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Abstract 

A method for evaluating the order of mechanisms of partially rigid frames is presented. The frames are 

defined as assemblies of rigid beams and springs at their ends. Nonlinear compatibility conditions of 

translations and rotations are derived at member ends with respect to the nodal displacements and 

generalized strains representing rotations around arbitrarily inclined directions. The degree of 

kinematic indeterminacy is computed using singular value decomposition of the linear compatibility 

matrix. The order of mechanism is determined by the existence condition of higher-order coefficients 

of nodal displacements and generalized coordinates. The detailed procedure of the analysis is shown 

through the numerical examples of a two-bar and a four-bar linkages. 

Keywords: mechanism, partially rigid joints, singular value decomposition, series expansion  

1. Introduction 

A mechanism that can have infinitesimal deformation without external load is called infinitesimal 

mechanism. By contrast, a mechanism is called finite mechanism if it can have large deformation 

without external load. Moreover, a mechanism has order, which is defined by the largest order of 

terms in power series expansion of displacements, in which strains vanish for all members (Salerno 

[1]). Generalized Maxwell’s rule and the method using singular value decomposition (Liu et al. [2]) 

have been presented; however, they can determine only whether the order of the mechanism is first or 

higher. 

Most of the previous studies considering the order of mechanisms focus on bar-joint systems 

consisting of bars connected by pin-joints. Additionally, their targets are mostly planar mechanisms. 

The stability of bar-joint systems is also studied in the field of prestressed structures (Ohsaki et al. [3], 

Zhang et al. [4]), structural rigidity (Connelly et al. [5]) and combinatorial rigidity (Katoh et al. [6]). 

For the estimation of high-order stability of structures near the singular point of equilibrium under 

static loads, Koiter’s asymptotic expansion method can be applied (Koiter [7], Thompson et al. [8]), 

and the method can also be used when singular points are overlapped (Ohsaki et al. [9]). 

Salerno [1] determined the order of mechanisms of planar bar-joint frameworks by the condition that 

the coefficients of strains of the bars with respect to the path parameter become zero, and he showed 

that the method can also be applied when the number of the unstable modes is greater than one.  

There exist some analytical approaches to evaluation of the order of 3-dimensional mechanisms of 

frames connected by revolute joints, for example, Bricard linkages, Goldberg linkages, etc. (Baker et 

al. [11]). Chen et al. [10] showed the existence of the bifurcation point on the deformation path of a 
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6R Bricard linkage. Numerical approach to order of 3-dimensional frames is difficult because of the 

non-commutativity of finite spatial rotations (Simo et al. [12], Hsiao et al. [13], Li [14]).   

Partially rigid frames (Ohsaki et al. [17]) have revolute, screw, and/or universal joints freely rotating 

around only one or two axes, in contrast to truss structures consisting of bars connected by pin-joints 

rotatable around three axes. For application to retractable roof structures and deployable structures in 

outer space, etc., frame mechanisms should have small number of unstable modes so that the 

deformation process can be easily controlled. 

In this study, we present a method for evaluating the order of deformation of partially rigid frame 

mechanisms consisting of rigid beam elements. Nonlinear compatibility conditions of translations and 

rotations are derived at member ends with respect to the nodal displacements and generalized 

strains.We show the detailed procedure through the numerical examples of a two-bar and a four-bar 

linkages (Guest et al. [18]). 

2. Compatibility equations of partially rigid frames 

2.1. Definition of rigid beam elements with generalized strains at member-ends 

We consider partially rigid frames consisting of rigid beams and springs at the ends of the beams 

which deform by generalized strains between nodes and member-ends. Let K and M  denotes the set 

of numbers of nodes and members. Nodes of two ends of the i th member are denoted as 
1 2,i ik k K . 

Unit vector 
1

it  is directed from node 
1ik  to 

2ik , and we define unit vectors 
2

it , 
3

it  to satisfy 
1 2 3

i i i t t t . 

