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Abstract 

A grid shell is designed by bending beams connected by hinge joints. This paper presents an approach 

to designing grid shell structures made of steel or wood, considering them as an assembly of discretized 

piecewise linear curves, which are called ‘discrete elastica’. Elastica is defined as the shape of buckled 

beam-column with large deflection. Therefore, a grid shell consisting of elastica curves can reduce the 

interaction forces between the curved beams at joints. Shape parameters such as span, height at the 

support, and height at an internal joint are assigned for the piecewise linear curve. The linear segments 

are connected with springs at nodes. External moments are also applied to generate various shapes of 

discrete elastica. We address the problem of designing discrete elastica by minimizing the strain energy 

function defined with equivalence to the strain energy of a continuous beam. It is shown that the 

Lagrange multipliers correspond to the reaction forces at supports. In the numerical examples, a 

gridshell surface with discrete elastica is generated using the proposed method. Large deformation 

analysis is carried out for verification of the shape generated using discrete elastica. 
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1. Introduction 

Grid shell structure (Ohsaki et al. [1], Matsuo et al. [2], Adriaenssens et al. [3]) is one of the most 

efficient roof structures in view of construction period of time and cost. Shapes of gridshells are 

generated by straight beams mutually connected by hinge joints. Then forced deformation and external 

moments are given at the boundary to obtain a curved surface. 

A curved surface with uniform grid size is generated by using various existing methods such as compass 

method and particle-spring method (Tayeb et al. [4], Douthe et al. [5], Bouhaya et al. [6]). However, it 

is very difficult to generate self-equilibrium shape of a curved surface from plane grid. Furthermore, the 

interaction forces at joints are too large, if the shape is not appropriate. Hence, the method for reducing 

the interaction forces between beams have been presented (Ohsaki et al. [1], Matsuo et al. [2]). They 

defined the target shape of a curved beam as elastic, which is the shape of a buckled beam-column with 

large deflection. However, to obtain the target shape, we need to calculate a differential equation with 

respect to the arc-length parameter. 

In this study, we present a method for designing shapes of grid shell structures using discrete elastica 

model (Bruckstein et al. [7], Charamel et al. [8]), which has been studied in the field of computer science. 

This model enables us to generate easily the target shape of curved beams that are in self-equilibrium 
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state. In addition, we show that a curved surface in three-dimensional space can be generated by 

connecting several discrete elasticas.. 

2. Shape design of discrete elastica model  

Elastica is defined as a shape of buckled beam-column under point loads at both ends. The deflected 

equilibrium shape of elastica is obtained by solving a differential equation with respect to the arc-length 

parameter (Watson and Wang [9]). Since an explicit solution is not possible, the shape of elastica can 

be obtained using a forward difference approach. 

The shape can alternatively be obtained by minimizing an energy function. The bending stiffness of 

continuous beam, curvatures, and arc-length parameter are denoted by 𝐸𝐼, 𝜅, and 𝑠, respectively. A 

parameter 𝛽 is given to penalize axial deformation. Then, the penalized strain energy function is defined 

as ∫(𝐸𝐼𝜅2/2 + 𝛽) 𝑑𝑠, which is to be minimized under appropriate boundary and loading conditions. 

However, it is very difficult to obtain a complex shape composed of multiple curves elastically 

supported at the ends and connections of curves. 

Meanwhile, discrete elastica model is defined as discretized piecewise linear curve with segments that 

have the same length  𝑙 as shown in Figure 1. The model has 𝑁 + 1 nodes denoted by 𝑃𝑖  (𝑖 = 0, … , 𝑁 +

1). The deflection angle of a segment connecting nodes 𝑖 and 𝑖 + 1 from 𝑥-axis, and the angle between 

the segments 𝑖 − 1 and 𝑖 are denoted by Ψ𝑖  and 𝜃𝑖 (= Ψ𝑖−1 − Ψ𝑖), respectively. By solving an energy 

minimization problem, we obtain a self-equilibrium shape of discrete elastica model. 

Figure 1: Piecewise linear planar curve with equal-length segments. The total number of segments is 

N+1 in accordance with Ref. [7]. 

 

We assign rotational springs at all nodes and both ends. The springs represent bending stiffness of 

members and supporting columns. The external moments are given at both ends to generate various 

shapes. The objective function is the total potential energy consisting of the discretized form of 

penalized strain energy ∫(𝐸𝐼𝜅2/2 + 𝛽) 𝑑𝑠  and the external work corresponding to the external 

moments 𝑀0 and 𝑀𝑁+1. 

