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Abstract 

Force density method is applied to simultaneous optimization of geometry and topology of truss 

structures. Compliance under single loading condition is minimized for specified structural volume. 

Force density is the ratio of axial force to the member length. The difficulties due to existence of melting 

nodes, closely spaced nodes connected by extremely short members, are successfully avoided by 

considering force density as design variable, so that various optimal shapes can be otained from a sparse 

initial ground structure. By using the fact that the optimal truss is statically determinate with the same 

absolute value of stress in existing members, the compliance and the structural volume are expressed as 

explicit functions of force density only, and optimal solutions are found with small computational cost. 

The formulation process of the optimization problems is described, then accuracy, efficiency, and 

applicability of the proposed method are demonstrated through three numerical examples; a plane truss 

model is optimized first, and spatial structures are discussed next. 

Keywords: Truss, Simultaneous optimization of topology and geometry, Force density method, Compliance 

1. Introduction 

Various methods of mathematical programming and heuristic approaches have been developed for 

topology optimization (Bendsøe and Sigmund [1], Ohsaki [2]). The ground structure method (Dorn et 

al. [3])  is the most frequently used approach among them; however, it requires enormous computational 

cost to obtain a sparse optimal truss with appropriate nodal locations, because a densely connected initial 

ground structure with many nodes should be used to optimize the geometry and topology. 

In optimizing the geometry of a truss, not only nodal coordinates but also cross-sectional areas are often 

chosen as design variables, and the thin members after optimization are to be eliminated. This way, we 

can optimize the truss geometry and topology simultaneously. However, if the nodes are allowed to 

move in a wide range of the design space, closely spaced nodes connected by extremely short members 

will exist (Ohsaki [2], Achtziger [4]) . These nodes are called “melting nodes”, which trigger numerical 

problems; i.e., axial stiffness and the sensitivity coefficients of stiffness of a short member have very 

large values. 

Some methods have been proposed to overcome the difficulties related to melting nodes. A growth 

method (McKeown [5], Hagisita and Ohsaki [6])  starts with a simple truss and adds nodes and members 

successively by heuristics. This method leads to an optimal truss with sparse topology and geometry; 

however, it does not satisfy any theoretical optimality criteria. Achtziger [4] reformulated the 

optimization problem by setting nodal displacements in addition to nodal coordinates and cross-

sectional areas as design variables. However, the constraint to avoid melting nodes is still necessary. 
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In this paper, force density method is applied to the formulation on simultaneous optimization of 

geometry and topology of truss structures (Ohsaki and Hayashi [7]). Force density method has been 

used mainly for form-finding of cable nets and tensegrity structures (Schek [8], Zhang and Ohsaki [9]). 

The difficulties due to melting nodes are successfully avoided by considering force density as design 

variable, which enables us to obtain various optimal shapes from a sparse initial ground structure. 

Moreover, this method can reduce computational cost, because the number of variables is equal to that 

of members. However, the optimization process sometimes diverges, and the optimal solution strongly 

depends on the initial solution.  

This paper focuses on improvement of the formulation based on this force density method to optimize 

the geometry and topology of trusses simultaneously with small computational cost. Three numerical 

examples are presented to evaluate accuracy, efficiency, and applicability of this method. 

2. Force density method 

In this section, force density method is explained for application to truss topology optimization (Ohsaki 

and Hayashi [7]). Free nodal coordinates and reaction forces at fixed nodes are expressed as functions 

of force density, which is the ratio of axial force to length. Force density 𝑞𝑖 of member 𝑖 is defined with 

respect to the axial force 𝑁𝑖 and length 𝐿𝑖 as 

   𝑞𝑖 = 
𝑁𝑖

𝐿𝑖
 (1) 

Consider a truss with n nodes and m members. If member 𝑖 connects nodes 𝑗 and 𝑘, then the components 

of connectivity matrix 𝐂 ∈ ℝ𝑚×𝑛 are defined as 

 𝐶𝑖𝑗 = −1,     𝐶𝑖𝑘 = 1     (𝑖 = 1,… ,𝑚) (2) 

Using C and the force density vector 𝐪 ∈ ℝ𝑚, the force density matrix 𝐐 ∈ ℝ𝑚×𝑚 can be defined as 

 𝐐 = 𝐂𝑇diag(𝐪)𝐂 (3) 

