
The constraints are given as follows so that the total structural volume does not change from the initial 
volume 0V : 

b b c c 0A L A L V+ = (5) 
Another variable is β denoting the scaling parameter representing level of prestress that is multiplied 
to forces of all cables and struts at the initial undeformed state. The force density bq ( 0)<  of bars is 
considered as a parameter to obtain optimal solutions of various shapes, while the force density of the 
edge cables is fixed at e 1.0q = . Note again that the shape is determined by the force density only; 
therefore, the undeformed shape does not change during the optimization process. A small value is 
assigned for the radius of gyration of the section so that Euler buckling precedes the yielding of a bar.  

The optimization problem for finding bA , cA , and β for maximizing the total strain energy

cb( , , )AS A β  is formulated as 
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(6) 

where the superscripts ‘U’ and ‘L’ are the upper and lower bounds of the variables. 

5. Numerical examples
We optimized an eight-unit tensegrity lattice as shown in Fig. 2. The members are assumed to be made 
of steel material with Young's modulus E = 2.05×105 N/mm2. Let the nominal volume of the structure 
denote the volume of the cuboid in which the structure is inscribed. The volume of the surrounding 
cuboid is 8×0.004 = 0.032 m3; i.e., shape of the structure is scaled to have the nominal volume of 0.032
m3 for each configuration defined by bq . Since length of the bar is about 170 mm, the radius of gyration 
is assumed to be 1.2 mm so that elastic buckling occurs before yielding.  

In the bottom plane, the z-directional displacement is constrained at all nodes, x- and y-directional 
displacements are constrained at a node, and x- or y-directional displacement is constrained respectively 
at two of the remaining nodes. This way, rigid-body displacements and rotations are constrained 
allowing expansion of the bottom square. On the other hand, the 16 nodes in the top layer are enforced 
to move 80 mm in negative z-direction constraining rigid-body displacement and rotation in the similar 
manner as the bottom plane. The deformation is computed using displacement increment method with 
1.0 mm at each step. A small stiffness EA/100 is assigned for a bar after buckling to stabilize the process.

As noted in Sec. 2, each truncated octahedral unit is super-stable when b1 0q− < < while eq is fixed at. 
Therefore, the parameter bq is varied as −0.3, −0.4, −0.5, −0.6, and −0.7. The lower and upper bounds 
for the cross-sectional areas are 0.1 mm2 and 10.0 mm2, respectively, for all members including cables 
and bars. The specified total volume of members is 2.2687×103 mm3. The lower and upper bounds of 
the stress level β are 0.2 and 20.0, respectively. The optimization problem is solved using sequential 
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quadratic programming available in the function fmincon of the optimization toolbox of MATLAB Ver. 
2018. 

Table 1: Optimization results.

bq sA (mm2) cA (mm2) β S (Nm)
−0.3 0.9179 0.1000 1.6536 9601
−0.4 0.9806 0.1000 1.7617 10130
−0.5 1.0456 0.1000 1.9449 14185
−0.6 1.1106 0.1000 1.9451 23137
−0.7 1.1742 0.1000 1.8395 37734

Optimal solutions as well as the optimal objective values are listed in Table 1 for various values of bq .
The cable cross-sectional area has its lower-bound value for all cases, and the cross-sectional area of 
bars and the objective function value increase as bq is decreased. The stress level β mostly increases 
as bq is decreased. The deformed shapes of optimal solutions are shown in Fig. 4. As seen from the 
figure, the length of strut decreases as bq is decreased; accordingly, the squares at the truncated vertices 
become smaller and the initial stiffness increases. 

(a) b 0.3q = −                                      (b) b 0.5q = −                               (c) b 0.7q = −
Figure 4: Deformed shape of optimal solutions.

Relation between the vertical downward displacement of top nodes and the sum of vertical reaction 
forces at all top nodes are plotted in Fig. 5. As seen from the figure, the vertical stiffness decreases as 
the downward displacement is increased. Furthermore, the maximum reaction force increases as bq is 
decreased. The structure has a limit point instability for b 0.7q = − ; i.e., it has a snap-through behavior 
if the deformation is controlled by the vertical load instead of the vertical displacement.

