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Abstract 

We propose a new method for regularization of triangular latticed shell panels whose design surface is 

a tensor product Bézier surface. The planar triangular panels are classified into clusters using the data 

set consisting of three edge lengths of each triangle. In this clustering, a continuous participation 

function is introduced instead of discretized one for representing degree of contribution to the clusters. 

Furthermore, by solving an optimization problem to minimize the difference between the maximum and 

minimum lengths, more uniform panel shapes can be obtained within every cluster. We further carry 

out structural analysis on the initial and the optimal solutions to compare their structural performance. 

Keywords: latticed shell, tensor product Bézier surface, regularization, structural optimization, clustering, panelization.  

1. Introduction 

Recently, free-form surfaces are utilized as design surfaces for roof structures. Accordingly, there is an 

increasing interest in obtaining rational shapes considering cost and constructability of free-form 

surfaces. Discretization to latticed shell is an effective way to reduce cost, and uniformity of discretized 

members is a key factor for this purpose because it can contribute to reduce the number of types of 

members and joints. Moreover, regularization of members is expected to prevent buckling of extremely 

long members and difficulty in constructability due to short members. 

Ohsaki and Fujita [1] proposed a geometry optimization method for minimizing strain energy and 

variance of member length. However, this method does not necessarily yield solutions with less 

difference of member lengths. Ogawa et al. [2] used the difference between the maximum and minimum 

lengths for the regularization of member lengths. 

As an extension of the method for uniform member lengths, uniform triangular planar panel shapes can 

be achieved by using the data set consisting of the three edge lengths of each panel. Singh and Schaefer 

[3] proposed a regularization method for a mesh of triangles, where initial triangles are classified by k-

means clustering and the vertices are relocated by solving an optimization problem so that the surface 

polygons match the canonical polygons as close as possible. However, this method inevitably alters the 

geometry of surface and may cause an unexpected change of structural behavior. 

Hayashi and Ohsaki [4] presented a regularization method to obtain uniform triangular panels within 

several groups. The design variables are parameters defining the locations of the nodes on a prescribed 

tensor product Bézier surface, and the nodes strictly move on the surface during the optimization without 
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any gap between the panels. In the process of clustering, continuous values are introduced to express 

the degree of participation to each cluster for panel shapes. However, Euclidean distance of three edge 

lengths is used in the process of clustering and optimization, which is not necessarily effective to 

minimize the difference of edge lengths. 

In this paper, we introduce a Minkowski distance (p-norm) instead of Euclidian distance for expressing 

the degree of participation and objective function. By applying large value for p, the order of the 

distance, almost the same effect as minimization of the largest discrepancy in edge lengths can be 

achieved, while conserving the continuity of the objective function. Effectiveness of the proposed 

method is demonstrated in the numerical examples of two design surfaces; one with large curvature and 

the other with the half scale in the height direction. 

Furthermore, we compare structural performance of these examples by means of FEM analysis, and 

quantitatively evaluate the trade-off between the degree of difficulty in regularization and structural 

performance of latticed shells in terms of the curvature of the design surface. 

2. Regularization of panel shapes 

The overall workflow of the regularization method is described in this section. Discretization of tensor 

product Bézier surface is explained, and two fundamental procedures, clustering and optimization, are 

formulated. 

 
Figure 37: Overall workflow of the regularization process. 
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2.1. Panel generation from tensor product Bézier surface 

In general, a tensor product Bézier surface of order M N  is expressed with parameters  , 0,1u v  

as 
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where ( )M

iB u  and ( )N

jB v  are the Bernstein basis polynomials, and 
3

ij R  is a position vector of  ,i j  

control point. Note that the locations of control points are all fixed in this paper, that is, ijR  is constant 

for 0, ,i M  and 0, ,j N . 

Next, finite number of nodes are generated on the surface by assigning the parameter sets ( , )k ku v  of 

each node into equation (1). The neighboring nodes are connected to create a triangular mesh. Therefore, 

if the connectivity is fixed, nodal locations of the panel can be described as a function of ( , )k ku v . 