The stiffness of each rotational spring is derived from the equivalence of the strain energy between the 

discrete elastica and the continuous beam. Deformation of the continuous beam, which has stiffness 𝐸𝐼 

and a constant curvature 𝜅 , is equivalent to the deformation of discrete elastica model under the 

condition that the relation between 𝜃 and 𝜅 is given as 𝜅 = 𝜃 𝑙⁄  assuming uniform curvature. Hence, the 

strain energy 𝑆 is defined as 

𝑆 =
1

2
𝐸𝐼𝜅2𝑙 =

1

2
𝐸𝐼 (

𝜃

𝑙
)

2

𝑙 =
𝐸𝐼

2𝑙
𝜃2 . 

Thus, the stiffness of rotational springs is 𝐸𝐼 𝑙⁄ . 
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We assign constraints on the span 𝐿 and the height difference 𝐻 between the left support 𝑃0 and the 

right support 𝑃𝑁+1 . The design variables are 𝚿 (= Ψ0, … , Ψ𝑁)  and 𝑙 . The number of nodes and 

segments are 𝑁 + 2  and 𝑁 + 1 , respectively. The optimization problem, which is an energy 

minimization problem, is formulated as 

min.
𝚿, 𝑙

 Π(𝚿, l) = [∑ (
𝐸𝐼

2
(

Ψ𝑖 − Ψ𝑖−1

𝑙
)

2

+ 1)

𝑁

𝑖=1

] 𝑙 − 𝑀0Ψ0 − 𝑀𝑁+1Ψ𝑁 (1) 

subject to ∑ 𝑙 cos Ψ𝑖

𝑁

𝑖=0

= 𝐿 (2) 

 ∑ 𝑙 sin Ψ𝑖

𝑁

𝑖=0

= 𝐻 . (3) 

Let 𝜆1 and 𝜆2 denote the Lagrange multipliers for constraints (2) and (3), respectively. The Lagrangian 

is formulated as 

ℒ(𝚿, 𝑙, 𝜆1, 𝜆2) = Π + 𝜆1 (∑ 𝑙 cos Ψ𝑖

𝑁

𝑖=0

− 𝐿) + 𝜆2 (∑ 𝑙 sin Ψ𝑖

𝑁

𝑖=0

− 𝐻) . 

Taking derivatives with respect to 𝑁 + 4 variables, we have the following stationary conditions. 

 

𝐸𝐼(−Ψ𝑖−1 + 2Ψ𝑖 − Ψ𝑖+1)

𝑙2
− 𝜆1

𝑖 sin Ψ𝑖 + 𝜆2
𝑖 cos Ψ𝑖 = 0,  

                                                    (𝑖 = 1, … , 𝑁 − 1) 

(4) 

 
1

𝑙
[
𝐸𝐼(Ψ1 − Ψ0)

𝑙
− 𝑀0] − 𝜆1

0 sin Ψ0 + 𝜆2
0 cos Ψ0 = 0 (5) 

 
1

𝑙
[
𝐸𝐼(Ψ𝑁 − Ψ𝑁−1)

𝑙
− 𝑀𝑁+1] − 𝜆1

𝑁 sin Ψ𝑁 + 𝜆2
𝑁 cos Ψ𝑁 = 0 (6) 

 − ∑ 𝐸𝐼 (
Ψ𝑖 − Ψ𝑖−1

𝑙
)

2𝑁

𝑖=0

+ 𝑁 + 𝜆1 ∑ cos Ψ𝑖

𝑁

𝑖=0

+ 𝜆2 ∑ sin Ψ𝑖

𝑁

𝑖=0

= 0 . (7) 

Although the details are omitted, the Lagrange multipliers 𝜆1  and 𝜆2  represent the support reaction 

forces in the horizontal and vertical directions, respectively, and Eqs. (4), (5), and (6) are the equilibrium 

equations at nodes. The larger 𝛽 becomes, the shorter the length of the segments becomes. Thus, in the 

following examples, we set 𝛽 = 1 for simplicity. 

3. Comparison between discrete and continuous elastica models. 

In this section, we compare the shapes obtained by discrete and continuous elastica models. We use 

sequential quadratic programming available in the library SNOPT Ver.7 (Gill et al. [10]) for energy 

minimization of the discrete elastica, and we approximate the sensitivity coefficients by finite difference 

approach. 

