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Abstract 

A method combining pure random search (PRS) and local search (LS) is presented for robust design optimization of building frames. The 
robust design problem is formulated as a two-stage problem consisting of upper-level optimization problem and lower-level anti-
optimization problem. The lower-level problem is solved using PRS, and its stopping rule is defined based on the order statics. The up-
per-level problem is solved using multistart LS, for which probabilistic stopping rules are investigated. The proposed approach is applied 
to a building frame subjected to a seismic motion. The objective function is the total structural volume, and a constraint is given for the 
worst value of maximum interstory drift angle between the roof and base. The results demonstrate the effectiveness of the proposed 
method. 
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1. Introduction 

In the design process of structures in various fields of engi-
neering, uncertainty in the parameters such as material proper-
ties and geometry should be appropriately incorporated. Reli-
ability-based design is the most popular approach, if the prob-
ability models of parameters can be appropriately assigned. 
However, the variations of parameters are usually unknown, 
and only their bounds may be estimated. Therefore, the design 
problem turns out to be a two-stage robust design problem, 
where the worst response is found in the lower problem, and 
the optimal design variables are found in the upper problem 
[1,2]. 

For a practical design problem of complex responses and 
constraints, it is difficult to find the globally worst response in 
the lower problem. Furthermore, the probability for taking the 
extreme value is very small. Therefore, it is desired to develop 
an approach that does not depend on the model of probability 
distribution, and approximates the extreme value with speci-
fied accuracy. 

The authors developed a method for finding the approxi-
mate worst value using pure random search (PRS) [3], where 
the stopping rule is defined based on order statics [4].  

In this study, we use our approach for the design of a build-
ing frame. The upper problem is a combinatorial problem, 
which is solved using a multistart local search (LS). The accu-
racy of the stopping rule for PRS for the lower problem is first 
verified. The number of local optimal solution in the upper 
problem is estimated based on the size of attractor that leads to 
each local optimal solution using a series of deterministic LSs. 

 

2. Two-stage robust design problem 

We first formulate a two-level optimization problem. The 
design variable vector is denoted by x  with its feasible 
region  . The vector consisting of uncertain parameters of 
building structures is denoted by  . The objective func-
tion of the upper problem is denoted by  f x . For simple 
presentation of the method, the uncertainties are incorpo-
rated into only one constraint function  ,g x , for which 
the upper bound g  is given. Hence, the robust design 
optimization problem is formulated as 
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The worst value  maxg x  of the constraint function 
 ,g x  is obtained by solving the following lower-level 

problem: 
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By using (2), we can formulate the upper problem as a 

robust design problem or a worst-case design problem: 
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3. Pure random search for upper-level problem 

In this section, we summarize the stopping rule for PRS 
proposed in Ref. [3] based on order statistics [4]. For sim-
plicity, we omit the design variable x as 

 max maxg g  because we focus on the lower problem.  
A PRS is used for solving problem (2). We generate an 

independent sample 1, , n  from a uniform probability 
distribution on , and the corresponding independent sam-
ple     1 1 , , n nY g Y g     of the objective function 
values at these points. Suppose jY  has a probability distri-
bution YF . 

The sequence 1, , nY Y  is arranged in increasing order, 
and the k th value is denoted by ,k nY such that 

1, 2, ,n n n nY Y Y   . The properties of 1, ,, ,n n nY Y are ob-
tained by the order statistics. 

Since the globally worst value is difficult to obtain, we use 
the following constraint for the lower problem: 

 

,k nY g  (4) 
 

which indicates that the k th value of the total n  samples 
from PRS satisfies the constraint of the upper problem.  

Let   and    0 , 1   denote preassigned con-
stants, and we choose n and k satisfying 

 
 1 , 1I k n k      (5) 

 
where I is the incomplete beta function. If Eqs. (4) and (5) are 
satisfied, then the following equation holds: 

 
  Pr YF g     (6) 

 
i.e, we have at least 100  % confidence that at least a propor-
tion   of the total n  samples is less than g .  

