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Abstract 

A new efficient tool is developed for Grasshopper users to simultaneously optimize topology and 

geometry of truss structures. Force density method is applied to formulate a minimization problem of 

compliance under volume constraint. The optimizer generates a variety of optimal solutions, because 

constraints on nodal locations are unnecessary to avoid the difficulties due to existence of melting nodes. 

In this study, an integrated workflow of FORTRAN and C# is presented to improve the optimization 

speed. Furthermore, a Bézier surface is introduced as a design surface to control nodal locations. The 

efficiency and accuracy of the proposed method are demonstrated through a numerical example. 

Keywords: truss, simultaneous optimization of topology and geometry, force density method, latticed shell,  

tensor product Bézier surface, Grasshopper, interactive design 

1. Introduction 

There is an increasing number of optimization components available with Rhinoceros, which is one of 

the most popular modeling software in the field of architectural design, and Grasshopper, a graphical 

algorithmic editor of Rhinoceros. However, there is no component that simultaneously optimize 

topology and geometry of truss structures within acceptable computational cost. 

Ohsaki and Hayashi [1] formulated a new optimization problem for simultaneous optimization of 

geometry and topology of trusses based on force density method (FDM) [2]. By using force densities as 

design variables, numerical difficulties caused by melting (overlapping) nodes [3] can be easily avoided. 

Moreover, the number of variables is equal to only the number of members; thus we need shorter 

computation time to obtain optimal solutions with a variety of geometry and topology.  

In this study, to utilize the benefit of our method to the maximum extent, we develop a Grasshopper 

component to optimize topology and geometry of trusses. By packaging FDM in the component, 

interactive and integrated design process is successfully constructed. 

2. Optimization problem 

In this section, we explain the outline of the formulation of optimization problem. See Ref. [1] for details.  

Consider a truss with m members and n nodes. Force density 
iq  of member i is defined with respect to 

the axial force
iN  and the length 

iL  as /i i iq N L . Using the connectivity matrix m nC  and the 

force density vector 
mq , the force density matrix n nQ  can be defined as T diag( )Q C q C . 

The same matrix Q is used for formulating equilibrium equations in x-, y-, and z-directions. Hence, Q 

for three directions are assembled to 
3 3n nQ , which is re-assembled to classify free and fixed 

displacement components and their link components as  
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where the loaded nodes are also treated as fixed, because they cannot move in the process of geometry 

optimization. By specifying the fixed nodal coordinates fix

fix

n
X , the free nodal coordinates 

free

free

n
X  are obtained as a function of q  from the following system of linear equations: 

 
free free link fix Q X Q X  (2) 

Using the fact that the solution to the compliance minimization problem is a statically determinate truss 

with the same absolute value of stress   for all members, the cross-sectional area of member i is 

expressed as /i i iA q L  . Let E and c denote Young’s modulus and a very small positive smoothing 

parameter, respectively. Then, the compliance, which is twice of the strain energy, can be expressed as 
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Since the product of the total structural volume V and the compliance of the optimal solution is 

independent of  , V can be calculated after minimizing the compliance with arbitrary positive value of 

  [1]. The loading condition is incorporated by prescribing reaction forces at loaded nodes as 
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  (4) 

where 
RI  is a set of indices of reaction forces to be specified, and iR  is the specified load value.  

We further add constraints on nodal locations using a design surface such that the z-coordinate of point 

k on the surface is expressed as an explicit function of x- and y-coordinates as 

 ( , )k k kz f x y ,  ( 1, , )k n  (5) 

Thus, the optimization problem can be formulated as 

 
minimize ( )

subject to  (4), (5), ( ) , ( ) , x y q

F

  

q

x q y q q
  (6) 

where 
x , y , and q  are the feasible regions of x, y, and q, respectively. 

We use a tensor product Bézier surface of order M N as the design surface. If the control point ijP  is 

described as T( / , / , )ij iji M j N bP   ( )ijb  , and the plan of the surface is scaled so that , [0,1]x y  

can be used as parameters of the surface, then z-coordinate of point k on the tensor product Bézier surface 

can be expressed as an explicit function of its x- and y- coordinates as 

 
0 0

( , ) ( ) ( )
M N

M N

k k k i k j k ij

i j

z f x y B x B y b
 

    (7) 

where ( )M

iB x  and ( )N

jB y  are the Bernstein basis polynomials. 

