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Abstract 

A three-dimensional bar-hinge mechanism with dihedral symmetry is investigated. A group-theoretic 

approach is used for modeling symmetry properties. Symmetry of compatibility equations has the 

equivariance to the group of geometrical transformations which retain the frame configuration invariant. 

The number of the compatibility conditions is reduced by formulating them with respect to the null 

space of the linear compatibility matrix. The system of the reduced compatibility equation inherits group 

equivariance from the original compatibility equations. Symmetry conditions are expressed by the 

irreducible representation of dihedral symmetry in group theory, and sufficient conditions for finite 

mechanism are derived based on the symmetry conditions of mechanism modes and generalized self-

equilibrium force modes. The proposed approach is examined in a numerical example with dihedral 

symmetry properties.  

Keywords: bar-joint mechanism, arbitrarily inclined hinge, group theory, dihedral group 

1. Introduction 

Linkage mechanism, as shown in Figure 1, is a structure which consists of linkages connected by joints 

or hinges and can deform without external load. Especially, a linkage mechanism is called infinitesimal 

mechanism if it can have only infinitesimal deformation without external load. By contrast, a mechanism 

is called finite mechanism if it can have large deformation without external load. Ohsaki et al. [5] 

proposed an optimization-based approach for generating infinitesimal mechanisms which include hinges 

in arbitrary directions, where a quadratic programming problem is solved to obtain an infinitesimal 

mechanism of a frame. Guest and Fowler [1] showed that a mechanism is finite if it has no self-

equilibrium force, or the self-equilibrium forces are in a different symmetry property from the 

deformation mode.  

 
Figure 25: A hexagonal bar-hinge mechanism as an example of linkage. Six bars are connected by six revolute 

joints (hinges). 
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For modelling symmetry properties, group theory has been used in various fields. Ikeda and Murota [2] 

presented a group-theoretic approach to investigation of buckling behaviors of symmetric structures. 

Kanno et al. [3] investigated semidefinite programming problems whose data have group-symmetry 

properties.  

Ikeshita [4] applied the group-theoretic bifurcation theory to the pin-jointed bar structures with 

symmetric configurations and derived sufficient conditions for a structure with one degree of 

kinematical indeterminacy and one degree of statical indeterminacy to have a finite mechanism. 

However, his study focuses on only pin-jointed structures.  

In this paper, we consider a three-dimensional bar-hinge mechanism with dihedral symmetry. The 

compatibility conditions at the bar-ends are reduced by formulating them with respect to the null space 

of the linear compatibility matrix. Symmetry conditions are expressed using the irreducible 

representations of dihedral symmetry, which derives sufficient conditions for large deformation 

mechanism based on the symmetry conditions of infinitesimal mechanism modes and generalized self-

equilibrium force modes. The conditions are verified in the numerical examples.  

In our notation, we use rank(･ ) and ker(･ ) to denote the rank of a matrix and the kernel space of a 

matrix, respectively. 

2. Group equivariance of compatibility relations 

2.1. Definition of incompatibility vector 

A bar-hinge mechanism is modeled using a bar element proposed by Watada and Ohsaki [6] as shown 

in Figure 2. We define the orthogonal reference frame of undeformed state using unit vectors as 
1 2 3( , , )i i it t t , where 1

it is directed from the center of bar i to the second end node 
2ik . Let 

1ir and 
2ir  denote 

the vectors directing from the center of bar i to both ends connected to nodes 
1ik  and 

2ik , respectively; 

i.e., 1

1 ( / 2)i i iL r t  and 1

2 ( / 2)i i iLr t , where 
iL  is the length of bar i. 

