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Abstract 
A computationally efficient method is presented for approximate optimization of cutting pattern of 
membrane structures. The plane cutting sheet is generated by minimizing the error from the shape 
obtained by reducing the stress from the desired curved shape. The equilibrium shape is obtained 
solving a minimization problem of total strain energy. The external work done by the pressure is also 
incorporated for analysis of pneumatic membrane. An approximate method is also proposed for 
analysis of an Ethylene TetraFluoroEthylene (ETFE) film, where elasto-plastic behavior is modeled as 
a nonlinear elastic material under monotonic loading condition. Efficiency of the proposed method is 
demonstrated through examples of a frame-supported PolyVinyl Chloride (PVC) membrane structure 
and an air pressured square ETFE film. 
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1. Introduction 
In the process of designing a membrane structure, it is important to achieve a moderately uniform 
stress distribution to prevent fracture and slackening. Difficulty arises from the fact that the curved 
surface is generated by connecting plane sheets (Ohsaki and Fujiwara [1]). Although there are many 
methods for cutting pattern optimization, most of the methods should carry out finite element analysis 
many times (Ohsaki and Uetani [2], Bletzinger et al. [3]).  

For shape design of membrane structures, the material is usually supposed to have orthotropic or 
isotropic elastic behavior. Therefore, the equilibrium shape analysis for specified cutting pattern can 
be formulated as a forced displacement problem, which can be solved by minimization of the total 
strain energy. However, Ethylene TetraFluoroEthylene (ETFE) film has an elasto-plastic property; 
therefore, it is difficult to optimize the shape using a gradient-based optimization algorithm. 

In this study, we present a computationally efficient iterative method for approximate optimization of 
cutting pattern of membrane structures. The plane cutting sheet is generated by minimizing the error 
from the shape obtained by reducing the stress from the desired curved shape, which is discretized into 
triangular finite elements. The equilibrium shape corresponding to the specified cutting pattern is 
obtained by energy minimization. The external work done by the air pressure is also incorporated for 
analysis of pneumatic membrane structures. The proposed method is extended to design of ETFE film. 
Efficiency of the proposed method is demonstrated through examples of a frame-supported PolyVinyl 
Chloride (PVC) membrane structure and an air-pressured square ETFE film. 

2. Energy minimization for equilibrium shape analysis 
Consider a curved membrane structure discretized by triangular finite elements with constant stress in 

plane stress state. Let 3 3D   denote the constitutive matrix defining the isotropic or orthotropic 
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elastic material property of the membrane. In the following, stress is evaluated as the force per unit 

length of section. Relation between the strain vector 1 2( , , )T
k k k k  ε  and the stress vector 

1 2( , , )T
k k k k  σ  of the kth element is written as 

 k kσ Dε  (1) 

where the subscripts 1 and 2 in stress and strain components indicate the values in two principal 
directions. 

 

 

Figure 1:Local coordinates, node numbers, principal directions, and deformation  

of triangular element k. 

 

Let 2 3 3( , , )T
k k k ku u vu denote the relative displacements of nodes, as shown in Fig. 1, in local (x,y)-

coordinates of element k, and ( , )p px y  defines the principal directions. The strain-displacement 

relation is written using matrix 3 3C   as 

 k kε Cu  (2) 

The vecor consisting of the global ( , )X Y -coordinates of the nodes of cutting sheet is denoted by 
2nX  , where n is the number of nodes. The process of finding the equilibrium shape is regarded as 

a forced displacement problem of the sheet to the specified boundary of the curved surface. Therefore, 
the strain energy ( )S X  of the membrane is regarded as a function of X  as 

 
1

1
( ) ( ) ( )

2

m
T

k k k
k

S A


 X ε X Dε X  (3) 

where m is the number of elements, and ( )kA X  is the area of the kth element. The equilibrium shape 

is obtained by minimizing ( )S X  under an appropriate boundary conditions. 

If air pressure p is given, the pressure potential energy ( )W X  is given as (Bouzidi and Le van [4], 
Fischer [5]) 

 ( ) ( )W pVX X  (4) 

where ( )V X  is the volume of membrane structure. Using the divergence theorem, Bouzidi and Le van 

[4] derived the following expression *( )W X  for a membrane discretized by triangular finite elements: 
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 X n X X X  (5) 

where 3( )k n X   and 0 3( )k X X   are the unit normal vector and coordinate vector of the center of 
gravity of the kth element. However, the term 1/3 in the right-hand-side of Eq. (5) is not necessary, 
because we should consider shape variation only in the normal direction of surface. Actually they did 
not use 1/3 in the numerical examples.  