These results indicate that the number of samples n and the 
k th value in the samples are closely related to the parameters 
  and  , and the accuracy of the solution of PRS is en-
sured by appropriately assigning n and k. 

If we assign the lower bund   for n k , which is given 
for avoiding obtaining the extreme value, the minimum value 
for the prescribed confidence is found by solving the follow-
ing optimization problem: 
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4. Local search for lower-level problem 

In this section, we summarize the stopping rules for LSs for 
solving the upper robust design optimization problem, which 
is a minimization problem. 

The following deterministic algorithm of LS is used: 

------------------------------------------------------------------------------------------------------ 
Algorithm (Local Search) 
1. Sample an initial random point 0x  from a uniform prob-

ability distribution. Set 0k  . 
2. Enumerate all N neighborhood solutions of kx , denoted 

by i
kx  ( 1, , )i N  , and compute ( )i

kf x . 
3. Select the best solution min

kx , which has the smallest val-
ue of ( )i

kf x . 
4. If min( ) ( )k kf fx x , let min

1k k x x , 1k k  , and 
go to 2; otherwise, output kx  as a local optimal solu-
tion and terminate the Algorithm. 

------------------------------------------------------------------------------------------------------ 
 
Suppose we obtain w  local optimal solutions * *

1 , , wx x  
by carrying out LS t times from randomly generated initial 
solutions. The number of LSs that find *

ix  is denoted by in , 
i.e., 1 wn n t   . Define iX  as attractor or region of 
attraction [5] of *

ix , which is the set of solutions that leads to 
*
ix  by carrying out LS.  
The ratio of the size is  of attractor iX  to number of all 

the feasible solutions is denoted by ic . If is  is defined as 
the number of initial solutions leading to *

ix , then i is n  
and 1 ws s t    hold. 

Suppose there exist h local optimal solutions, which are not 
known a priori. Then, 1 1hc c    is satisfied. Boender 
and Kan [6] derived the following estimate estw  of the num-
ber of local optimal solutions based on Baysian approach, 
where ic  is supposed to be uniformly distributed between 0 
and 1 satisfying 1 1hc c   , and estw  is obtained as the  
mean value of posterior estimate of h 
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Based on Eq. (8), we can use the following stopping rule of 
multistart LS: 
 
Rule 1: 
Terminate multistart LS if est 0.5w w   is satisfied. 
 

Let a denote the number of local optimal solutions that have 
not been found after carrying out LSs t times; i.e., h = w + a. 
Since we use a deterministic algorithm for LS, the following 
two cases are considered for estimating 1, , ws s  and 

1, , wc c . 
 
C-1: The attractor iX  consists of the initial solutions that 

reaches *
ix ; i.e., i is n . 

C-2: The attractor iX  consists of all feasible solutions 
along the path between the initial solution and *

ix . 
 
Furthermore, the sizes 1, ,w hs s   of attractors 

1, ,w hX X   of the solutions that have not been found are 
estimated by one of the following methods: 
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C-mean: 1, ,w hs s   are equal to the mean value of 

1, , ws s . 
C-min: 1, ,w hs s   are equal to the minimum value of 

1, , ws s . 
 
For example, C-1-mean denotes that the methods C-1 and C-
mean are used. 

Let ( )h
ic  denote the ratio of is  of iX  when there exits 

h local optimal solutions, which are estimated by dividing is  
by the sum of 1, , hs s . Then the likelihood 

( )
1( , , )h

w wP P n n   for in  times finding *
ix  ( 1, , )i w   

in t trials is computed as 
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where wtC , is a coefficient that vanishes in the following 
equations. Based on Eq. (9), we can use the following stop-
ping rule of multistart LS: 
 
Rule 2: 
Terminate multistart LS if ( ) ( )/w j w

w wP P  is smaller than a 
specified small value, where j is a specified value. 
 
