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Abstract 

The linear programming approach to generating deployable structures is extend to allow a hinge 
rotating around an axis in arbitrary direction. Plastic limit analysis problem with quadratic yield 
function with respect to member-end moments is solved to generate hinges in arbitrary directions of a 
partially rigid frame. The directions of hinges are obtained from the member-end momemts along the 
local axes. Using the proposed method, three-dimensional mechanisms and deployable structures with 
small number of hinges are successfully obtained. The manufacturability of a deployable structure is 
confirmed by assembling a small-scale model. 
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1. Introduction 

A deployable structure usually consists of bars and actuators connected by pin joints (Akgün [1], 
Hoberman [5]). It is kinematically indeterminate and has a mechanism corresponding to the desired 
deformation without external load. However, three-dimensional mechanisms with ideal pin joints that 
can rotate in three directions, e.g., spherical joint as shown in Fig. 1(a), are likely to have large 
degrees of kinematic indeterminacy, and it is difficult to control such a mechanism in the deployment 
process. Therefore, a deployable structure is desirable to be composed of frames with revolute joints 
in one direction as shown in Fig. 1(b), or universal joints that can rotate in two directions as shown in 
Fig. 1(c), to ensure a small degree of kinematic indeterminacy. Fig. 2 shows an example of three-
dimensional frame with partially rigid connections; two members are rigidly connected at node A, and 
the remaining node and supports consist of revolute joints in various directions. 

The authors presented a design method of three-dimensional mechanisms of partially rigid frame 
based on plastic limit analysis that is formulated as a linear programming problem (Ohsaki et al. [4], 
Tsuda et al. [6,7]). However, in the previous studies, the hinges are restricted to rotate around 
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specified axes in the orthogonal directions of local coordinates. Therefore, many hinges are needed to 
generate the desired deformation. 

In this study, we extend our method to allow a hinge rotating around an axis in arbitrary direction. 
Limit analysis with quadratic yield function with respect to member-end moments is used to generate 
hinges. The directions of hinges are obtained from the ratios of member-end moments. Using the 
proposed method, three-dimensional mechanisms and deployable structures with small number of 
hinges are successfully obtained, and their manufacturability is confirmed by assembling small-scale 
models. 

                           

(a)                                       (b)                               (c) 

Figure 1:  Hinge connections; (a) spherical joint in three directions, (b) revolute joint in one direction, 
(c) universal joint in two directions. 

 

 

Figure 2:  A three-dimensional frame with a partially rigid connection. 
 

2. Definition of variables 

We consider deployable structures consisting of frame members. The local member coordinates are 
defined as shown in Fig. 3(a). The two nodes connected by member k  is denoted by 1 and 2. Axis 1 

is directed from node 1 to 2, and axes 2 and 3 are the principal axes of the cross-section. Let kN , 12
kM , 

13
kM , and kT  denote the axial force, bending moment around axis 2, bending moment around axis 3, 

and torsional moment, respetively, at node 1. Those at node 2 are defined similarly. Note that the axial 
forces and torsional moments at nodes 1 and 2, respectively, are in equilibrium states; therefore, the 
forces in the direction of axis 1 and moments around axis 1 at nodes 1 and 2, respectively, have the 
same magnitude and the oposite direction. Accordingly, each member has independent six 
components of member-end forces as shown in Fig. 3(b).  
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(b) 
Figure 3:  Definition of member coordinates and independent member-end forces; (a) local and global 

coordinates, (b) independent six member-end forces. 

Let 1 6( , , )T
mf ff   denote the vector of member-end forces of m  members; i.e., each component of 

f  corresponds to kN , 12
kM , 13

kM , 22
kM , 23

kM , or kT . The generalized member-end strain vector is 

denoted by 1 6( , , )T
mc cc  ; i.e., ic  corresponds to member extension and rotations around 1, 2, 3 

axes, respectively, if if  is axial force, torsional moment, and bending moments around 2 and 3 axes. 