2.2. Clustering 

The 
dn  triangular meshes are classified into 

cn  groups. To apply this clustering method to 

triangular panels, three edge lengths of each triangular panel  ,1 ,2 ,3 ,1 ,2 ,3, , ( )i i i i i i iL L L L L L  x  are 

computed. The initial locations of cluster centroids are chosen to avoid their proximity as follows; one 

of the data  1, ,i di nx  is randomly chosen as the first centroid, and the other centroids are chosen 

from data according to the probability [5,6]: 
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where  iD x  is an euclidian distance from 
ix  to the closest centroid. 

After obtaining the initial cluster centroids  ,1 ,2 ,3 ,1 ,2 ,3, , ( )j j j j j j jL L L L L L  c , clustering is 

conducted. The degree of participation in cluster j  for data i  is computed as 
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where m  is a clustering parameter; if m  is sufficiently large, degree of participation of data i  becomes 

almost equal for all the clusters. Note that Minkowski distance with order p is applied to equation (3). 
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As p  takes larger value, 
i j p
x c  becomes the largest difference among three edge lengths, expressed 

as 

  , ,
1,2,3

lim maxi j i k j kpp k
L L

 
  x c   (4) 

In view of trade-off between accuracy of the maximum value and smoothness of the function, the order 

p is set to be 10 in this research. 

Regarding ijU  as weight coefficient, the cluster centroids are updated as 
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Equations (3) and (5) are alternately computed until the values of ijU  converge. In distributing data to 

the clusters, we choose the cluster with the maximum degree of participation among all the clusters. 

2.3. Optimization 

The aim of the optimization is to minimize the difference of maximum and minimum edge lengths of 

the panel within every cluster, expressed as 

    2 1
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where 
1 ,

j

i kL  and 
2 ,

j

k i kL  are the k th edge of 
1i th and 

2i th panel in cluster j , and u  and v  are the vectors 

of all variables 
ku  and 

kv , respectively. We modify the objective function to improve the 

differentiability, and assign the admissible regions u
and v

 for u  and v  to formulate the optimization 

problem as 

    1 2
1 2

10,
minimize , max max j j

i i
j i i

F  u v x x   (7a) 

 subject to uu   (7b) 

 vv   (7c) 

where 
1

j

ix  and 
2

j

ix are the 
1i th and 

2i th data in cluster j. 
1 2

1 2
10,

max j j

i i
i i

x x  is the maximum value of the 

Minkowski distance with order 10 of three edge lengths within cluster j, and it is computed for every 

cluster to extract the maximum value, which becomes the objective function F . 

Note that clustering and optimization are alternately and iteratively conducted for 100 times, 

respectively. After each iteration, we substitute the optimal design variables for equation (6), and 

preserve the best solution with the least value F . We retrieve the best solution after 100 iterations and 

set it as an output. 
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2.4. Sensitivity analysis 

In solving the optimization problem (7), we use a sequential quadratic programming, which is a 

gradient-based approach of nonlinear programming. Therefore, sensitivity coefficients of objective 

function are necessary to reduce computation time. 

Let eF  denote the Minkowski distance with order 10 between 
1i th and 

2i th panels, which is written as 
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Differentiation of 
1 2 10

e i iF  x x  with respect to 
lu  leads to 
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Sensitivity coefficient of 
,i kL  with respect to 

lu  is obtained as 
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where ,

s

i kp  and ,

e

i kp  are the locations of the start and end points of k th edge of the i th panel, which 

can be derived from equation (1a). Sensitivity coefficient of ( , )l lu vS  in (1a) with respect to 
lu  is given 

by 
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Differentiation of (1b) with respect to Sensitivity coefficient of Bernstein polynomials leads to 
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By backpropagating computations from (12) to (9), gradients of the objective function with respect to u  

can be analytically calculated, and that with regard to v  can be derived in a similar way. 

4. Numerical examples 

Examples of two design surfaces are demonstrated in this section within the framework of Python 3.6.4 

and SLSQP [7] to solve the optimization problem. Units for nodal coordinates and edge lengths are 

expressed in meters, and their representations are omitted in the following examples. The number of 

clusters is set to be ten and clustering parameter m  is 2.0.  

In the latter part of this section, structural analysis is conducted for the examples to understand the 

relationship between the degree of difficulty in the regularization and structural performance of the 

latticed shells from the perspective of curvature of the design surface. 
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4.1. Example 1: surface with large curvature 

The control polygon is composed of 25 points, as listed in Table 1, to create a quartic tensor product 

Bézier surface as shown in the left Fig. 2. The number of equal mesh division is ten in u  and v  directions. 

