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Abstract 

A method is presented for generating a deployable and rigid-foldable polyhedron with a simple and symmetric crease 

pattern that approximates a target surface. We formulate an optimization problem to obtain a polyhedron that satisfies 

the conditions for developability and symmetry. To reduce the degree of freedom of the mechanism by removing several 

crease lines, constraints are sequentially assigned. It is shown that a polyhedron with smaller degree of freedom can be 

found by assigning symmetry condition and fixing the symmetrically located crease lines simultaneously. By contrast, 

the optimal shape diverts from symmetric shape, if a single crease line is fixed after each process of optimization. 
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1. Introduction 

Rigid-foldable origami (rigid origami) has the significant characteristics suitable for engineering application such as 

deployable structure or retractable building envelop [1]. Rigid origami is one branch of the polyhedral origami which 

consists of rigid flat panels connected by hinges. Its panels do not deform both in-plane and out-of-plane directions 

throughout the folding process. This feature is important especially in designing architectural deployable structures, 

because mechanism of rigid origami does not depend on its material; it is scalable and applicable to large scale 

structures. In practice, there are various restrictions on the shape of building because of its floor plan and its exterior 

design. Therefore, the method for form generation of a general rigid-foldable polyhedron is important. There are various 

approaches to design and analysis of rigid origami. A typical crease pattern is often used particularly in a context of 

approximating a target shape by rigid origami; e.g., Dudte et al. [2] used generalized Miura-ori, and Zhao et al. [3] used 

generalized waterbomb tessellations. However, it is difficult to obtain general crease patterns and the polyhedra which 

have various degree of freedom (DOF) using typical crease patterns. On the other hand, Tachi [4] developed an 

algorithm and a software for finding a folding pattern of a given polyhedron. Later, Demaine and Tachi [5] modified the 

algorithm and their method to obtain a folding pattern of any polyhedron. However, the crease pattern generated by 

their method is often too complicated to apply to an architectural deployable structure. Thus, it is desirable to develop a 

method to generate a simple but not typical crease pattern. 

In our resent paper [6], we proposed a method for generating a rigid-foldable polyhedron with a general and simple 

crease pattern that approximates a curved surface. The proposed method yields a polyhedron which has triangle and 

quadrilateral facets. The developability and rigid-foldability of polyhedron are considered; however, the condition for 

flat foldability is not incorporated. Although the geometric necessary condition for developability is well known, it is 

difficult to directly obtain a shape of polyhedron satisfying the condition. Thus, we formulated an optimization problem 

to minimize the geometric errors using a frame model. Since the generated polyhedron that satisfies the necessary 

condition possibly cannot be continuously developed to a plane without deformation of its facets, kinematic 

indeterminacy of the mechanism is evaluated and large-deformation analysis is carried out to check developability. A 

frame model we proposed in the paper [6] enables us to use the same variables in form generation, evaluation of 

kinematic indeterminacy, and large-deformation analysis using a general finite element analysis software.  

In this paper, we review our method and consider the symmetry of the polyhedron that is not considered in our 

previous study [6]. The optimization problem is re-formulated to satisfy symmetry conditions with respect to two planes. 

It is shown in the numerical examples that the number of variables is reduced and the polyhedral shapes suitable for 

architectural roofs can be obtained by assigning symmetry conditions. 



2. Form generation of rigid-foldable polyhedron 

2.1 Procedure 

The procedure of form generation of a rigid-foldable polyhedron is shown in Fig. 1. Form generation starts from 

triangulated curved surface. The target surface is defined using a Bézier surface. Although the method for triangulation 

is independent of the formulation of optimization problem for form generation, we show a method to triangulate a 

curved surface in a form of grid as an example. We can obtain some polyhedra which have different DOFs in the 

optimization step and we select the best solution considering the result of large deformation analysis for evaluation of 

developability of generated polyhedra. If there is no suitable solution, a different pattern of triangulation is tried. 

