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Abstract 

An optimization approach is presented for form-finding of tensegrity structures. It is shown that 
various equilibrium shapes can be easily found by solving a forced-deformation analysis problem 
formulated as a minimization problem of the total strain energy. The self-equilibrium forces can be 
found from the optimality conditions of the nonlinear programming problem, and the stability is 
always guaranteed owing to local convexity of the strain energy. The equilibrium shape and self-
equilibrium forces can be modified by assigning fictitious material properties of cables. The 
proposed approach is successfully applied to form-finding of a tensegrity tower. 
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Introduction 

Tensegrity structure consists of cables and struts that carry tensile and compressive forces, 
respectively. Self-equilibrium forces, or prestresses, are introduced to stabilize the structure. Since 
the shape of the structure defined by nodal coordinates at self-equilibrium state depends on the 
member forces, it is difficult to obtain a desired shape. Therefore, several analytical and numerical 
approaches have been developed for form-finding of tensegrity structures (Zhang and Ohsaki, 2006). 
 
Miki and Kawaguchi (2010) proposed an approach to form-finding by solving an optimization 
problem. Gaspani et al. (2011) carried out form-finding analysis using nonlinear programming 
approach. Chen et al. (2012) used an ant-colony method for form-finding. 
 
In this study, we present a method for form-finding of tensegrity structures using a nonlinear 
programming approach. Various equilibrium shapes are found by utilizing fictitious material 
properties. Stability of the self-equilibrium state is also discussed. 

Basic Equations 

Let iN  ( 1, , )i m   denote the axial force of member i  of a tensegrity structure consisting of m  

members in the 3-dimensional space. The vector consisting of coordinates of all n  nodes is denoted 
by 3nX  . The unstressed length 0

iL  of member i  is given. Then, the length ( )iL X  of i th 

member satisfying compatibility (connectivity) conditions at nodes is a function of X , and its 
gradient ( )iL X  consists of directional cosines of members. If we neglect the self-weight, the 

equilibrium equation is written as 
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Although the material of tensegrity structure is usually linear elastic, we use a fictitious material in 
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the process of form-finding. For the given unstressed member lengths, the strain energy of member 
i  is regarded as a function of ( )iL X , which is denoted by ( ( ))i iS L X . Then the total strain energy 

( )S X  is obtained as 
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The self-equilibrium shape is found by solving an optimization problem. The variables are nodal 
coordinates X , and the objective function is the total strain energy ( )S X . When no constraint is 
given, the stationary condition of ( )S X  is given as 
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At the optimal solution satisfying Eq. (3), the equilibrium equation (1) is satisfied by regarding 
/i iS L   as the axial force iN  of member i .  

 
This optimization problem is a standard analysis problem with forced deformation for satisfying the 
compatibility at nodes for specified unstressed member lengths. Furthermore, the total potential 
energy is equal to the total strain energy, because no external load is applied at the self-equilibrium 
state. Therefore, the principle of minimum total potential energy ensures stability of the equilibrium 
shape obtained by minimizing the strain energy; however, we use a fictitious material, rather than 
the true material, in this process of form-finding. 
 
After obtaining X  as the solution of the optimization problem, we assign the properties of the true 
material, and compute the true axial force *( )iN X  from the member lengths ( )iL X  at equilibrium 

and the unstressed length 0
iL . Then, the tangent stiffness matrix * 3 3n nK   using the true material 

is defined as the sum of the linear stiffness matrix * 3 3
E

n nK   and the geometrical stiffness matrix 
* 3 3
G

n nK   as 

* * *
E G K K K        (4) 

The tangent stiffness matrix using fictitious material is denoted by 3 3n nK  . Let min  denote the 

lowest (7th) eigenvalue of K  excluding six zero eigenvalues corresponding to rigid-body motions. 
The principle of minimum total potential energy ensures that min 0   at the equilibrium state. Let 

3 3ˆ n nK   denote the increment of *K  from K ; i.e., 

* ˆ K K K        (5) 

Define the nodal displacement vector 3nd   as a linear combination of the eigenvectors 3n
i Φ   