   Finally, suppose we find ( )h

ic  using the combination of 
(C-1 or C-2) and (C-mean or Cmin). Then, the probability of 
missing the (w+1)th solution in t trials is computed as 
 

( ) ( )
1(1 )h h t

w wP c     (10) 
 
Based on Eq. (10), we can use the following stopping rule of 
multistart LS: 
 
Rule 3: 
Terminate multistart LS if )(h

wP is less than a prescribed small 
value. 
 
For the case 1h w  , the following relation holds: 
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Therefore, it is easily seen that 
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is satisfied as confirmed in the following examples. Therefore, 
we investigate only Rules 1 and 2 in the examples. 
 
4. Example of mathematical problem for LS. 

The number of local optimal solutions is estimated for a test 
function called Shekel-10 [5], which is defined as 
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where ib is the ith component of b , iA  is the ith row of 
A , and  
 

4 4 4 4 0.1

1 1 1 1 2

8 8 8 8 2

6 6 6 6 0.4

3 7 3 7 0.4
,

2 9 2 9 0.6

5 5 3 3 0.3

8 1 8 1 0.7

6 2 6 2 0.5

7 3.6 7 3.6 0.5
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    
   
   
   
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   
   
   
   

A c ,  4
0,10x     (12) 

This function has 10 optimal solutions. To solve this prob-
lem as a combinatorial problem, each component of x  is 
supposed to have discrete values with uniform interval of 0.1 
between the lower bound 0 and the upper bound 10. The 
number of neighborhood solutions is 43 81  including the 
current solution, because there are four variables and three 
patterns 1, 0, +1 for the increment of each variable.  

 
Table 1  Ten solutions of problem Shekel-10 for LS-2. 

Solution No. 1 2 3 4 5 

1x  4 5 6 3 7 

2x  4 5 6 7 3.6 

3x  4 3 6 3 7 

4x  4 3 6 7 3.6 

*( )if x  -10.53 -3.83 -2.86 -2.81 -2.43 

is  (C-1) 51 42 39 38 20 

 
Solution No. 6 7 8 9 10 

1x  6 7.9 2 1 8 

2x  2 7.9 9 1 1 

3x  6 7.9 2 1 8 

4x  2 7.9 9 1 1 

*( )if x  -2.42 -0.68 -1.86 -0.63 -1.67 

*
is  (C-1) 16 12 6 5 4 
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Series of LSs denoted by LS-1, … LS-7 is carried out from 
randomly generated 7 initial solutions. Ten optimal solutions 
are found before satisfying Rule 1 in 6 cases. All 10 solutions 
and corresponding sizes of attractors for LS-2 are listed in 
Table 1. The number of trials mstop for satisfying Rule 1, and 
the number of trials m10 for obtaining all 10 local optimal solu-
tions are listed in Table 2 

 

Table 2  Number of steps mstop for satisfying Rule 1 and m10 when all 

10 solutions are found for LS-1, …, LS-7. 

LS No. 1 2 3 4 5 6 7 

mstop 192 233 233 233 233 233 233

m10 212 81 67 78 182 51 46 

 
Table 3  Ratios (11) (10)

10 10/P P  and (12) (10)
10 10/P P , and the value of (10)

10P  

for problem Shekel-10 at mstop trials of LS-2. 

 (11) (10)
10 10/P P  (12) (10)

10 10/P P  (10)
10P  

C-1-mean 2.267×10-10 3.554×10-19 2.267×10-10

C-1-min 0.01895 0.0003837 0.01895 
C-2-mean 2.267×10-10 3.554×10-19 2.267×10-10

C-2-min 0.07262 0.005430 0.07262 
 
Ratios (11) (10)

10 10/P P  and (12) (10)
10 10/P P , and the value of (10)

10P  
evaluated at mstop are listed in Table 3. We can see from the 
table that values of (11) (10)

10 10/P P  (10)
10( )P  are very small if 

C-mean is used; however, they are not sufficiently small if C-
min is used. By contrast, ratios (11) (10)

10 10/P P  (10)
10( )P  evalu-

ated at the step m10 using C-mean seems to be appropriate as 
shown in Table 4.  