Connecting neighboring nodes generates an initial shape with 121 nodes and 200 triangular panels as 

shown in the right Fig. 2. Average lengths of long, middle, and short sides are 1.695, 1.206, and 1.052, 

respectively. 

Table 2: Numbering of control points (colored in gray) and their coordinates. 
1 (-5.0, -5.0,  3.0) 6 (-2.5, -5.0, 1.5) 11 (0.0, -5.0,  0.0) 16 (2.5, -5.0, -1.5) 21 (5.0, -5.0, -3.0) 

2 (-5.0, -2.5,  1.5) 7 (-2.5, -2.5, 5.0) 12 (0.0, -2.5, -5.0) 17 (2.5, -2.5, -5.0) 22 (5.0, -2.5, -1.5) 

3 (-5.0,  0.0,  0.0) 8 (-2.5,  0.0,  2.0) 13 (0.0,  0.0,  5.0) 18 (2.5,  0.0,  5.0) 23 (5.0,  0.0,  0.0) 

4 (-5.0,  2.5, -1.5) 9 (-2.5,  2.5, -5.0) 14 (0.0,  2.5, -5.0) 19 (2.5,  2.5, -5.0) 24 (5.0,  2.5,  1.5) 

5 (-5.0,  5.0, -3.0) 10 (-2.5,  5.0, -1.5) 15 (0.0,  5.0,  0.0) 20 (2.5,  5.0,  1.5) 25 (5.0,  5.0,  3.0) 

           

Figure 38: Control polygon of tensor product Bézier surface (left) and its initial panelization (right). 

u
 is set such that the parameter 

ku  simultaneously satisfy [0,1]ku   and  0.09, 0.09k k ku u u   , 

where 
ku is an initial value of 

ku . v
 is set in the same way. As for mesh vertices on the edges of the 

surface, We further add constraint for 
ku  or 

kv  on an edge such that it keeps moving on the edge; 

accordingly, four corner nodes cannot move in the optimization. 

The iteration history of objective value computed by equation (6) is described in Fig. 3. The 

improvement of F  is remarkable especially in the early stage of iterations. The best regularization 

solution is retrieved from 31st iteration and its result is described in Table 2. tN  is the number of panels 

belonging to the cluster, and U L

l lL L , U L

m mL L , and U L

s sL L  are the maximum differences of long, middle, 

and short sides of triangular panels within the same cluster, respectively. Since the largest difference 

has decreased from 0.212 to 0.096, more uniform triangular panels are obtained. As the right of Table 2 

shows, regularized panels contain almost the same value in maximum discrepancy of edge lengths 

within every cluster, within the range of 0.073 and 0.096. These observations imply that the objective 

function (7a) using Minkowski distance efficiently works to minimize (6): our original intention for the 

regularization. 
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Figure 39: Iteration history of objective value F . 

 

 

 

Table 3: Regularization result. 

 Initial panelization Regularized panelization 

cluster tN   
U L

l lL L  U L

m mL L  U L

s sL L   tN  
U L

l lL L  U L

m mL L  U L

s sL L   

0 32 0.024 0.080 0.045 24 0.092 0.089 0.096 

1 43 0.166 0.130 0.176 24 0.080 0.091 0.092 

2 36 0.047 0.140 0.156 30 0.091 0.096 0.093 

3 26 0.086 0.129 0.149 44 0.095 0.096 0.095 

4 21 0.047 0.089 0.145 27 0.086 0.095 0.096 

5 11 0.116 0.146 0.122 16 0.095 0.095 0.096 

6 8 0.171 0.188 0.212 9 0.095 0.096 0.092 

7 6 0.102 0.155 0.181 12 0.095 0.095 0.082 

8 4 0.003 0.135 0.152 8 0.096 0.096 0.093 

9 13 0.123 0.133 0.193 6 0.095 0.073 0.093 

 

           
    Figure 40: Plan of initial (left) and regularized (right) panels. 