Let 
3

k X be the initial coordinate of node k , 
iL  be the length of member i . The vectors from the 

middle point to both ends connected to nodes 
1ik  and 

2ik  of member i  are denoted by 
1iikr  and 

2iikr , 

respectively. 

The translation vector of node k  in the direction of global coordinates 
1 2 3( , , )x x x  is denoted by 

1 2 3 3( , , )T

k k k kU U U U . The rotation vector of node k  around axis 
kx  ( 1,2,3)k   is denoted by 

1 2 3 3( , , )T

k k k k    Θ . The translation vector 
1 2 3 3( , , )T

i i i iV V V V  of the middle point of 

member i  is defined similarly. 

Let 
i i iΦ n  denote a rotation vector of the middle point of member i  with a unit vector 

in .We 

define 
* ( 1,2,3)l

i l t  by rotating ( 1,2,3)l

i l t  around the axis 
in  by the angle 

i  as follows (Cheng et 

al. [15]): 

 
* ( ) [ ( )]cos ( )sinl l l l l

i i i i i i i i i i i i       t n n t t n n t t n    (1) 

We define 
1

*

iikr  and 
2

*

iikr  by rotating 
1iikr  and 

2iikr , respectively, in the same manner. 

Assuming that the middle point of member i  and nodes 
1ik  and 2ik  move independently, let 

3

1 2,i i  U U  and 3

1 2,i i  Θ Θ  denote the translational and rotational incompatibility at two 

member-ends, respectively, as follows: 

 
*( ) ( 1,2; )

ij ij ijij k i ik ik j i M      U U V r r    (2) 

 ( 1,2; )
ijij k i j i M    Θ Θ Φ     (3) 

The case for plane frame is illustrated in Fig. 1. 
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Let 
1 2,i i U U ,

3

1 2,i i  Θ Θ  denote components of 1 2,i i U U , 1 2,i i Θ Θ , respectively, in the 

local coordinate system after deformation as 

 * ( 1, ,3; 1,2; )l l

ij i ijU l j i M     t U     (4) 

 
* ( 1,2,3; 1,2; )l l

ij i ij l j i M     t Θ     (5) 

 

 

Figure 1: Translational and rotational incompatibility at two member-ends. 

2.2. Rotational hinge at member-end 

We add rotational degrees of freedom at member-ends, where inclined revolute joints are expected to 

exist (Tsuda et al. [19]). Between node ijk and the spring of j th end of member i , we define a 

rotation vector *

ij ij ijθ f  where ij  is the angle and * 1 1* 2 2* 3 3*

ij ij i ij i ij if f f  f t t t  is the unit directional 

vector of the axis of rotation. Now the rotational incompatibility, which is regarded as generalized 

strain, in the spring is formulated as follows: 

 ˆ
ij ij ij   Θ Θ θ      (6) 

 ˆ l l l

ij ij ij ijf         (7) 

When we have h  hinges, additional variables are represented by hθ , which consists of ij . 

We merge l

ijU  in (4) and l

ij  in (7) into mG , which we call generalized strain vector. Similarly 

we define displacement vector nW  as an assemblage of , , ,U Θ V Φ  and θ . Let 0m , 
0n  and h  

represent the numbers of members, nodes and constrained degrees of freedom, respectively. Then, the 

numbers of components of G  and W , denoted by m  and n , respectively, are determined as 

012m m  and 
0 06 6n n m h s    . 

 

3. Derivation of infinitesimal mechanism modes 

We parameterize W  in terms of a path parameter  . In the following, we use ( )  as the derivative 

with respect to   and adopt Einstein’s summation convention when an index is repeated in one term. 

If there exist any mechanisms of a frame, the generalized strain must remain zero along them; i.e., 

   ( ( )) G W 0      (8) 
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Differentiating (8) with respect to   and substituting 0  , we obtain  

   ΓW 0       (9) 

where m nΓ  is a constant matrix of which the ( , )s i  element is 
0s iG W

 
  . If any non-zero W  

satisfying (9) is found, we determine that the frame has at least first order (i.e. infinitesimal) 

mechanism. 