3. Compilation of FDMOPT 

In this section, the process of developing the optimizer is described using Grasshopper. In the 

optimization process, initial ground structure (GS), support and loading conditions, and additional 

constraints must be assigned as numerical data for the sequential quadratic programming (SQP) solver. 

To assist this complex process, a Grasshopper component is developed for automatic extraction of the 

information. The Grasshopper component compiled in C# is shown in Fig. 1. The top left 5 parameters 

P, C, S, LP, LV are the required inputs, and the bottom left 6 parameters L, x, y, z, S, I are optional. 

Once the component is double-clicked, it starts calling another optimization program compiled in 
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FORTRAN, where an SQP library SNOPT Ver. 7.2 is incorporated. The FORTRAN program 

randomizes the initial force densities to generate initial variables based on a prescribed random seed, 

conducts the optimization, returns an optimal solution back to the Grasshopper component, which 

displays the optimal shape on the Rhinoceros window. The whole optimization workflow is illustrated 

in Fig. 2. This way, a user-friendly interface is developed for the proposed optimization method. 

 

Figure 1: Compiled grasshopper component and its input and output parameters. 

 

                           

Figure 2: Integrated workflow of C# and FORTRAN. 

4. Numerical example 

In this section, we present an example for the demonstration of the proposed method. Units are omitted 

because they are not important in this research. The parameter values are 1.0  , 1.0E  , 61.0 10c   , 

and 10V  . The initial value 
kq  of force density of member k is randomly provided within the range 

[
init init1.0, 1.0k kq q  ], where 

init

kq  is the force density of member k of the initial GS with uniform cross-

sectional areas 1.0. The upper and lower bounds for 
kq  are 

21.0 10kq    and 
21.0 10kq   , respectively. 

We choose the best solution after obtaining 100 solutions for 100 different random seeds. 

The left figure of Fig. 3 shows the control polygon. The number of equal mesh division is four in x- and 

y-directions. By connecting neighboring nodes, an initial ground structure with 72 members is generated 

as shown in the right figure of Fig. 3. Four corner nodes {1,5,21,25} on the surface are pin-supported 

and four center nodes {8,12,14,18} are subjected to unit loads in the positive direction of x-axis. 

P 

C 

S 

LP 

LV 

L 

z 

y 

z 

S 

I 

: Nodes of initial GS. ------------------------- 

: Connectivity of initial GS. ----------------- 

: Supported coordinates. --------------------- 

: Indices of loaded nodes. -------------------- 

: Load vectors. -------------------------------- 

: Maximum member length. ----------------- 

: Maximum displacement in x direction. -- 

: Maximum displacement in y direction. -- 

: Maximum displacement in z direction. -- 

: Design surface. ------------------------------ 

: Random seed. -------------------------------- 

---- P 

---- C 

---- FD 

---- C 

---- A 

: Nodes of optimal solution. 

: Connectivity of optimal solution. 

: Force densities of the members. 

: Compliance. 

: Cross-sectional areas of the members, 
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Figure 3: Control polygon of tensor product Bézier surface (left) and initial GS (right). 
 

Among the 100 trials, the maximum, median, minimum, average values, and standard deviation of F  

for the 80 valid solutions are 43.209 10 , 58.605, 12.767, 32.209 10 , and 36.226 10 , respectively. It 

takes 231 seconds for each trial on average on a PC with Intel Core i5 processor. The optimal solution 

with the least objective value 12.767F   is shown in Fig. 4. Red members are compressive and blue 

are tensile. The sets of nodes {1,2},{4,9,10,13,14,15,19},{7,8},{11,17,18},{20,24},{21,22,23} are 

coalescent within the range of 0.05 to generate the simpler shepe with 12 nodes. 

              

Figure 4: The best optimal solultion ( 12.767F  ). 

5. Conclusion 

We proposed an interactive and integrative approach to truss design by developing a Grasshopper 

component for simultaneous optimization of geometry and topology of trusses. Numerical difficulty due 

to melting nodes can be successfully avoided using force density as design variable, which contributes 

to generate solutions with coalescent nodes. Moreover, a tensor product Bézier surface is successfully 

incorporated as a design surface of the optimizer, which enables controlling nodal locations. 

Although the design surface is restricted to a Bézier surface with uniformly spaced control points in x- 

and y-directions, this restriction is expected to be relieved by using geometric transformation in future 

research. 
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