 



Proceedings of the 12th Asian Pacific Conference on Shell & Spatial Structures (APCS2018) 

Recent Innovations in Analysis, Design and Construction of Shell & Spatial Structures 
 

 

 344 

  
Figure 41: Clustering of edge lengths for initial (left) and regularized (right) solutions. 

4.2. Example 2: half-scaled surface 

To inspect the relationship between pitch of the design surface and the outcome of regularization, our 

proposed method is applied to another surface, , as shown in the Fig. 3, whose control polygon is the 

same as the last example in x  and y  coordinates and half in z  coordinate. The number of mesh division, 

the connectivity of the nodes, and the domain of design variables u
and v

 are also the same. Average 

lengths of long, middle, and short sides are 1.494, 1.058, and 1.014, respectively. 

           
Figure 42: Control polygon of tensor product Bézier surface (left) and its initial panels (right). 

 

After 100 iterations, the best regularized panelization is retrieved from 31st optimal solution and the 

result is described in Table 3. The largest difference of edge lengths for the initial panels is 0.067, on 

the other hand, it was reduced to 0.034 for the regularized ones. Since the curvature is smaller than the 

first example, the scale of objective value F  in this example become smaller, accordingly. 

Table 4: Regularization result. 

 Initial panelization Regularized panelization 

cluster tN   
U L

l lL L  U L

m mL L  U L

s sL L   tN  
U L

l lL L  U L

m mL L  U L

s sL L   

0 37 0.009 0.024 0.025 31 0.033 0.032 0.033 

1 48 0.044 0.047 0.056 31 0.034 0.032 0.028 

2 36 0.024 0.043 0.043 58 0.033 0.033 0.034 

3 36 0.027 0.050 0.039 33 0.034 0.034 0.034 

4 12 0.036 0.043 0.043 15 0.033 0.033 0.031 

5 8 0.047 0.059 0.067 8 0.031 0.034 0.028 

6 4 0.028 0.032 0.029 6 0.033 0.032 0.030 

7 4 0.001 0.043 0.053 4 0.024 0.034 0.031 

8 5 0.024 0.056 0.054 4 0.012 0.016 0.028 

9 10 0.022 0.028 0.028 10 0.033 0.029 0.026 
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Figure 43: Plan of initial (left) and regularized (right) panels. 

4.3. Structural analysis 

We compare structural performance of initial and optimal solutions under gravity load for the examples 

above. Panels are considered as non-structural elements; only beams connecting the triangular vertices 

are considered as structural members.  

We use Abaqus 2016 to conduct the structural analysis. The members are circular pipes with a cross-

section of outside diameter 0.05d  [m] and thickness 0.005t  [m], following the Timoshenko beam 

theory. Young’s modulus is 112.05 10 [N/m2], Poisson’s ratio is 0.3, mass density is 7870[kg/m3], and 

gravitational acceleration is 9.8[N/kg]. 

Table 4 shows von Mises stresses of members with initial and regularized panelizations of the latticed 

shells in the previous subsections. The color-bar is unified among the four results; members colored in 

red are subject to large stress, and those in blue are to small stress. U

m [N/m2] is the maximum value of 

von Mises stress of the members. The reduction of U

m  due to the regularization is negligibly small, 

because the initial solution already distributes member stresses relatively uniformly owing to the equal 

mesh division. 

Considering the regularization results, it is observed that there is a trade-off between the degree of 

difficulty in regularization and member stresses in terms of the curvature of the design surface. In this 

case, by scaling the rise of the design surface by half, the measure of regularization F  has reduced 

approximately by one-third; on the other hand, the maximum value of von Mises stress has increased 

to double.  
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Table 5: von Mises stresses of members. 

5. Conclusion 

We proposed a regularization method of a triangular latticed shell designed on a tensor product Bézier 

surface. Continuous variables and Minkowski distance are introduced for degree of participation in the 

clustering process. In the optimization problem, difference of panel shapes are expressed also using 

Mincowski norm to preserve continuity of the objective function. By conducting clustering and 

optimization alternately and repeatedly, regularization result can improve especially in the early stage. 

Furthermore, structural performances of initial and optimal solutions under gravity load are compared. 

We successfully quantify trade-off between construction cost represented by uniformness of panels and 

structural performance, by applying the degree of regularization (6) and von Mises stress to the 

evaluation, respectively. 
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