The translation vector of node k and the center of bar i with respect to the global coordinate system 

1 2 3( , , )x x x  are denoted by 1 2 3, )( ,k k k kU UUU
•  and 1 2 3, )( ,i i i iV VVV

• , respectively. The rotation 

vector of node k and the center of bar i around global axes are denoted by 1 2 3)( , ,k k k k   •  and  

 

Figure 26: Definition of global coordinates, unit vectors in local coordinates, and bar rotation; (a) before 

deformation, (b) after deformation 

1 2 3)( , ,i i i i   • , respectively, each of which corresponds to the axis of rotation and its norm 

corresponds to the amount of rotation. The reference frame 1* 2* 3*( , , )i i it t t  in deformed state is computed 
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from 1 2 3( , , )i i it t t  at the undeformed state; see [6] for details.  

Let 3

1 2,i i  U U  and 3

1 2,i i     denote the translational and rotational incompatibility vectors, 

respectively, at two ends of bar i. If the bars are rigidly connected to nodes, the compatibility conditions 

are given as  

 
*) , ( 1,2, , )(

ijij k i ij ij ijj i k        U U V r r 0 M K , (12) 

 , ( 1,2, , )
ijij k i ijj i k      0 M K   , (13) 

where K  and M  denote the sets of indices of all nodes and bars, respectively. 

The direction vectors after rotations of nodes and bars are denoted by 
n

ijf  and 
b

ijf , respectively. The 

compatibility conditions are given as the collinearity of vectors 
n

ijf  and 
b

ijf , which are expressed with 

the independent two components of the equation expressed by the vector product as 
b n

ij ij ij e f f 0 , 

that is, 

 
(2) 1 2, ][ij ij ije e e 0

•
. (14) 

The condition (2) is to be replaced by (3) and the number of constraints is to be reduced by one if a 

hinge exists at the jth end of bar i. As an assemblage of (1), (2) and (3), the compatibility equation is 

expressed as follows: 

 ( ) C W 0 , (15) 

where fW  is the generalized displacement vector consisting of , ,U V  and  , and ( ) mC W  

is called incompatibility vector which represents incompatibility of displacements and rotations at two 

ends of each bar.  

 

2.2. Group equivariance of compatibility relations 

Suppose the frame has geometrical symmetry expressed using group representation. Let G denote the 

group of geometrical transformation g which retain the frame configuration invariant. Then, the 

symmetry of compatibility equations (4) has the following equivariance to a group G. 

 ( ) ( ) ( ( ) ),S g T g g G C W C W , (16) 

where ( ) m mS g   is a unitary matrix representation of g G  in the m-dimensional space expressing 

the transformation of incompatibility vector by action g, whereas ( ) f fT g   is a unitary matrix 

representation of g in the f-dimensional space of generalized displacement vector. Equation (5) implies 

that if W satisfies (4), then T(g)W also satisfies C(T(g)W)=0 for any g G .  

The linear compatibility matrix is denoted by ( ) m f W , whose ( , )s i  component denoted by 

( )si W  is defined as 

 
( )

( ) s
si

i

C

W







W
W . (17) 
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Differentiating (6) with respect to W, we have the equivariance of the compatibility matrix to G as 

follows: 

 ( ) ( ( )) ) ( ),(S T g g Gg T g  W W . (18) 

2.3. Reduction of compatibility equation 

The number of compatibility equations (4) is reduced by the Liapunov-Schmidt reduction procedure. 

Let 
*  denote the compatibility matrix at the undeformed state W=0 as 

* ( )  0 . We define u, p and 

q as 

 
*rank( ), ,p qu f u m u     . (19) 

Consider a direct sum decomposition of the spaces of fW  and ( ) mC W , respectively, as 

*ker( )f U   and 
*range( )m V   . We take an orthonormal basis  1, ,i i f ∣  of f  

such that  1, ,i i p ∣  is a basis of 
*ker( )  and  1, ,i i p f  ∣  is a basis of U. Similarly, we take 

an orthonormal basis  1, ,i i m ∣  of m  such that  1, ,i i q ∣  is a basis of V and 

 1, ,i i q m  ∣  is a basis of 
*range( ) . It should be remarked that 

1, , p   are infinitesimal 

mechanism mode which satisfy 
* ( 1, , )i i p   0 . On the other hand, because 

*
•  is regarded as a 

generalized equilibrium matrix, we call 
1, , q   as generalized self-equilibrium force mode vectors.  