 

 
 

Figure 1. Flowchart for generating a rigid-foldable polyhedron [6] 

 

2.2 Frame model 

Kinematics of rigid origami is often modeled by the unstable truss model or the rotational hinge model. The former 

represents the shape of polyhedral origami by the coordinates of vertices. This model is used by Schenk and Guest [7] 

for kinematic analysis and stiffness analysis of origami. The drawback of this model is that its configuration tends to be 

complex to restrain the out-of-plane deformation of facets when the model has polygonal facets such as quadrilateral, 

pentagon or hexagon. The latter represents the shape of origami by the rotational angles of hinges on edges. Constraints 

of angles are assigned so that a closed loop of facets around each inner vertex cannot separate. This model is used by 

Tachi [8] to simulate the folding process of rigid origami. Folding state is easily investigated using this model. However, 

it is difficult to develop a finite element model for large-deformation analysis using a general software package. 

A frame model is developed for design and analysis of rigid origami using the same variables throughout the 

procedure of form generation and evaluation of a mechanism. Frame model represents the shape of polyhedral origami 

by the coordinates of nodes on edges as variables throughout the procedure. As shown in Fig. 2, each frame element 

connects the node on a crease line or an outer edge and the node in a facet. Frame elements are connected by hinges on 

crease lines and rigidly connected in facets. A node on an edge is located at its middle point and a node on a facet can be 

arbitrarily defined. Coordinates of nodes on edges satisfy the constraints such that the end points of the edge shared by 

adjacent triangle facets meet at the same point. Thus, the number of variables are reduced. Using the frame model, we 

can easily model a polyhedron which contains polygons, evaluate kinematic indeterminacy in the same manner for 

partially rigid frames [9], and carry out large-deformation analysis using a general finite element analysis software. 

 

 
 

Figure 2. Frame model 



 

 

 

Figure 3. Initial shape and design region 

 

Figure 4. Classification of vertices in design region 

 

2.3 Optimization problem for symmetric model 

An optimization method is used for obtaining the configuration of the polyhedron which satisfies the condition for 

developability. When a polyhedron is developable to a plane, the sum of angles between adjacent crease lines around 

each interior vertex is equal to 2. Optimization starts form triangulation of the target curved surface in a form of grid. 

As shown in Fig. 3, triangulated surface has the vertical, horizontal and diagonal edges. When the polyhedron satisfies 

symmetry conditions with respect to the xz-plane and yz-plane, the surface can be designed only considering one of four 

equal parts, e.g., the region satisfying 0x   and 0y   as shown in Fig. 3. Therefore, we formulate the optimization 

problem so that the quarter of the whole polyhedron  satisfies the condition for developability. Let  denote the 

design region, X  denote the coordinates of independent nodes in , 
, ( )v k X  denote the kth angle between crease 

lines around the vertex v in , and vf  represent the number of crease lines connected to vertex v in . The condition 

for developability of the polyhedron is written as  
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where 1V  is a set of inner vertices in , 2V  is a set of vertices on the boundary of  but not at the corner of  or on 

the outer edges of  , and 3V  consists of the vertex at the center of , as shown in Fig. 4. 

DOF of the rigid-foldable polyhedron which has only triangle facets and no holes is o 3E − , where oE  is the 

number of outer edges [10]. This is sometimes too large for deployable structures. Therefore, constraints are assigned to 

reduce the DOF. A polyhedron with quadrilateral flat facets is generated by assigning condition so that the specified pair 

of adjacent triangle facets have parallel normal vectors, and by removing the crease lines between them. We choose the 

crease lines to be removed from the diagonal ones. Let DE  represent a set of crease lines to be removed. When 

, ( )e kn X  ( 1, 2)k =  are unit normal vectors of facets connected to the crease line e in  the condition for removing 

specified crease lines is written as  
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Since 1 0F   and 2 0F   are satisfied, the condition for developability and reducing DOF is formulated as 

1 2( ) ( ) ( ) 0F F F= + =X X X  (3) 

We minimize ( )F X  and when ( )F X  converge to approximately zero, optimization is regarded as successful.  