( 7, , 3 )i n   excluding rigid-body motions as 
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where i  ( 7, , 3 )i n   are arbitrary coefficients that are not equal to 0 simultaneously. Since the 

equilibrium state using the fictitious material is stable, T 0d Kd  holds. Therefore, the equilibrium 
state using the true material is stable if the following condition is satisfied: 
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T ˆ 0d Kd        (7) 

When the fictitious material is defined using a bilinear stress-strain relation with degrading stiffness, 
and the true material has constant stiffness that is equal to the initial stiffness of the fictitious 
material, then K̂  is positive semi-definite, and the condition (7) is satisfied. Note that this condition 
is a sufficient but not a necessary condition as demonstrated in the numerical examples. 
 
We can also formulate a constrained optimization problem with upper bound U

iJL  for cable iJ  

( 1, , )i p   as  

U( ) 0
i iJ JL L X ,  ( 1, , )i p      (8) 

The optimality condition for the minimization problem of  ( )S X  under constraint (8) is written as 
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Hence, the axial force of cable iJ  should be equal to /i i iS L     to satisfy the equilibrium 

equation (1). Since ( )iL X  is not a convex function of X , stability of the equilibrium shape using 

the fictitious material is not guaranteed, when constraints on member length are given. 
 
Optimization is carried out using SNOPT Ver.7 (Gill et al., 2002) that is based on sequential 
quadratic programming (SQP). The sensitivity coefficients are computed analytically. When the 
approximate Hessian of Lagrangian is singular at a step of SQP, SNOPT stabilizes the QP 
subproblem by assigning small positive values on the diagonals of the Hessian, which leads to a 
penalty term of the quadratic norm of the increment of variables. Therefore, for the analysis 
problem of a free-standing tensegrity structure, the rigid-body motions are successfully excluded, 
and the nearest solution from the initial solution is obtained. 
 
The algorithm of form-finding is summarized as follows: 
1. Assign initial shape, unstressed lengths of members, and properties of fictitious material. 
2. Solve the optimization problem to obtain the nodal coordinates at equilibrium. 
3. Assign the properties of true material, and compute the axial forces at equilibrium and 

unstressed length using the true material. 
4. Evaluate stability of the equilibrium shape. 

Example of Tensegrity Tower 

The proposed approach is applied to form-finding of a tensegrity tower that consists of struts, 
vertical cables, saddle cables, diagonal cables, and horizontal cables (Zhang and Ohsaki, 2008). An 
example of three-layer tower is shown in Fig. 1. Form-finding is carried out for a 20-layer 
tensegrity tower as shown in Fig. 2(a). The tower has three struts in each layer, and the radius and 
height of each layer are 1.0 m and 2.25 m, respectively. The units are omitted, in the following, for 
simple presentation of the results.  
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Figure 1.  A 3-layer tensegrity tower model. 

 
 

                                            
(a) Initial,            (b) Case 1                  (c) Case 2                  (d) Case 3 

Figure 2.  Initial and self-equilibrium shapes of a 20-layer tensegrity tower. 
 
The unstressed lengths of cables and struts are assumed to be 80% and 100%, respectively, of the 
lengths of the members in the initial shape in Fig. 2(a). Let iA  and iE  denote the cross-sectional 

area and Young’s modulus, respectively, of member i . The values of i iA E  for the fictitious material 

are 100000 for struts and 1000 for cables. Note that the unstressed lengths of cables should be 
sufficiently smaller than the initial lengths in Fig. 2(a) to obtain a stable equilibrium shape, and to 
find various shapes that are not close to the initial shape. 
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Case 1: 
The equilibrium shape obtained by solving the unconstrained optimization problem is shown in Fig. 
2(b). The maximum axial force among all cables is 362.9. In Case 1, the stiffness of the true 
material is the same as that of the fictitious material. The axial forces are divided by 100 so that the 
absolute values of axial forces are in the order of 1/1000 of i iA E . Eigenvalue analysis is carried out 

for *K  to find that the 6th and 7th smallest eigenvalues as listed in Table 1. Since the 7th 
eigenvalue is sufficiently larger than the 6th eigenvalue that is approximately equal to 0, the 
equilibrium state is stable with six zero eigenvalues corresponding to rigid-body motions. 
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Figure 3.  Bilinear stress-strain relations. 