The vector W is additively decomposed into two components 
*ker( )w  and Uw , and w  is 

eliminated using the implicit function theorem. Although the details are omitted, we obtain the reduced 

system of compatibility equations with respect to w as 

 ( ) : · ( ( ))P   C w C w w 0 . (20) 

Let 1: [ ,, ] p

pv v  v
•

 denote a p-dimensional vector to express 
*kerw  using the infinitesimal 

mechanism modes  1, ,i i p ∣  as 1[ , , ]p w v
•  . Then, since ( )C w  defined by (9) is an m-

dimensional vector projected onto q-dimensional subspace V of m  with respect to w expressed by v, 

( )C w  can be expressed by a q-dimensional coefficient vector 1(ˆ ˆ( ) [ ), , )]( q

qC C  C v v v
•

 for the 

generalized self-equilibrium force modes  1, ,i i q ∣  as follows: 

 
1

1

ˆ( ) ) [ , , ]( ( )
q

i i q

i

C


  C w v C v   . (21) 

2.4. Group equivariance of reduced compatibility equation 

The reduction procedure described above is applied to the system of compatibility equations which has 

group equivariance shown in (5). It can be shown that the system of reduced compatibility equation (9) 

inherits group equivariance (5) from the original compatibility equation (4). That is, group equivariance 

of the reduced compatibility (9) is expressed as 

 ( ) ( (( ) ) ),T gS g Gg  C w C w . (22) 

Equation (10) reduces the group equivariance (11) to 
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 ( ) ( (( ) ) ),T gS g Gg  C v C v , (23) 

where ˆ( ) q qS g   and ˆ( ) p pT g   satisfy the following equations: 

 1 1( )[ , , ] [ , , (] ,)q qS g g GS g       , (24) 

 1 1
ˆ( )[ , , ] [ , , ,( )]p pT g T g Gg       . (25) 

See Watada et al. [7] for details.  

3. Prediction of large-deformation property of Dn-equivariant system 

From this section, we focus on frames which have dihedral symmetry and show a method to investigate 

whether the frame has finite mechanism or not using the reduced group equivariance (12).  

Dihedral symmetry of nth order, expressed by Dn , is symmetry properties of a regular n-sided polygon, 

which includes n degrees of rotational symmetry and n axes of reflection symmetry. Figure. 3 shows a 

example of Dn where n is 3. Dihedral group Dn is written as 

  1 1,D , , , , , ,n n

n se r r sr rs   , (26) 

where r , s and e denote a counterclockwise rotation around z-axis by an angle 2 / n , a reflection with 

respect to xz plane and the identity transformation, respectively, as shown in Figure 3. Note that r and s 

have the relations i j i jr r r   and 2 2( )nr s sr e   . 

 

In this study, we consider the case where a Dn symmetric frame has a single infinitesimal mechanism 

mode and a single generalized mechanism mode, i.e., G=Dn, 1p f u    and 1q m u   . 

Hereinafter, we define   as a path parameter defining deformation of the frame as follows: 

 
1: v   . (27) 

Then, (12) is rewritten as following equation: 

 ( ) ( (( ) ) ),C T g GS g gC    . (28) 

Since ˆ( )T g  and ˆ( )S g  are 1 1  matrix representations of G, they are irreducible. Then, let   and   

denote the irreducible representation indices of these matrix representations, respectively. 
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Figure 27: Dihedral symmetry of 3rd order D3. 