The same matrix Q is used for obtaining the components of the nodal coordinates in x-, y-, and z- 

directions for specified force densities, because the ratios of axial force to length are all the same. The 

components are decomposed and re-ordered such that the components of free coordinates precede those 

of fixed nodes to re-assemble 𝐐̃ ∈ ℝ3𝑚×3𝑚 as 

 𝐐̃ =

[
 
 
 
 
 
 
 
𝐐free

𝑥 𝟎 𝟎

𝟎 𝐐free
𝑦

𝟎

𝟎 𝟎 𝐐free
𝑧

𝐐link
𝑥 𝟎 𝟎

𝟎 𝐐link
𝑦

𝟎

𝟎 𝟎 𝐐link
𝑧

𝐐link
𝑥𝑇 𝟎 𝟎

𝟎 𝐐link
𝑦𝑇

𝟎

𝟎 𝟎 𝐐link
𝑧𝑇

𝐐fix
𝑥 𝟎 𝟎

𝟎 𝐐fix
𝑦

𝟎

𝟎 𝟎 𝐐𝒇𝒊𝒙
𝑧

]
 
 
 
 
 
 
 

 

 = [
𝐐̃free 𝐐̃link

𝐐̃𝑙ink
𝑇 𝐐̃fix

] (4) 

where not only nodal coordinates at supported nodes but also those at loaded nodes are treated as fixed, 

since loaded nodes cannot move in geometry optimization of truss. Let 𝑛free  and 𝑛fix  denote the 

numbers of free and fixed coordinates, then the matrices (𝐐free
𝑥 , 𝐐free

𝑦
, 𝐐free

𝑧 ), (𝐐link
𝑥 , 𝐐link

𝑦
, 𝐐link

𝑧 ), 

(𝐐fix
𝑥 , 𝐐fix

𝑦
, 𝐐fix

𝑧 )  are combined to 𝐐̃free ∈ ℝ𝑛free×𝑛free , 𝐐̃link ∈ ℝ𝑛free×𝑛fix , 𝐐̃fix ∈ ℝ𝑛fix×𝑛fix , 

respectively.  
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If the force densities of all members and fixed nodal coordinates 𝐗fix ∈ ℝ𝑛fix are specified, then the free 

nodal coordinates 𝐗free ∈ ℝ𝑛free are obtained from the following system of linear equations: 

 𝐐̃free𝐗free = −𝐐̃link𝐗fix (5) 

Therefore, 𝐗free is a function of 𝒒. 

3. Optimization problem 

3.1. Objective and constraint functions 

Consider a problem for minimizing compliance under constraint on total structural volume.  

The square of length 𝐿𝑖 for member i that connects nodes j and k is given as 

 𝐿𝑖
2 = (𝐗k − 𝐗j)

𝑇
(𝐗k − 𝐗j) (6) 

where 𝐗j ∈ ℝ3 and 𝐗k ∈ ℝ3 are the position vectors of nodes j and k, respectively. 

It is known that the optimal solution to this problem is a statically determinate truss, and all the members 

have the same absolute value of stress σ̅ (Hemp [10], Achtziger [4]). Hence, cross-sectional area of 

member i is expressed as 

 𝐴𝑖 =
|𝑁𝑖|

𝜎̅
 

        =
|𝑞𝑖|𝐿𝑖

𝜎̅
 (7) 

Accordingly, total structural volume is expressed as 

 V = ∑
|𝑞𝑖|𝐿𝑖

2

𝜎̅

𝑚
𝑖=1  (8) 

Strain energy 𝑆𝑖 of member i is written using (8) as 

 𝑆𝑖 =
𝐴𝑖𝐿𝑖𝜎̅

2

2𝐸
 

      =
𝜎̅|𝑞𝑖|𝐿𝑖

2

2𝐸
 (9) 

Therefore, the compliance F is obtained as 

 𝐹 = 2∑ 𝑆𝑖
𝑚
𝑖=1  

        = ∑
𝜎̅|𝑞𝑖|𝐿𝑖

2

𝐸

𝑚
𝑖=1  (10) 

3.2. Optimization problem 

Equation (8) implies that 𝜎̅ is a scaling parameter for 𝐴𝑖 of a statically determinate truss, for which 𝑁𝑖 

is independent of 𝐴𝑖. From (9) and (11), the product of V and F is computed as 

 𝑉𝐹 = ∑
𝑞𝑖

2𝐿𝑖
4

𝐸

𝑚
𝑖=1  

       =  ∑
𝑁𝑖

2𝐿𝑖
2

𝐸

𝑚
𝑖=1  (11) 
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This means that 𝑉𝐹 is independent of 𝜎̅. Hence, the total structural volume can be calculated after 

minimizing the compliance with arbitrtary positive value 𝜎̅.  