Abaqus Ver. 6.16 (Dassault Systèmes [11]) is used for large deformation analysis of continuous beams. 

Forced displacements and external moments are given at both ends of a straight beam on a plane. Length 

of the beam is equal to the total length of the discrete elastica obtained by optimization. The beam has 

pin support at the left end, and a forced displacement is given at the right end assuming the translational 

displacements are constrained by a rigid column. In addition, the external moments, whose values are 

equal to ones that are applied to the boundaries of discrete elastica model, are given at the both supports. 



Proceedings of the IASS Annual Symposium 2017 

Interfaces: architecture.engineering.science 
 

 

4 
 

The material of beam is elastic with Young’s modulus 210.0 GPa and Poisson’s ratio 0.3. The beam is 

composed of a plate with width 0.10 m and thickness 0.02 m. 

The loading (path) parameter 𝑡 is increased from 0.0 to 2.0. Upward virtual load equivalent to self-

weight is applied to all members from t = 0.0 to 1.0. In the period 1.0 ≤ 𝑡 ≤ 2.0, the virtual load is 

linearly removed, while the forced displacements and external moments are linearly increased at both 

ends of the beam. As shown in Fig. 2, continuous elastica model deforms. 

Figure 2: Continuous elastica model 

 

Figures 3(a) and (b) show the results of large deformation analysis with the parameter values in Table 

1. The beam is discretized into 20 segments. Shapes of continuous beam and discrete elastica model are 

expressed, respectively, in solid and dashed lines. The total lengths of models 1 and 2 are 12.281 m and 

10.943 m, respectively. It is seen from Figs. 3(a) and (b) that the shapes of beam and discrete elastica 

model are very close. 

 

Table 1: Parameters of Models 1 and 2 

 Model 1 Model 2 

M0 [Nm] 3000 3000 

MN+1 [Nm] 3000 3000 

L [m] 10 10 

H [m] 0 4 

EI [Nm2] 14000 14000 

 

                                   (a) Model 1                                                              (b) Model 2 

Figure 3: Shapes of Models 1 and 2; dashed line: discrete elastica with 20 segments. 
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4. Shape design by connecting multiple curves of discrete elastica 

We generate shapes of multiple curves of discrete elastica, which are sequentially connected in the same 

plane. For simplicity, we connect two curves, which has 2𝑁 + 3 nodes denoted by 𝑃𝑖(= 𝑃0, … , 𝑃2(𝑁+1)). 

The first curve consists of nodes from 𝑃0 to 𝑃𝑁+1, and the second curve from 𝑃𝑁+1 to 𝑃2(𝑁+1). 

We assign rotational spring at the internal boundary, node 𝑃𝑁+1, between the two curves, and define 

both ends as pin-joint. The rotational spring has very small stiffness 𝛼′(= 0.001). We specify span 

length 𝐿 for both curves, and heights 𝐻1 and 𝐻2 at the internal boundary and the right support. The 

optimization problem to find the shape of consisting of two discrete elasticas is formulated as 

𝑚𝑖𝑛.
𝚿, 𝑙

 

Π(𝚿, l) = [ ∑ (
𝐸𝐼

2
(

Ψ𝑖 − Ψ𝑖−1

𝑙
)

2

+ 1)

2𝑁+1

𝑖=1

− (
𝐸𝐼

2
− 𝛼′) (

Ψ𝑁+1 − Ψ𝑁

𝑙
)

2

] 𝑙 − 𝑀0Ψ0

− 𝑀2(𝑁+1)Ψ2𝑁+1 

(8) 

subject to ∑ 𝑙 cos Ψ𝑖

𝑁

𝑖=0

= 𝐿 (9) 

 ∑ 𝑙 sin Ψ𝑖

𝑁

𝑖=0

= 𝐻1 (10) 

 

∑ 𝑙 cos Ψ𝑖

2𝑁+1

𝑖=𝑁+1

= 𝐿 (11) 

 

∑ 𝑙 sin Ψ𝑖

2𝑁+1

𝑖=𝑁+1

= −𝐻1 + 𝐻2 . (12) 

5. Comparison between connected discrete and continuous elasticas 

We solve the optimization problem with parameter values in Table 2 in order to design shapes of 

connected models, and compare the obtained shapes with continuous beams. The total lengths of models 

3 and 4 are 21.615 m and 22.074 m, respectively. 