We remark that   and its one-dimensional representations ˆ )( ()( )T Tg g   are expressed as follows: 

 
1 2 1 2

1 2

, for  eve{ , , } ( )

{ } ( )

n

, for  odd

B n

A

A A B

A n






, (29) 

where 

 1 1( ) 1, ( ) 1
A A

r T sT   , (30a) 

 2 2( ) ( ) 11,
A A

TT sr    , (19b) 

 1 1( ) 1, ( ) 1
B B

TT r s  , (19c) 

 2 2( ) 1, ( ) 1
B B

T sT r    . (19d) 

We can judge which of (19a)-(19d) is satisfied from the property of rotational and reflectional symmetry 

of infinitesimal mechanism mode 
1 , or by simply calculating from ( )T g  and 

1  as 
1 1( ) ( )T r T r  •   

and 
1 1( ) ( )T s T s  •  . 

Similarly,   and ˆ( )( ( ))S Sg g   are determined from 

 
1 2 1 2

1 2

, for  eve{ , , } ( )

{ } ( )

n

, for  odd

B n

A

A A B

A n






, (31) 

and 

 1 1( ) 1, ( ) 1
A A

r S sS   , (32a) 

 2 2( ) ( ) 11,
A A

SS sr    , (21b) 

 1 1( ) 1, ( ) 1
B B

SS r s  , (21c) 

 2 2( ) 1, ( ) 1
B B

S sS r    . (21d) 

where   is determined from the symmetry property of generalized self-equilibrium force mode 
1 , or 

from (21a)-(21d) and calculation of 
1 1( ) ( )S r S r  •   and 

1 1( ) ( )S s S s  •  . 

Equation (17) is finally rewritten as 

 ( ) ( )) ,( ( )C gS Tg C g G    . (33) 

From (22), combinations of   and   representing sufficient conditions for existence of a finite 

mechanism are derived. For example, consider the case that   and   are determined as 
1A   and 

2A  . In this case, there exists an element h s  of G satisfying ( ) 1T h   and ( ) 1S h   . Then, 

substituting g h  to (22), we obtain following relation: 

 ( ) ( ) ( ) 0CC C     . (34) 

This means that the reduced incompatibility ˆ ( )C   remains 0 identically for any path parameter   of 

deformation; that is, the frame has a finite mechanism.  
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Table 1: Combination of   and   for existence of a finite mechanism 

 

In the similar manner, combinations of   and   so that the frame has a finite mechanism is summarized 

in Table 1 with letter ‘o’. In Table 1, ‘even’ and ‘odd’ indicate that the corresponding ˆ ( )C   are an even 

function and an odd function, respectively. 

4. Numerical Examples 

For a numerical example, we consider 6-bar linkage in xy-plane as shown in Figure 4(a). Also, Figure 

4(b) represents a physical model of this linkage. The number of members 
0m  is 6 and the number of 

nodes 
0n  is 6 . In Figure 4(a), the numbers in ( ) and < > express indices of bars and nodes, respectively. 

Each bar has hinges at both ends as shown in Figure 4(a) with dashed lines, and any two hinges 

connected to the same node are parallel. Note that the hinges are assigned duplicately to clearly 

investigate the symmetry property. A pair of hinges at the same node is combined to a single hinge, 

when making a physical model as shown in Figure 4(b). In Figure 4(a), all lines of the axes of hinges at 

nodes 1, 3 and 5 intersect with z-axis at (0, 0, 
1tan ), and all lines of the axes of hinges at nodes 2, 4 

and 6 intersect with z-axis at (0, 0, 
0tan ). Then, the direction vector 

ijkf  of hinge axis between jth 

end of bar i and node 
ijk  is expressed as follows: 

 

Figure 28: 6-bar linkage; (a) bar-hinge mechanism model, (b) physical model with constraints and hinge-

directions 

 

A 1 A 2 B 1 B 2

ν A 1 unknown o o o

A 2 even odd o o

B 1 even o odd o

B 2 even o o odd

μ
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1 1 1

( 1) ( 1)
cos cos ,cos sin ,sin , for 1,3,5

3 3ij

ij ij

k ij

k k
k

 
  

