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Abstract 

A new method is proposed for regularization of triangular lattice shell panels whose design surface is a 

tensor product Bézier surface. By carrying out clustering and optimization alternately, better solutions 

can be achieved compared with the case of conducting both only once. A continuous relaxation method 

is applied to conduct clustering of panel shapes. Effectiveness of the proposed method is demonstrated 

through a numerical example. 
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1. Introduction 

As complex shapes for architectural design have become possible in the framework of computational 

modeling, there is an increasing interest in obtaining rational shapes considering cost and 

constructability of free-form surfaces. Discretization to latticed shell is one of the solution for cost 

reduction, and uniformity of discretized structural elements is an important factor to reduce the number 

of types of members and joints. Moreover, regularization of members is expected to prevent buckling 

of extremely long members and difficulty in constructability due to existence of short members. 

Ogawa et al. [1] proposed a shape optimization method of latticed shells for maximum linear buckling 

loads and uniform member lengths. Although the difference between the maximum and minimum 

lengths are used for the regularization of members, very simple models with quadrilateral grids are used 

in the numerical example. 

As the extension of regularization of member lengths, we can consider the shapes of enclosed areas by 

the members. Winslow [2] formulated an optimization problem for rationalizing triangular lattices from 

a freeform surface with upper and lower limits for the edge lengths. This constraint is due to cladding 

requirements and another formulation to regularize panel shapes themselves is necessary. Singh and 

Schaefer [3] proposed a regularization method for triangulated surfaces, where initial triangles are 

classified by k-means clustering and the positions of the vertices are optimized to match the case if the 

triangles are substituted by canonical triangles of the clusters. However, this method inevitably alters 

the geometry of surface and may cause an unexpected change of structural behavior. 

In this paper, we propose a 2-step regularization method of triangular latticed shell panels on a tensor 

product Bézier surface, where clustering and optimization are alternately conducted. In the process of 

clustering, continuous relaxation method is applied to express the degree of participation to each cluster 

for panel shapes. Applicability of the proposed method is demonstrated through a numerical example. 

2. Optimization Problem 

The outline of the formulation of optimization problem is described in this section.  
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In general, a tensor product Bézier surface of order M N  is expressed with parameters  , 0,1u v  as 
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where ( )M

iB u  and ( )N

jB v  are the Bernstein basis polynomials, and 3

ij R  is a position vector of 

 ,i j  control point. Note that the locations of control points are all fixed in this paper. 

Once continuous parameters u  and v  are discretized, finite number of nodes are generated on the tensor 

product Bézier surface. By connecting the neighboring nodes, a triangular mesh is obtained. Therefore, 

nodal coordinates of mesh nodes are functions of u  and v . 

Next, these triangular meshes are classified into sevaral groups depending on their shapes. Let 
dn  denote 

the number of samples. To avoid proximity in cluster centroids, their initial locations are separately 

arranged as follows; one of the data is randomly chosen as the first centroid, and the other centroids are 

chosen from data  1, ,i di nx  based on the probability as 

  
 

 

2

2

1

d

i

i n

ii

D
p

D






x
x

x
  (2) 

where  iD x  is an euclidian distance from 
ix  to the closest centroid. 

After determining the initial positions of the centroids, clustering is conducted. Let 
cn  denotes the 

number of clusters. The degree of participation in cluster j  for data i  is computed as 
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Then the centroids are updated using ijU  as 
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Equation (3) and (4) are alternately and repeatedly computed until convergence.  

To apply this clustering method to triangular panel classification, we use three edge lengths of each 

triangular mesh  1 2 3 1 2 3, , ( )i i i i i i iL L L L L L  x .Let the panel with data 
ix belongs to the cluster with 

the largest value of  ijU . The optimization problem can be formulated as 
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where  
1

j

ix  and 
2

j

ix are the 
1i th and 

2i th data in cluster j, 
ku and 

kv  are the domain within which the 

variables  
ku  and 

kv  can take, and K  is the set of indices of mesh nodes. 
1 2

1 2,
max j j

i i
i i

x x  is the 

maximum value of the norm of the difference of three edge lengths within cluster j, and it is computed 

for every cluster to extract the maximum value, which becomes the objective function F. 