Define 𝐑 ∈ ℝ𝑛fix as the vector of reaction forces corresponding to 𝐗fix, which is obtained from 

 𝐑 = 𝐐̃𝑙ink
𝑇 𝐗free + 𝐐̃fix𝐗fix (12) 

As mentioned above, the locations of loaded nodes are fixed during the optimization. We treat loaded 

nodes as pin-supported and their reaction forces are prescribed in the optimization problem such that 

they are equalalent to the loading condition. Thus, the optimization problem can be formulated as 

minimize   𝐹(𝒒) = ∑
𝜎̅|𝑞𝑖|𝐿𝑖

2

𝐸

𝑚

𝑖=1

              

 subject to  𝑅𝑖(𝒒) = 𝑅̅𝑖  (𝑖 ∈ ℛ)                         

            𝑞𝑖
𝐿 ≤ 𝑞𝑖 ≤ 𝑞𝑖

𝑈  (𝑖 ∈ 1,… ,𝑚) (13) 

where ℛ is a set of indices of reaction forces to be specified, and 𝑞𝑖
𝐿 and 𝑞𝑖

𝑈 are the lower and upper 

bound for 𝑞𝑖, respectively. Note that the design variables of this problem is the force densities only. 

3.3. Improvement of convergence 

We use sequential quadratic programming (SQP) that is categolized as a gradient-based nonlinear 

progaramming algorithm. Therefore, discontinuity in the function value and/or the sensitivity coefficient 

leads to serieious difficulty in convergence. So we use smoothing approximation for |𝑞𝑖| to avoid the 

nondifferentiability at 𝑞𝑖 = 0 as  

 |𝑞𝑖| = √𝑞𝑖
2 + 𝑐 (14) 

where c is a sufficiently small positive number. 

Furthermore, we combine the constraint functions for 𝑅𝑖 by using square norm as 

 ∑ (𝑅𝑖(𝒒) − 𝑅𝑖̅)
2

𝑖∈ℛ ≤ 0 (15) 

Note that we introduced an inequality expression in Eq. (15), because equality constraints are difficult 

to deal with in SQP.  Therefore, the optimization problem (13) is reformulated in the following form: 

minimize    𝐹̃(𝒒) = ∑
𝜎̅𝐿𝑖

2√𝑞𝑖
2 + 𝑐

𝐸

𝑚

𝑖=1

      

 subject to  ∑ (𝑅𝑖(𝒒) − 𝑅𝑖̅)
2

𝑖∈ℛ ≤ 0                    

            𝑞𝑖
𝐿 ≤ 𝑞𝑖 ≤ 𝑞𝑖

𝑈  (𝑖 ∈ 1,… ,m) (16) 

3.4. Sensitivity analysis 

To reduce the computation time for SQP, sensitivity coefficients of objective and constraint functions 

are necessary. Differentiation of (15) with respect to 𝑞𝑙 is expressed in the form: 

 
∂𝐹̃(𝐪)

∂𝑞𝑙
=

𝜎̅𝑞𝑙𝐿𝑖
2

𝐸√𝑞𝑙
2+𝑐

+ ∑ (
𝜎̅𝐿𝑖

2√𝑞𝑖
2+𝑐

𝐸
･

∂𝐿𝑖
2

∂𝑞𝑙
)𝑚

𝑘=1  (17) 
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From (6), sensitivity coefficient of 𝐿𝑖
2 with respect to 𝑞𝑙 is 

 
∂𝐿𝑖

2

∂𝑞𝑙
 = 2(𝐗k − 𝐗j)･ 

𝜕(𝐗k−𝐗j)

𝜕𝑞𝑙
 (18) 

Differentiation of (5) with regard to 𝑞𝑙 leads to 

 𝐐̃free 
∂𝐗free

∂𝑞𝑙
 + 

∂𝐐̃free

∂𝑞𝑙
 𝐗free = − 

∂𝐐̃link

∂𝑞𝑙
 𝐗fix (19) 

Eq. (18) can be rearranged to obtain 

 
∂𝐗free

∂𝑞𝑙
 = −𝐐̃free

−𝟏 (
∂𝐐̃free

∂𝑞𝑙
 𝐗free + 

∂𝐐̃link

∂𝑞𝑙
  𝐗fix) (20) 