Let ( )iz X  denote the z-coordinate of node i on the edge of the polyhedron. The difference between ( )iz X  and 

the z-coordinate of the projected point of node i onto the target surface along with z axis is defined as ( )iz X . The 

upper bound of the absolute value of ( )iz X  is denoted by ( )iz X . Throughout the process of optimization, the 

outline of  projected to xy-plane is constrained not to deform so that the symmetry of  and its projected shape on 

xy-plane are maintained. Therefore, the x-coordinates ( )x

vp X  of vertices v ( )yv V  on the y-directional boundary of 

 and the y-coordinates ( )y

vp X  of vertices v ( )xv V  on the x-directional boundary of  are constrained to the 

specified values x

vp  and y

vp , respectively, where 
yV  and xV  are the sets of vertices on the y-directional and 

x-directional boundaries of  respectively. In addition, the z-coordinates ( )z

vp X  ( )cv V  of the vertex at the corners 

of  are constrained to the specified value z

vp , where cV  consists of the vertex at the corner of . The upper bounds 



and lower bounds of 
, ( )v k X  are denoted by max  and min . The optimization problem for minimizing the geometric 

error of polyhedron is written as a nonlinear programming (NLP) problem as follows: 

Minimize: 
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The crease lines to be removed are sequentially chosen. In the first step, we solve the optimization problem with 

DE  empty. In following step, crease lines are sequentially removed. Let e  denote the dihedral angle between the 

adjacent facets sharing eth edge representing the crease line. The edge corresponding to the smallest difference of e  

to  is added to DE , i.e. four crease lines of  are simultaneously removed. Then, we solve the optimization problem 

(4) again. This process is continued until there exists no crease line to be removed or DOF is reduced to 1. Finally, we 

select the suitable optimal solution considering the result of evaluation of kinematic indeterminacy and 

large-deformation analysis. 

3. Example 

Optimization problem (4) is solved using SLSQP (Sequential Least SQuares Programming) for NLP available in the 

Python library Scipy. Gradients of the objective function and constraint functions are estimated by finite difference 

approximation. Kinematic indeterminacy is calculated using singular value decomposition in NumPy of a Python 

program, and large-deformation analysis is carried out using ABAQUS 2016. 

The target surface has positive Gaussian curvature and the triangulated initial shape is shown in Fig. 3. The span of 

 is 3 and the height of  is 1.2, where the units are omitted for brevity. The parameters of optimization are set as 

max 2 3 = , min 6 = , 0.2iz = . We have obtained 6 symmetric optimal shapes whose DOFs range from 1 to 21. 

The 9-DOF polyhedron which includes 12 quadrilateral facets as shown in Fig. 5 is selected as an example to be 

investigated. The asymmetric model which has the same DOF is also generated for comparison. In the case of 

asymmetric model, one crease line is removed in each optimization step. In addition, the 5-DOF symmetric polyhedron 

is also investigated, while a 5-DOF asymmetric model could not be obtained.  

The number of independent variables is 48 for the symmetric model, and 147 for the asymmetric model. The 

optimization results of three models are shown in Table 1. All three solutions are regarded to satisfy the conditions of 

developability and existence of quadrilateral facets with good accuracy. We have confirmed by the large-deformation 

analysis as shown in Fig. 7 that the generated polyhedra can be continuously developed to a plane without deformation 

of their facets. When the strain of each frame element is small enough throughout the process of large-deformation 

analysis, the obtained polyhedron is confirmed to be rigid-foldable. Since the geometric errors of the symmetric models 

are smaller than the asymmetric model, convergence property strongly depends on the number of variables. It should 

also be noted that optimization process did not converge if geometric conditions are assigned as constraints. 