  


 
  f

•

, (35) 

 
0 0 0

( 1) ( 1)
cos cos ,cos sin ,sin , for 2,4,6

3 3ij

ij ij

k ij

k k
k

 
  

  


 
  f

•

. (36) 

The origin of coordinate axes is denoted by O in Figure 4(a) and 4(b). Let 1

kl , 2

kl , 3

kl  denote the unit vectors 

of local coordinate at node k, where 1

kl  is the unit vector directed from O to node k and 2

kl  and 3

kl  satisfy 

2 1[0,0,1]k k l l
•  and 3 1 2

k k k l l l , respectively. To prevent the indefiniteness of rotation angles around 

the axes of two hinges connected to the same node, we add the compatibility equations with respect to 

( 1, ,6)k k    as follows: 

 1 , for k 1, ,60k k   l
• . (37) 

Moreover, we consider the constraints that translations 
kU  at node 1, 3 and 5 are allowed only along the 

diagonal directions passing through the origin O as 

 2 , for k 1 50 ,3,k k  l U
• , (38) 

 3 , for k 1 50 ,3,k k  l U
• . (39) 

Support constraints of translations and rotations described above are shown in Figure 4(b) with dashed 

arrows for nodes 2 and 3 on behalf of all nodes. As an assemblage of (26)-(28), the number of constraints 

c is 12. Considering the number of hinges h is 12, we have fW  and ( ) mC W  as f=
0 06 6n m

=72 and m=
012m c h  =72, respectively. Note that the support conditions are added to the 

compatibility conditions in this model.  

From conditions of the hinges and the support constraints, it is determined that the symmetry of this 

model is D3. Then, representation matrix ( )T g  of this model is obtained by considering that ( )T r  and 

( )T s  express the transformation of generalized displacement vector W  by action r, a counter-clockwise 

rotation around z-axis by an angle 2 / 3 , and action s, a reflection with respect to xz plane, respectively. 

Representation matrix ( )S g  expressing the transformation of incompatibility vector ( )C W  is also 

determined in the same manner. 

Let 
1 / 4   and 

0 / 4   . From the Singular Value Decomposition (SVD) of 
* , 

*rank )(u   is 

obtained as 71. Additionally, one infinitesimal mechanism mode 
1  and one generalized self-

equilibrium force mode 
1  are also obtained from SVD because 1p f u    and 1q m u   . 

Figures 5(a) and 5(b) show obtained infinitesimal mechanism 
1  and generalized self-equilibrium force 

mode 
1 , respectively. Note that irreducible representation index of 

1  is 
1A  , because we 

confirmed that 
1 1( ) ( ) 1T r T r  •   and 

1 1( ) ( ) 1T s T s  •  . Similarly, irreducible representation 

index of 
1  is 

2A  , because 
1 1( ) ( ) 1S r S r  •   and 

1 1( ) ( ) 1s S sS   •  . These indices of 
1  

and 
1  can also be determined by whether these modes are symmetric or anti-symmetric with respect 

to action r and s, respectively.  
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Figure 29: Infinitesimal mechanism mode and generalized self-equilibrium force mode of the 6-bar linkage; (a) 

Infinitesimal displacement mode 
1 , (b) Generalized self-equilibrium force mode 

1  

Finally, this combination of ( , )   is included in Table 1 with letter ‘o’, which means this linkage has 

one finite mechanism. 

5. Conclusion 

Properties of a three-dimensional bar-hinge mechanism with dihedral symmetry has been investigated. 

A group-theoretical approach is applied to derive sufficient conditions for existence of finite mechanism 

of the bar-hinge mechanism which has single infinitesimal mechanism mode and single generalized self-

equilibrium force mode. The results have been confirmed in the numerical example of a 6-bar linkage.  
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