Besides, sensitivity coefficient of (𝑅𝑖 − 𝑅𝑖̅)
2 with respect to 𝑞𝑙 is derived as 

 
∂(𝑅𝑖−𝑅𝑖̅̅ ̅)2

∂𝑞𝑙
 = 2(𝑅𝑖 − 𝑅𝑖̅)･ 

𝜕𝑅𝑖

𝜕𝑞𝑙
 (21) 

Sensitivity coefficients of reaction forces with respect to 𝑞𝑙 are obtained by differentiating (7) as 

 
∂𝐑

∂𝑞𝑙
 = 

∂𝐐̃𝑙ink
𝑇

∂𝑞𝑙
 𝐗free + 𝐐̃𝑙ink

𝑇  
∂𝐗free

∂𝑞𝑙
 + 

∂𝐐̃fix

∂𝑞𝑙
 𝐗fix (22) 

Eq. (20) is incorporated into (18) and (22), which are further incorporated into (17) and (21), respectively, 

to successively obtain sensitivity coefficients of the objective and constraint functions with respect to 

force density. 

3.5. Improvement of optimal solution 

Since the optimal solution to Problem (16) may include overlapped nodes and members, and the nodal 

positions are obscure, we further optimize the cross-sectional areas and nodal coordinates for the 

solution. The re-optimization problem is formulated with fixed topology as  

minimize   𝐹(𝑿, 𝑨) = ∑
𝑁𝑖

2𝐿𝑖

𝐸𝐴𝑖

𝑚∗

𝑖=1

 

 subject to   ∑ 𝐴𝑖𝐿𝑖
𝑚∗

𝑖=1 ≤ 𝑉̅                      

                               𝑋𝑖
𝐿 ≤ 𝑋𝑖 ≤ 𝑋𝑖

𝑈  (𝑖 ∈ 1,… , nfree
∗ ) 

                           𝐴𝑖
𝐿 ≤ 𝐴𝑖 ≤ 𝐴𝑖

𝑈  (𝑖 ∈ 1,… ,𝑚∗) (23) 

where 𝑚∗ and nfree
∗  are the numbers of members and nodes after unifying the overlapped nodes and 

members. The lower bound 𝐴𝑖
𝐿  is a sufficiently small positive value, and the upper bound 𝐴𝑖

𝐿  is 

sufficiently large. The member with 𝐴𝑖 ≅ 𝐴𝑖
𝐿 is eliminated after optimization.To avoid drastic change 

of an optimal shape, 𝑋𝑖
𝐿 and 𝑋𝑖

𝑈 are close to the initial value of 𝑋𝑖 which is assigned based on the optimal 

solution of Problem (16). 

4. Numerical examples 

In this section, we present three examples to demonstrate accuracy, efficiency, and applicability of the 

proposed optimization method. We use the sequential quadratic programming algorithm SLSQP (Kraft 

[11]) in the optimization library NLopt (Johnson [12])  to solve NLP problems. Units are omitted in the 

following examples, since they are not important in this research. 
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Young’s modulus is 1.0 for comparison purpose to the results in Achtiger [4]. The values of c in (14) 

and 𝜎̅ are 1.0 × 10−6 and 1.0, respectively. The upper bound of total structural volume is 10.0, and 

accordingly, the compliance F is scaled to 𝐹∗ = 𝐹̃𝑉/10.0 after optimization. Let 𝒒̅ = (𝑞̅1, … , 𝑞̅𝑚)𝑇 

denote the set of force densities of the initial ground structure with uniform cross-sectional areas 1.0. 

The lower and upper bounds are set as 𝑞𝑖
𝐿 = 𝑞̅𝑖 − 1.0 × 103 and 𝑞𝑖

𝑈 = 𝑞̅𝑖 + 1.0 × 103, respectively. 

The initial values of force density for optimization are randomly provided within the range [𝑞̅𝑖 −
10.0, 𝑞̅𝑖 + 10.0]. We choose the best solution after obtaining 100 solutions for 100 different random 

seeds.  

4.1. 𝟑 × 𝟐 planar truss 

The initial ground structure is a 3 × 2  rectangular grid with 27 members and 12 nodes including 

supports as shown in Figure 1. Nodes 1, 2, and 3 are pin-supported and node 11 is subject to downward 

unit load. The maximum, median, minimum, average values, and standard deviation of 𝐹∗ for 100 trials 

are listed in Table 1. Diverse nearly optimal solutions have been found through 100 trials. 