The left end of the connected discrete elastica is pin supported, the right end is roller supported, and the 

internal joint is fixed in the horizontal direction. For large deformation analysis, the stiffness of the 

internal joint of two beams is equal to that of the discrete elastica models. The deformation of connected 

continuous elastica model is shown in Fig. 4. Figures 5(a) and (b) show the results of large deformation 

analysis. It is seen from these figures that the shapes of discrete and continuous elastica modes are very 

close. 

Figure 4: Connected continuous elastica model 
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Table 2: Parameters of models 3 and 4 

 Model 3 Model 4 

M0 [Nm] 3000 3000 

M2(N+1) [Nm] -3000 3000 

2L [m] 20 20 

H1 [m] 

H2 [m] 

0 

0 

2 

0 

EI[Nm2] 14000 14000 

 

(a) Model 3                                                   (b) Model 4 

Figure 5: Shapes of Models 3 and 4; dashed line: discrete elastica with 40 segments. 

6. Generating surfaces with discrete elastica model 

In this section, we generate a target surface of gridshell using discrete elastica. Furthermore, we compare 

the target shape with the shape of grid shell, which is generated by forced displacements and external 

moments to the continuous beams connected with lateral beams. 

Figure 6(a) shows the target surface generated by connecting six elasticas. The plan of surface is a 10 m 

×10 m square. The parameter values are listed in Table 3. Model (a) represents the curves along the 

exterior boundary, whose height difference is 2 m. Models (b) and (c) represent the curves along the 

diagonal lines, which intersect at the center. The both ends of (b) are on the ground and the both ends 

of (c) are connected to columns with the height 2 m. 

Figure 6(b) shows the target shape of gridshell, which is generated by assigning boundary conditions 

and external moments to the primary beams in Fig. 6(a). The primary beams have the width 0.120 m 

and thickness 0.020 m. Meanwhile, we assign slender secondary beams, which have the width 0.040 m 

and thickness 0.015 m, to reduce the interaction forces at nodes. 

Figures 6(c)-(f) show that the shapes of beams and discrete elasticas are very close. As the result of large 

deformation analysis, all member stresses are confirmed to be smaller than the yield stress 325 MPa. 

Table 4 shows reaction forces at supports. 
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Table 3: Parameters of model (a), (b) and (c) 

 Model (a) Model (b) Model (c) 

M0 [Nm] 1100.0 1335.5 286.0 

MN+1 [Nm] -1100.0 -1335.5 -286.0 

L [m] 10 10√2 10√2 

H [m] 2 0 0 

EI [Nm2] 16800 16800 16800 

                         (a) The target surface                          (b) Grid shell composed of continuous beams 

                                      (c) Model (a)                                              (d) Model (b) 

                                     (e) Model (c)                                                   (f) Plan 

Figure 6: The comparison between the target shape and grid shells composed of continuous beams. 

These beams have 20 segments. (f) shows the plans of discrete and continuous elasticas. Continuous 

elastica is three dimensional shape. Thus, it is deflected in x-y direction. 

 

Table 4: Reaction forces 

 Model (a) Model (b) Model (c) 

𝜆1 [N] 34.7 62.1 1.37 

𝜆2 [N] 6.9 0.0 0.0 

x 

y 

z 
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7. Conclusions 

1. Curved beams of gridshell can be modeled as discrete elastica, which is composed by rigid bars and 

rotational springs. The stiffness of each rotational spring is derived from the equivalence of the strain 

energy between the discrete and continuous elastica models. 

2. The shape of discrete elastica can be found by solving an optimization problem. The objective 

function is defined as the total potential energy consisting of discretized form of penalized strain 

energy and the external work corresponding to the external moments. Solving the problem under the 

constraints with the span length and the height of supports, we can generate various shapes of discrete 

elastica. Furthermore, the reaction forces needed for deformation can be found from the Lagrange 

multipliers. 

3. Target shape of a curved surface of gridshell can be obtained by connecting several discrete elasticas 

with thin secondary beams. It has been confirmed by large deformation analysis that the surface 

shape obtained by assigning forced displacements and external moments is close to the target shape 

defined using the discrete elasticas. Therefore, we can expect that the interaction forces at the 

connections are very small. 
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