The vector c  is related to the nodal displacement vector u  through the compatibility matrix 

1 6( , , )T T
mH h h  as  

Tc H u      (1) 

3. Quadratic programming problem for generating deployable structure 

A plastic limit analysis problem with quadratic yield functions is formulated for generating deployable 
structures. The member-end forces are related to one of the component of f ; therefore, they are 
regarded as functions of f  as ( )kN f , 12 ( )kM f , 13( )kM f , 22 ( )kM f , 23( )kM f , and ( )kT f . To generate a 

deployable structure that has a desired deformation, input loads are applied at the nodes in the 
direction of forced deformation, while output loads are applied at the nodes that moves in the desired 
direction. The load vectors corresponding to the input and output decrees-of-freedom are denoted by 

inp  and outp , respectively.  
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We assign yield functions for member-end moments and axial force, respectively. An upper bound is 
given for the sum of squares of three components of moments at each member-end. The optimization 
problem for maximizing the load coefficient in  corresponding to the input load is formulated as 

follows: 

in

6

out in in
1

2 2 2 b
2 3

2

maximize  

subject to  

                 ( ( )) ( ( )) ( ( )) , ( 1, , ; 1,2)
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   (2) 

where bw  and aw  are the weight coefficients for moment and axial force, respectively, and   is a 
scaling parameter.  

Using u , kjc , and 0kc  as Lagrange multipliers for the first, second, and third constraints, the 

following equations are obtained  from the optimality conditions (KKT conditions): 

Normalization of u : 

in1 0T p u        (3) 

For if  corresponding to bending moment: 

 2 ( ) 0, ( 1, , ; 1,2; 2,3)T k
i jp kjM c k m j p    h u f     (4) 

For if  corresponding to torsional moment: 

 1 22 ( )( ) 0, ( 1, , ; 1,2)T k
i k kT c c k m j    h u f     (5) 

For if  corresponding to axial force: 

 02 ( ) 0, ( 1, , )T k
i kN c k m  h u f      (6) 

with the complementarity conditions 
2 2 2 b

2 3[( ( )) ( ( )) ( ( )) ] 0, 0, ( 1, , ; 1,2)k k k
j j kj kjT M M w c c k m j      f f f    (7) 

2
0 0 [( ( )) ] 0, 0, ( 1, , ; 1,2)k

k kN w c c k m j    af    (8) 

Let k
jp  denote the rotation angle of node j  ( 1,2)  around the local axis p  ( 1,2,3)  of member k . 

The torsional angle 1
k  around axis  1 is defined as  

1 2 1
k k k

j i         (9) 

From (1), (4), (5), and (9), we have 
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Bending:  2 , ( 1, , ; 1,2; 1,2)T k k
k k jp jp kjc M c k m j p     h u     (10) 

Torsion:  1 1 1 1 22 ( ), ( 1, , ; 1,2; 1,2)T k k k k
k k j i k kc T c c k m j p          h u   (11) 

Therefore, the direction of hinges 1
kR  and 2

kR  at nodes 1 and 2, respectively, of member k  are 

obtained as follows: 
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i.e., rotation at the member end is proportional to the bending/torsional moment. Therefore, the 
direction of hinge is obtained by solving the quadratic programming problem, and a deployable 
structure with inclined hinges is generated. Note from (7) that kjc  vanishes and hinge is not generated, 

if the yield condition for the moments is not satisfied with equality. The optimization library SNOPT 
Ver. 7.2 (Gill et al. [6]) is used for solving the quadratic programming problem. 

4. Numerical examples 
Two types of simple mechanisms are generated using the proposed method. For both examples, all 
members with the length 1 m have pipe cross-section with radius 50 mm and thickness 2 mm. The 
material is steel with Young’s modulus 200 GPa. 

         

(a)                                            (b)                                         (c) 

Figure 4:  A simple four-bar mechanism, (a) node and member numbers, (b) input and output loads, 
(c) location of hinges indicated by red bar. 