Γ  is rewritten, as follows, using singular value decomposition (SVD): 

 TΓ BΣH       (10) 

Defining rank( )r  Γ , p n r   and q m r  , we can express matrices Γ , H  and B  as 

 
 1 rdiag , , r p m n

q r q p

   

 

 
  
 

O
Σ

O O
    (11) 

  1, , n n

n

 H η η      (12) 

  1, , m m

m

 B β β      (13) 

where the singular values are ordered as
1 0r    , and H  and B  are orthogonal matrices 

consisting of singular vectors. 

Let im( )Γ  and ker( )Γ  be the column space and the null space (Meyer [16]) of Γ . Then we can show 

that 
1, , rβ β  are the bases of im( )Γ , 1, ,r r p η η  are the bases of ker( )Γ , 

1, , rη η  are the bases of 

the row space im( )T
Γ , and 1, ,r r q β β  are the bases of the left null space ker( )T

Γ . 

When W  is an infinitesimal mechanism, W  is written as the linear combination of the bases of 

ker( )Γ . Therefore, 1, ,r r p η η  represent the infinitesimal mechanism modes, and p  is the number 

of mechanism modes. Similarly, we can show that the self-equilibrium force vector F  is written as the 

linear combination of the bases 1, ,r r q β β  of ker( )T
Γ , where q  is the number of self-equilibrium 

modes. 

For simplicity, hereinafter we reorder the singular values and vectors conversely; i.e., we rename 

1, ,nη η  as 
1, , nη η , 

1, ,mβ β  as 
1, , mβ β  and 

1, , r   as 
1, ,r  . 

4. Mechanism including higher-order terms 

Assuming that a frame has a single infinitesimal mechanism mode, we investigate whether the 

mechanism has higher order terms or not. We define ( )W  as 

 
1 2 2 n n     W η η η      (14) 

where 
1η  is a mechanism mode and ( ) ( 2, , )j j n    are the coefficients of other basis vectors with 

respect to  . Pre-multiplying 1

T
η  to the both sides of (16), we have 1

T η W . Differentiating it with 

respect to  , we obtain 1 1T  η W  and 1 1 0T T   η W η W .  

Assuming the infinitesimal mechanism 
1

 W η  is obtained, we investigate the condition for existence 

of second order mechanism. Differentiating 0 ( 1, , )s

i

G
s m

W


 


 with respect to  , we obtain 
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0 ( 1, , )s s
i j i

i j i

G G
W W W s m

W W W

     
  

    (15) 

From (15), W  is determined as the solution of following linear equation. 

 (2) ΓW g       (16) 

 
2

(2) ( 1, , )s
s i j

i j

G
g W W s m

W W

    
 

    (17) 

where 
(2) mg  is a constant vector calculated from W . If there exists W  satisfying (16), the 

frame has an at least second order mechanism. Note that (16) has the solution W  if and only if 
(2) im( )g Γ ; i.e., 

(2)
g  is orthogonal to all bases of ker( )T

Γ . We summarize the conditions for 

existence of W  for the cases 0q   and 1q  , respectively, as follows: 

(a) 0q    In this case, ker( )T
Γ  has no basis and (20) always has the solution. 

(b) 1q    The bases of ker( )T
Γ  are self-equilibrium force modes 1, , qβ β ; thus W  exists 

when the following equations hold: 

 (2) 0 ( 1, , )T

i i q β g      (18) 

Note that we can regard 
(2)

g  as a high-order strain vector generated by W . Therefore, (18) 

indicates that the works done by the forces 1, , qβ β  against the strain 
(2)

g  vanish. 

When the conditions (a) or (b) are satisfied, we can obtain W  from (16). Therefore, each of (a) and 

(b) is the sufficient condition for existence of second order mechanism. The conditions of third and 

higher orders can be derived in the same manner.  