Let 3
i X   denote the coordinate vector of node i. Variation of ( )W X  is directly computed as 
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 (6) 

where kI  is the set of nodes of element k, and 

 0 1

3
k

k i
i I

 X X  (7) 

has been used. The equilibrium shape is obtained by minimizing the total potential energy ( ) X  
defined as 

 ( ) ( ) ( )S W  X X X  (8) 

Differentiation of ( ) X  with respect to iX  leads to  
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By contrast, the equilibrium equation is given as 
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Therefore, the third term, denoted by e , in the right-hand-side of Eq. (9) remains as an additional term, 
which is rewritten as 
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where iK  is the set of elements connected to node i. Although details are omitted, the absolute values 
of components of e  are sufficiently small, if the surface is discretized into sufficiently many elements.  

3. Approximate optimization of cutting pattern 
We propose a simple update rule of the stress parameters called reduction stress for approximate 
cutting pattern optimization. The method is based on the inverse process of generating a plane sheet 
from a curved surface by reducing the stress (Ohsaki and Fujiwara [1]). The algorithm is illustrated in 
Fig. 2, and summarized as follows: 

 

Target stress Stress at equilibrium

Ideal target stress

Equilibrium shape
analysis

Update Convergence

 

Figure 2: Scheme of approximate cutting pattern optimization. 

 

Step 1: Assign the target equilibrium shape, boundary condition, target stress, and generate triangular 
meshes on the target surface. Compute the edge lengths 1kL , 2kL , and 3kL  of the kth triangle of 

the target equilibrium shape. Specify the ideal target stresses *
1k , *

2k , and * ( 0)k  , and 
initialize the step counter 0s  . 

Step 2: Specify the reduction stresses 1ˆ s
k , 2ˆ s

k , and ˆ ( 0)s
k   in principal directions. Remove the 

stress from the triangular elements on the equilibrium shape, and compute the unstressed edge 

lengths 0
1kL , 0

2kL , and 0
3kL . 

Step 3: Assign a plane P near the target surface, and project the triangular mesh on P to generate the 

initial mesh of the cutting panel. Let 1( )P
kL X , 2 ( )P

kL X , and 3( )P
kL X  denote the edge lengths of 

the triangular elements on P, which are functions of the vector X  of nodal coordinates of the 
triangular mesh of P. Solve the following problem to minimize the error in the edge lengths: 

    Minimize 
3

0 2

1 1

( ) ( ( ) )
m

P
ki ki

k i

F L L
 

 X X  

where   is a weight parameter. In the following examples, 01 / kiL   to prevent reversal of 
short edge. 
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Step 4: Carry out equilibrium shape analysis by minimizing the total strain energy or the total potential 

energy to find the nodal coordinates on surface and the stresses 1
s
k , 2

s
k , and s

k . 

Step 5: Let 1s s  , and modify the reduction stresses 1ˆ s
k  and 2ˆ s

k  as 

 1 *
1 1 1 1ˆ ˆ ( )s s s

k k k kc       ,   1 *
2 2 2 2ˆ ˆ ( )s s s

k k k kc       ,   1ˆ ( 0)s
k
   (11) 

Also update the target surface by the equilibrium surface obtained in Step 4. 

Step 6: Go to Step 2, if termination condition is not satisfied. 

4. Analysis of ETFE film 
ETFE film is usually modeled as elasto-plastic material with von Mises yield criterion (Coelho et al. 
[6], Yoshino and Kato [7]). The relation between stress and strain in uniform tension is often modeled 
as bilinear relation, which is identified by experiments as shown in Fig. 3, where Y  and Y  are the 

yield stress and strain. If the target stress *  is larger than Y , almost uniform stress distribution can 
be expected, because the stiffness after yielding is smaller than the initial elastic stiffness. 

 

*σ
Yσ

Yε ε

σ

 

Figure 3:  Relation between stress and strain of ETFE sheet under uniform tension. 

 

We consider a monotonic loading process increasing the pressure to reach the equilibrium shape. 
Although the stiffness after yielding depends on the stress ratio between 1k  and 2k , we assume the 

ideal state satisfying 1 2k k   for which the relation between the equivalent stress and equivalent 
strain is obtained by experiment. Since we consider a monotonic loading process, the equilibrium 
shape of an air-pressured ETFE film can be obtained by minimizing ( ) ( ) ( )S W  X X X  with 

    
1

1
( )

2

m TYT Y Y Y
k k k k k k k

k

S A


      X ε σ ε ε σ σ  (12) 

5. Numerical examples 
The proposed algorithm of approximate cutting pattern optimization is applied to a frame-supported 
PVC membrane and an air pressured ETFE film. The optimization problems are solved using 
sequential quadratic programming implemented in SNOPT Ver. 7 (Gill et al. [8]). 
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5.1. Frame supported PVC membrane 

Consider an HP-type frame-supported membrane (Model 1) as shown in Fig. 4. The proportion of the 
model is 1 1.0W W , 2 1.3W W , and 0.2H W . The material property is assumed to be orthotropic 
elastic. Young’s modulus in warp and fill directions are 2.43×102 kN/m and 2.27×102 kN/m, 
respectively. The shear modulus is 24.2 kN/m, and Poisson’s ratios are 0.51 and 0.55. The membrane 
is divided into two cutting sheets as shown in Fig. 5(a). The total numbers of nodes and elements are 
160 and 240, respectively. 
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Figure 4:  An HP-type frame supported membrane structure (Model 1). 