 

 

Figure 1: Initial ground structure of a 3 × 2 plane grid. 

 

Table 1: Statistical results of values of 𝐹∗ for 100 solutions 

 3 × 2 planar truss half-cone truss 5 × 5 spatial grid 

max 37.659 150.491 10184.763 

median 10.063 56.105 2064.496 

min 8.404 43.419 1254.787 

average 13.133 59.532 2401.357 

std.dev. 6.425 14.193 1230.000 

 

  

Figure 2: The best optimal solution (𝐹∗ = 8.404). 
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The best obtained solution to Problem (13) is shown in Figure 2. Red members are compressive and 

blue are tensile. The objective value 𝐹∗ = 8.404 is almost equal to 𝐹∗ = 8.307 obtained by Achtiger [4]. 

Although sets of nodes {5, 8, 12}, {4, 7}, and {6,9} are coalescent, no numerical error was observed.  

In Figure 3, the histories of 𝐹∗ for our proposed method is described. Note that the number of function 

call is not the number of major iterations of SQP, which involves minor iteration for solving QP 

subproblem and line search. Since nodal locations and cross-sectional areas of the members are 

indirectly controled by force densities, and no bounds are given for them, 𝐹∗ widely fluctuates in the 

early stage of the optimization. However, this is irrelevant to the speed of satisfying optimality criteria; 

the number of objective function calls in this trial is 7515 until the optimizer stops. Actually, it takes 

2.69 seconds for each trial on average, in which we use a PC with Intel Core i5 processor. 

 

Figure 3: Iteration history of 𝐹∗ of a typical trial of optimization. 

 

Next, the solution in Figure 2 is post-processed solving Problem (23). The coalscent nodes are combined 

to one node, and node 10 and three thin members are removed before re-optimization. Hence, the model 

for the re-optimization has 6 nodes and 8 members. The optimal solution is shown in Figure 4, which is 

almost the same as the solution in Figure 2. The compliance 𝐹∗ is slightly reduced to 8.341. Therefore, 

influence of post-processing is trivial and the proposed method leads to a sufficiently converged solution. 

 

 

Figure 4: Solution of re-optimization for the result of Figure 2 (𝐹∗ = 8.341). 
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4.2. Half-cone truss 

Consider a 30-bar half-cone truss, which is constructed by projecting congruent 16 isosceles triangles 

to the side of a cone as shown in Figure 5. Nodes 1, 11, and 15 are pin-supported and nodes 12, 13, and 

14 are subjected to downward unit loads. As seen from Table 1, all the 100 solutions are converged.  

 

 

Figure 5: Initial ground structure of a half-cone truss. 

 

Figure 6: The best optimal solution (𝐹∗ = 43.419). 

 

The best optimal solution obtained from 100 different random seeds is shown in Figure 6. The optimal 

shape is almost symmetric and includes sets of coalescent nodes {1, 2, 3}, {5, 9}, {6, 10} and {7, 11}. 

It takes only 17.45 seconds for each optimization. 

4.3. 𝟓 × 𝟓 spatial grid 

The last example is a 5 × 5 grid structure with 110 members. The initial ground structure as shown in 

Figure 7 is generated from four vertices (0,0,0), (5,0,0), (0,5,0), (5,5,5) using a Grasshopper Lunchbox 

component, which is a designer-friendly geometry generation tool. The vertices are pin-supported and 

all the other points on the edges are subjected to downward unit loads. From the maximum value of 𝐹∗ 

for 100 trials in Table 1, it is confirmed that all the optimization results are converged. 
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Figure 7: Initial ground structure of a 5 × 5 grid truss. 

 

The best optimal solution is shown in Figure 8. Symmetry can be seen in the optimal shape. It takes 

1673.82 seconds for the iteration. 

 

Figure 8: The best optimal solution (𝐹∗ = 1254.787). 

5. Conclusion 

The difficulty in simultaneous optimization of geometry and topology due to melting nodes can be 

successfully avoided using force density as design variable, which allows to obtain a variety of solutions 

of geometry and topology. Moreover, absolute values of force density are smoothed and multiple 

constraint functions are integrated by using a sum of square norms in the formulation. Applicability and 

accuracy of the proposed method have been verified through numerical examples of both plane and 

Right-front 

elevation 

Isometric Plan 
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spatial trusses. Furthermore, the number of design variables can be reduced to the number of members. 

By combining this benefit and sensitivity analysis, computational cost has been drastically reduced. 
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