Finally, the deformation including higher order terms can be expressed as 

 2 31 1

2! 3!
       W W W W     (19) 

We can successively determine the terms up to arbitrary orders in (19), if the mechanism evaluated 

above is a finite mechanism. 

5. Numerical examples 

5.1. Example 1:  two-bar linkages 

We analyze two models A and B shown in Figure 2. In both models, two members having the same 

length are connected at node 2, all translational and rotational components except rotation around Y-

axis are constrained at node 1, and all translational components except X-directional displacement are 

constrained at node 3. Furthermore, both models have a hinge at the end of member 2 connected to 

node 2. The difference of two models is the direction of the hinge; the axis of the hinge of model A is 

parallel to Y-axis, while the axis of the hinge of model B is inclined 45 degrees from X-axis and Y-

axis. 

In both of the two models, 
0 2m  , 

0 3n  , 1h  , 7s  ,  24m  , 24n   and rank( ) 23r  Γ . Thus, 

they both have one infinitesimal mechanism mode and one self-equilibrium force mode, because 

1p q  . Evaluating the second order condition (18), we find that 
(2)

1 0.0000T β g  is satisfied for 
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model A, while 
(2)

1 0.0843 0T   β g  for model B. Consequently, we can determine that the 

mechanism of model A is at least second order and the mechanism of model B is first order 

(infinitesimal).  

 

Figure 2: Two-bar linkages. 

5.2. Example 2: four-bar linkage 

Next, we analyze a square model on XY-plane as shown in Figure 3, which has four members 

connected at four nodes. Each member has hinges at both ends, and the axes of the hinges are defined 

in the initial state in the global coordinate system as follows: 

  
11 44 12 21 22 31 32 41

0 01 2 1 2

0 , 1 2 , 0 , 1 2

1 2 1 2 1 2 1 2

       
       

               
       

        

f f f f f f f f  (20) 

The constraint condition of the nodes is shown in Figure 3, where 
0 4m  , 

0 4n  , 8h   and 14s  ; 

thus, the numbers of rows and columns of matrix Γ  are 48m   and 42n  , respectively. From the 

SVD of Γ , we obtain 41r  ; hence. 1p n r    and 7q m r    are determined. Therefore, the 

model has one infinitesimal mechanism mode and seven self-equilibrium force modes. 

We confirmed all of the seven equations (2) 0 ( 1, ,7)T

j j β g  of the second order condition (18) are 

satisfied to obtain non-zero solution of ''W . We can find that the equations of the third order 

condition (3) 0 ( 1, ,7)T

j j β g  are also satisfied, and we can obtain W  in the same manner. 

Vectors W , W  and W  are shown in Figure 4, where their scales are arbitrary. The mechanism 

W  determined by (19) considering up to third order terms are shown in Figure 5, where   is varied 

from 0 to 2 by increment 0.5  . 

 

Axis of rotational hinges

1 2 3

(1)

RX
RZ

(2)

1 2 3

(1) (2)

RX
RZ

model A model B

X

Y

Z

π/4

RX RY RZ

Translation

Rotation

X Y Z
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Figure 3: Four-bar linkage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: , ,  W W W  of Figure 3.  
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Figure 5: Third order mechanism of Figure 3. 

6. Conclusion 

We have presented a method for determining the order of mechanisms of partially rigid frames by 

defining them as assemblies of rigid beams and springs at their ends. The incompatiblility at the 

member ends is regarded as generalized strain. By successively differentiating the generalized strain 

with respect to the path parameter, the conditions for existence of higher order terms of the 

mechanisms are derived.  

The first numerical example has shown that the method presented here can make a distinction between 

two mechanisms of the frame with different hinge directions, which cannot be distinguished on 

infinitesimal deformation theory. We also have shown in the second numerical example that our 

method may be applied to frames with many members. 
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