The first step of the regularization is simple iterations of clustering and optimization that is alternately 

and repeatedly implemented until the objective function value cannot improve for 5 consecutive times. 
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The second step starts from the best result of the first step, then moves one or two members to different 

clusters based on 
ac   defined by 

  1 2
1 2,

argmax max j j

a i i
i ij

c  x x   (6) 

Let 1i  and 2i  denote indices of two critical panels which are critical to the computation of the objective 

function defined as 
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If 
ac is an index of cluster that has the largest or smallest norm of centroid among all clusters, a panel 

out of two panels with 
1

ac

i
x  and 

2

ac

i
x whose edge lengths are more distant from its centroid than the other 

is re-assigned to the cluster whose centroid is the second closest. If 
ac  is in the other case, both of these 

two panels are assigned to the second closest cluster. This modification is also alternately conducted 

with solving optimization problem (5) until its objective function value cannot improve. Note that the 

second closest cluster is easily detected from the degree of participation ijU . 

3. Numerical example 

We use Python 3.6.4 and SLSQP to conduct analysis and optimization. In application of SLSQP, 

sensitivity coefficients of objective functions with respect to u  and v  are analytically derived. The 

control polygon is composed of 25 control points to create a high-pitched quartic tensor product Bézier 

surface, as illustrated in the left Fig. 1. The number of equal mesh division is 10 in x- and y-directions. 

Connecting neighboring nodes generates an initial shape with 121 nodes and 200 triangular panels, as 

shown in the right Fig. 1. 

 

Figure 1: Control polygon of tensor product Bézier surface (left) and initial panelization (right). 
 

The number of cluster is set to be 10 and clustering parameter m is 2.0. 
ku  is set such that the parameter 

ku  simultaneously satisfy 0 1 ku  and 0.1 0.1   k k ku u u , where 
ku is a initial value of 

ku . 
kv  

is set in the same way. 

The regularization result is described in Table 1. tN  is the number of panels in the cluster, and U LL L  

is the maximum value of norm of difference in edge lengths of triangular panels within the same cluster. 
U LL L  becomes less than 0.140 after the regularization, which means that more uniform triangular 

panels are obtained for every cluster. The cycle of clustering and optimization was carried out for 16 

times in the first step; on the other hand, it was done only once in the second step, because the objective 

function value did not improve. 

Table 1: Regularization result. 

 initial panelization optimal panelization 

cluster tN   U LL L   tN  c   U LL L  

0 32 0.084 34 (0.98,1.02,1.45) 0.139 

1 43 0.229 58 (1.02,1.10,1.46) 0.139 

2 36 0.179 26 (1.06,1.14,1.68) 0.139 
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3 23 0.174 25 (1.00,1.27,1.67) 0.139 

4 25 0.174 15 (1.03,1.29,1.75) 0.139 

5 10 0.188 9 (1.18,1.22,1.94) 0.139 

6 8 0.262 5 (0.98,1.49,1.99) 0.139 

7 6 0.208 10 (1.12,1.53,2.22) 0.139 

8 4 0.203 4 (1.30,1.53,2.38) 0.038 

9 13 0.230 14 (1.19,1.65,2.39) 0.137 

 

                         

Figure 2: plan of panelized mesh of initial(left) and optimal(right) solutions. 

 

Figure 3: clustering of edge lengths for initial(left) and optimal(right) solutions. 

4. Conclusion 

Regularization of triangular latticed shell panels whose design surface is a tensor product Bézier surface 

can be fulfilled by alternate and repetitive implement of clustering and optimization. Continuous 

relaxation method is successfully incorporated into the clustering process. However, modification of 

clustering for 1 or 2 critical members does not contribute to improvement of objective function because 

of too strict stop condition. Future work is necessary to develop more effective modification method that 

positively introduces heuristics. 
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