 

                  

(a)                                                        (b) 

Figure 5:  Cutting sheets of Model 1: (a) triangular mesh, (b) triangular mesh projected to XY-plane 
before optimization (blue) and cutting sheet after optimization (red). 

 

The target stress is 3.0 kN/m in both warp and weft directions. The history of average, maximum, 
minimum values and standard deviation of stress is listed in Table 1, where 1 and 2 denote the 
directions of warp and weft, respectively. As seen from the table, the minimum value increases from a 
negative value to a positive value. The average value gradually converges to the target value. If we 
stop at the 20th step, the cutting pattern is as shown in Fig. 5(b). Note that the cutting pattern is close 
to the triangular plan of the half part of surface, which means that the area of cutting sheet is smaller 
than the surface area. The stress distribution at the eighth step is shown in Fig. 6. As seen from the 
figure, the stresses in warp and weft directions are almost uniform except in the area near corners.  
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Table 1:  History of average, maximum, minimum values and standard deviation 

of stress (kN/m) of Model 1. 

 Step 0 Step 5 Step 10 Step 15 Step 20 

Direction 1 2 1 2 1 2 1 2 1 2 

Average          

Max.          

Min.          

Std. Dev.          
 
 

               

(a)                                                    (b) 

Figure 6:  Stress distribution after 20 steps of optimization: (a) warp direction, (b) weft direction. 

 

5.6. Air pressured ETFE film 

Consider a square air-pressured ETFE sheet as shown in Fig. 7, where the ratio of H to W is 0.058. 
The elastic material property is isotropic. Young’s modulus is 1.60×102 kN/m, hardening coefficient 
is 10.4 kN/m, elastic shear modulus is 55.2 kN/m, shear modulus after yielding is 3.60, Poisson’s ratio 
is 0.45, and the stress and strain at yielding is 3.2 kN/m and 0.02, respectively. The specified air 
pressure is 1.0 kN/m2, and the target stress is 4.0 kN/m. In this case, the radius of curvature is 
2×4.0/1.0 = 8.0 m, if the surface is spherical. 

 

X

X

ZY

Y

W

A

B C

D

H

W

H

 

Figure 7:  Air-supported ETFE sheet (Model 2). 
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Table 2: History of average, maximum, minimum values and standard deviation of stress of Model 2. 

 Step 0 Step 2 Step 4 Step 7 Step 10 

Direction 1 2 1 2 1 2 1 2 1 2 

Average 4.435 4.437 4.108 4.108 4.016 4.017 4.036 4.037 4.072 4.073 

Max. 5.100 5.076 4.266 4.283 4.154 4.179 4.503 4.402 4.313 4.449 

Min. 2.311 2.360 3.168 3.632 3.721 3.694 3.499 3.316 3.712 3.719 

Std. Dev. 0.379 0.362 0.094 0.091 0.085 0.088 0.156 0.160 0.091 0.097 

 
The history of average, maximum, minimum values and standard deviation of stress is listed in Table 
2, where 1 and 2 denote the directions in X- and Y-directions on the global coordinates of the cutting 
sheet. As seen from the table, ETFE has a better accuracy than PVC, because the stiffness at the target 
stress of ETFE is smaller than that of PVC. The cutting pattern and stress distribution after 10 steps 
are shown in Figs. 8(a) and (b), respectively. It is seen from these results that the cutting pattern is 
quite different from the triangular shape, because the curvature of the surface is very large. 
 

            

(a)                                                    (b) 

Figure 8:  Cutting sheets and stress distribution of Model 2: (a) triangular mesh, (b) triangular mesh 
projected to XY-plane before optimization (blue) and cutting sheet after optimization (red). 

 

6. Conclusions 
An approximate method has been presented for cutting pattern optimization of membrane structures. 
The conclusions obtained from this study are summarized as follows: 

1. Approximate plane cutting pattern for the curved surface with specified target stress can be 
obtained by removing the stress of each triangular element and minimizing the error of edge 
length for connecting the triangular elements on a plane. 

2. By adjusting the stress parameter called reduction stress, approximate optimal cutting pattern can 
be obtained after several iterations of cutting pattern generation and equilibrium shape analysis, 
which is formulated as an optimization problem of minimizing the strain energy under forced 
displacements at the boundary. 
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3. The equilibrium shape of a pneumatic membrane structure can also obtained by minimizing the 
total potential energy including the work done by the air pressure. 

4. The material property of an ETFE sheet can be modeled as bilinear nonlinear elastic in the 
process of monotonically increasing the pressure to form the equilibrium shape. 
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