The member forces are plotted with respect to the vertical displacement in Fig. 6. Note that the axial 
force has positive value in tensile state. Although we do not consider slackening or yielding of cables, 
the cable forces have non-smooth distributions, which is caused by buckling of bars. It is seen from the 
results that the number of buckled members increases as vertical displacement is increased.

Although the optimal structures have positive vertical stiffness except for the case of b 0.7q = − ,
horizontal stiffness may be lost when bq is small due to shear deformation of the upper and lower units. 
To prevent instability in horizontal direction, additional bars are attached as shown in Fig. 7 in one or 
two of the top, bottom, and middle layers of the lattice. Optimization is carried out for b 0.7q = − and 
−0.8, because a smaller value of bq is effective to have more strain energy.
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(a) b 0.3q = −                                      (b) b 0.5q = −                               (c) b 0.7q = −
Figure 5: Relation between vertical displacement and reaction force. 

(a) b 0.3q = −                                      (b) b 0.5q = −                               (c) b 0.7q = −
Figure 6: Relations between vertical displacement and member forces. 

(a)                                      (b)

Figure 7: Additional bars in eight-unit lattice; (a) without bars, (b) with four additional bars.

Table 2: Optimization results of eight-unit lattice with additional four bars in various patterns of layers.

Layers for adding 
bars bq sA  (mm2) cA  (mm2) β S (Nm)

Top −0.7 1.1294 0.1000 1.8137 38338
−0.8 1.1825 0.1000 1.8103 38549

Top and middle −0.7 1.0879 0.1000 1.5261 44891
−0.8 1.1322 0.1000 1.5060 72591

Top and bottom −0.7 1.0879 0.1000 1.7596 37265
−0.8 1.1322 0.1000 1.6076 63305

Top, middle, and 
bottom −0.7 1.0493 0.1000 1.3264 62863 

Middle −0.7 1.1294 0.1000 1.8230 38653
−0.8 1.1825 0.1000 1.6698 66019
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Optimization results are listed in Table 2. For example, ‘top’ means that four bars are added in the top
layer. The deformed configuration, force-displacement relation, and load-displacement relation are 
shown in Fig. 8 for b 0.7q = −  with bars in the middle layer.

Figure 8: Property under vertical loading of the optimal solution for b 0.7q = − with bars in top and bottom
layers; (a) diagonal view of deformed shape, relation between displacement and axial forces, (c) relation 

between displacement and reaction force.. 

Shear stiffness in x-direction is next investigated after application of vertical displacement of 30 mm. 
The condition of forced vertical displacement is replaced to application of vertical loads that are equal 
to the reaction force at the forced displacement of 30 mm.

It was found that the structure is still unstable for the shear deformation, if the support conditions at the 
bottom layer are not modified. Therefore, all bottom nodes are pin-supported after application of 
downward displacement of 30 mm. The deformed configuration, histories of member forces, and load-
displacement relation are shown in Fig. 8 for b 0.7q = − with bars in the middle layer. The rocking 
deformation may be suppressed depending on the boundary conditions for practical application as, e.g., 
base isolation of structures. Suppression of rocking may lead to further stabilization of the structure. It 
has been confirmed that the vertical load-displacement relation remains almost the same after 
constraining the nodes in the bottom layer.

(a)                                       (b)                                        (c)

Figure 9: Property under horizontal loading of the optimal solution for b 0.7q = − with bars in top and bottom 
layers; (a) elevation of deformed shape, relation between displacement and axial forces, (c) relation between 

displacement and reaction force. 
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6. Conclusions
An optimization method has been presented for tensegrity lattices composed of eight truncated
octahedral units. The stored strain energy under specified forced vertical displacement is maximized 
under constraints on the structural material volume. It has been shown in the numerical examples that a
flexible structure with degrading vertical stiffness is obtained as a result of optimization. Although 
structures generally retain compression stiffness even after large deformations, in some cases shear 
stiffness is lost. This issue can be addressed on those optimal solutions by adding four bars in some of 
the layers of the lattice. In this way, a tensegrity lattice with flexibility in vertical direction and adequate 
shear stiffness can be obtained to be applicable to an isolation system for vertical motion.
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