 

  
(a) Symmetric model (b) Asymmetric model 

 

Figure 5. Optimal shape of 9-DOF model 



 
 

Figure 6. Optimal shape of 5-DOF model 

 

 

Table 1. Results of optimization 

Model ( )F X  
Max. error of ,v k  

from 360 (deg.) 

Max. error of e  ( )De E  

from 180 (deg.) 
Max. ( )iz X  

9-DOF symmetric 2.430×10−13 7.820×10−5 1.017×10−5 2.000 

9-DOF asymmetric 1.171×10−8 3.538×10−3 8.680×10− 0.189 

5-DOF symmetric 3.393×10−13 6.505×10−5 5.332×10−6 0.189 

 

 

 
(a) 9-DOF symmetric model 

 

 
(b) 9-DOF asymmetric model 

 

 
(c) 5-DOF symmetric model 

 

Figure 7. Large-deformation analysis 



4. Conclusion 

The conclusion of this paper is summarized as follows: 

a) The method for form generation of a general rigid-foldable polyhedron in our previous paper [6] has ben extended 

to incorporate practical situation. The optimization problem is re-formulated to take into account the symmetry 

condition of the polyhedron. The number of independent variables is reduced using the symmetry condition. 

b) We have obtained 6 symmetric optimal shapes whose DOFs range from 1 to 21. Two symmetric models which 

have 9- and 5-DOFs are selected as examples to be investigated. In addition, 9-DOF asymmetric model is shown 

for comparison. We have confirmed from large-deformation analysis that each model can be developed to a plane 

without deformation of its facets. 

c) It has been concluded from the examples in Section 3 that the number of variables has a large influence on the 

efficiency and accuracy of the optimization process. A polyhedron with smaller number of DOF can be found by 

assigning symmetry condition and fixing the symmetrically located crease lines simultaneously. By contrast, the 

optimal shape diverts from symmetric shape, if a single crease line is fixed after each process of optimization. 

References 

1. P. M. Reis, F. L. Jimenez, and J. Marthelot. Transforming architectures inspired by origami. Proc. National 

Academy of Sciences of the United States of America, 2015, 112(40), 12234-12335 

2. L. Dudte, E. Vouga, T. Tachi, and L. Mahadevan. Programming curvature using origami tessellations. Nature 

Materials, 2016, 15, 583-588 

3. Y. Zhao, Y. Endo, Y. Kanamori, and J. Mitani. Approximating 3D surfaces using generalized waterbomb 

tessellations. Journal of Computational Design and Engineering, 2018, 5, 442-448 

4. T. Tachi. Origamizing polyhedral surfaces. IEEE Transactions on Visualization and Computer Graphics, 2010. 

16(2), 298-311 

5. E. D. Demaine and T. Tachi. Origamizer: A practical algorithm for folding any polyhedron. Proc. of 33rd Int. 

Symposium on Computational Geometry (SoCG 2017), 2017, Brisbane, 34:1-34:15 

6. K. Hayakawa and M. Ohsaki. Form generation of rigid-foldable origami structure using frame model. Journal of 

Environmental Engineering (Transactions of AIJ), 2019, 84(760) (in press) 

7. M. Schenk and Simon D. Guest. Origami folding: A structural engineering approach. In Origami5: Fifth 

International Meeting of Origami Science, Mathematics, and Education, CRC Press, 2011, 291-303 

8. T. Tachi. Simulation of rigid origami. In Origami4: Fourth International Meeting of Origami Science, Mathematics, 

and Education, AK Peters, 2011, 291-303 

9. M. Ohsaki, S. Tsuda, and Y. Miyazu. Design of linkage mechanisms of partially rigid frames using limit analysis 

with quadratic yield functions. International Journal of Solids and Structures, 2016, 88-89, 68-78 

10. T. Tachi. Geometric considerations for design of rigid origami structures. Proc. of the Int. Association for Shell and 

Spatial Structures (IASS) Symposium, 2010, Shanghai 