We first consider a simple four-bar model as shown in Fig. 4(a). All translational and rotational 
components except z-directional components are constrained at node 1, and z-directional displacement 
is constrained at nodes 2, 3, 4, and 5. A mechanism is given so that the output nodes 3 and 5 moves to 
left and right, respectively, as a result of pulling the input node 1 in z-direction. For this purpose, the 
input load is given at node 1, and the output loads are applied at nodes 3 and 5, as shown in Fig. 4(b). 
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The optimization problem is solved to find the hinge locations as indicated with red line in Fig. 4(c). 
Note that the hinges of members 2 and 4 are inclined as shown in Fig. 5. 
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Figure 5:  Directions of hinges of member-ends at node 1. 

Since only small deformation is considered in the process of generating a mechanism by solving the 
optimization problem, large-deformation analysis is carried out using ABAQUS Ver. 6.13 (Dassault 
Systemes [2]) for verification purpose.Let t denote the path parameter that is increased from 0 to 1. 
The deformation process is shown in Fig. 6. It has been confirmed that no force is needed until t 
reaches a slightly smaller value than 1, where four members are almost in z-direction and members 
can be in tensile state. 

                 
t = 0.0    t = 0.6    t = 1.0 

(a) 

 
t = 0.0    0.6    1.0 

(b)  

Figure 6:  Deformation process of the four-bar mechanism; (a) diagonal view, (b) top view. 

 



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2015, Amsterdam 
Future Visions 

 

We next consider a square grid as shown in Fig. 7. Nodes 2 and 4 are supported in y- and z-directions, 
and nodes 3 and 5 are supported in x- and z-directions. A mechanism is generated so that the output 
nodes 69 moves in z-direction as a result of pulling the input node 1 in negative z-direction. The 
input and output loads are applied at the input and output nodes, to find the locations of hinges as 
indicated with red line in Fig. 7. Note that the hinges at nodes 69 are inclied in diagonal directions. 
The number of hinges is 12, while 28 hinge are needed in Refs. 3 and 5, where only the hinges in the 
directions of local axes are allowed.  

Geometrically nonlienar analysis is carried out using ABAQUS. The deformation process is shown in 
Fig. 8. Note that the nodes 69 first moves in the positive z-direction; however, they later turn to 
move in the negative z-direction. In this example, large force is needed at node 1; i.e., the mechanism 
obtained by solving the quadratic programming problem is not a finite mechanism. At t = 0.89, the 
force at node 1 is 1.706 kN, and the maximum stress is 4.815 GPa. Therefore, additional hinges are 
needed to generate a finite mechanism. 

      

Figure 7:  Member number, node number, and locations of hinges of a simple square grid. 

           
t = 0.0                 t = 0.2                         t = 0.4                  t = 0.6                    t = 0.89 

Figure 8:  Deformation process of the simple square grid model. 

Finally we manufactured a small physical model using the acrylic material. The parts are shown in Fig. 
9(a). The revolute joint in one direction is used as the hinge connection. The length and the diameter 
of the acrylic bar are 120 mm and 10 mm, respectively. The four-bar model in Fig. 6 are assembled to 
generate a deployable structure as shown in Fig. 9(b). We located the circular connectors at the end of 
the bars to connect them each other. By giving forced displacement in z-direction at the four 
connecters indicated by white arrows in Fig. 9(b), we obtained expected deformation without large 
force. 
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(a) 

           

(b) 

Figure 9:  Small physical model using epoxy material. 

4. Conclusions 
A new method has been presented for generating a deployable structure by solving a quadratic 
programming problem that is regarded as a limit analysis problem with a quadratic yield function of 
the member-end moments. It has been shown in numerical examples that a mechanism with inclied 
hinges can be found by the proposed approach. By allowing an inclined hinge, the number of hinges 
can be reduced compared with the previous study, where only the hinges around the local axes are 
allowed. However, only small deformation is considered in the problem formulatedn; therefore, 
additional hinges may be needed to generate a finite mechanism. 
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