 
Case 2: 
We next consider a fictitious material with bilinear stress-strain relation. The 60 vertical cables are 
classified into six groups connecting the nodes with the same xy-coordinates in the horizontal plane 
of the initial shape. Ten cables in one of six groups are selected to have the bilinear stress-strain 
relation as indicated as Case 2 in Fig. 3. The strain at the stiffness transition point is 0.1, and the 
value of i iA E  of the second part is 100 i iA E . The equilibrium shape obtained by optimization is 

shown in Fig. 2(c). The minimum and maximum values of strains among the members with bilinear 
stress-strain relation are 0.1028 and 0.1030, which are close to 0.1. This way, a curved shape has 
been generated by assigning large stiffnesses for the cables that are vertically aligned at the initial 
shape. 
 
We multiply 1/100 to axial forces of all members and carry out eigenvalue analysis of tangent 
stiffness matrix using the true material with constant stiffness i iA E  for all cables. The 6th and 7th 

eigenvalues are listed in Table 1, which shows that the structure is stable, although the true material 
has smaller stiffness than the fictitious material, and the sufficient condition (7) for stability is not 
satisfied. If we set the maximum member length 01.1 iL  and solve the constrained optimization 

problem, the same equilibrium shape as shown in Fig. 2(c) is obtained. The axial forces of the 
constrained members in layers 1, 3, and 5 are listed in Table 2, which confirms that the axial forces 
at equilibrium can be obtained as the sum of the differential coefficient /i iS L   and the Lagrange 

multiplier i . 

 
Table 1. Eigenvalues of tangent stiffness matrix using true material. 

Case 6th 7th 
1 6.135×10-8 0.06125 
2 1.094×10-8 0.02594 
3 1.861×10-9 0.02171 
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Table 2. Axial forces at equilibrium of constrained members in layers 1, 3, and 5. 

Layer Bilinear model 
Constrained optimization 

(A) Differential coefficient 
of strain energy 

(B) Lagrange 
multiplier 

(A) + (B) 

1 397.6 100.0 300.1 400.0 
3 380.2 100.0 282.6 382.6 
5 380.8 100.0 283.2 383.2 

 
Case 3: 
Fictitious material property is given in the same vertical cables as Case 2. However, we decrease the 
value of i iA E  of the second part of the vertical cables to /100i iA E  as indicated by Case 3 in Fig. 3. 

The equilibrium shape obtained by solving the unconstrained optimization problem is shown in Fig. 
2(d). As seen from Figs. 2(c) and (d), the tower can be bent to opposite directions by increasing and 
decreasing the value of i iA E  of the vertical cables in the specified group. The axial forces of the 

vertical cables with bilinear stress-strain relation are between 103 and 104, which are close to the 
specified value 0.1 i iA E . We multiply 1/100 to axial forces of all members and carry out eigenvalue 

analysis of tangent stiffness matrix. The 6th and 7th lowest eigenvalues are listed in Table 1, which 
confirms the stability of structure. Since the stiffness of the fictitious material is smaller than that of 
the true material, the equilibrium shape with the true material is stable, if the shape with fictitious 
material is stable. 

Conclusions 

The following conclusions have been obtained in this study: 
1. Various equilibrium shapes can be obtained using the fictitios material with bilinear stress-

strain relations. The equilibrium shape can be successfully found by solving an unconstrained 
optimization problem of minimizing the total strain energy. 

2. A curved tensegrity tower can be generated by assigning fictitios materials for a group of 
vertically aligned vertical cables. It has been shown that the optimization problem with bilinear 
stress strain relation is equivalent to a constrained optimization problem with upper bound for 
the member lengths. 

3. The equilibrium shape of the tensegrity structure is stable, if the stable equilibrium is found 
using a fictitious material with degrading bilinear stress-strain relation, and the true material 
has the constant stiffness that is equal to the initial stiffness of the fictitious material. 

4. The rigid-body motions need not be constrained when solving the optimization problem using 
an SQP method, because the quadratic programming subproblem is automatically stabilized by 
assigning small positive values in the diagonals of the approximate Hessian of the Larangian. 
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