 
Table 4  Ratios (11) (10)

10 10/P P  and (12) (10)
10 10/P P , and the value of (10)

10P  

for problem Shekel-10 at m10 trials of LS-2. 
 (11) (10)

10 10/P P  (12) (10)
10 10/P P  (10)

10P  

C-1-mean 4.438×10-4 3.857×10-7 4.438×10-4 
C-1-min 0.37014 0.13866 0.37014 

C-2-mean 4.438×10-4 3.857×10-7 4.438×10-4 
C-2-min 0.56077 0.31576 0.56077 
 

 
Fig.1  Histories of estw and w  for LS-2 of Shekel-10. 

 
Histories of w and west are plotted for LS-2 in Fig. 1, which 

shows that west is a good upper bound for w; however, the 
convergence of west to w is very slow also for LS-3, 4, 6, and 7. 

Therefore, a less strict stopping rule is desired. 
 
5. Example of robust design of a building frame 

5.1 Description of model 

Effectiveness of the proposed robust design method is in-
vestigated for a seismic design problem of a 4-story plane 
shear frame model as shown in Fig. 2. All columns have the 
same section C1. Beams are classified into 2 groups, which 
consist of G1 of 2nd and 3nd floors and G2 of 4th floor and 
roof. We choose each solution from 10 predefined section in 
Table 5. 

We use frame analysis software OpenSees Ver. 2.4 [7] for 
time history response analysis. The material is steel with 
Young’s modulus E = 2.05 GPa. Plastic hinges of length 0.2 
m can exist at both ends of members, which is modeled as a 
fiber section with kinematic hardening ratio 0.01E. 

We use an artificial ground motions as shown in Fig. 2, 
which is compatible to the acceleration response spectrum in 
Table 5. The duration is 20 sec., and the time step 0.01 sec. 

 
Table 5  Target acceleration response spectrum (damping factor = 0.05). 

Period (s) T ≤ 0.16 0.16 ≤ T ≤ 0.864 0.864 ≤ T 

Acceleration (m/s2) 4.80 + 45T 12.0 10.37/T 

 

Fig. 2  A 4-story shear frame model. 

 

 

Fig. 3.  Seismic motion. 
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Table 6  List of available sections. 

list Column B1 B2 

1 □-410×20 H-560×200×9×19 H-460×200×7×17

2 □-420×20 H-580×200×10×20 H-480×200×8×18

3 □-430×20 H-600×200×10×20 H-500×200×8×18

4 □-440×20 H-620×200×10×20 H-520×200×8×18

5 □-450×20 H-640×200×11×21 H-540×200×9×19

6 □-460×20 H-660×200×11×21 H-560×200×9×19

7 □-470×20 H-680×200×12×22 H-580×200×10×20

8 □-480×20 H-700×200×12×22 H-600×200×10×20

9 □-490×20 H-720×200×12×22 H-620×200×10×20

10 □-500×20 H-740×200×13×23 H-640×200×11×21

 

The design variable vector represents the cross-sections of 
beams and columns. For example, the jth section in Table 6 is 
chosen for the ith variable if ix j , where 1x , 2x , and 3x  
correspond to Column, B1, and B2, respectively.  

The objective function is the total structural volume ( )V x  
that is to be minimized. Constraints are given so that the worst 
value of the maximum interstory drift angle max ( , ) x Θ  be-
tween the roof and base does not exceed the upper bound 0.01.  

Uncertainty is given for the yield stresses C  and G , re-
spectively, of columns and beams as 
 

C 1325    ,  G 2235     

1 2( , )  Θ   (14) 
0 100i     ( 1,2)i   

 
The problem of robust design optimization is defined as fol-

lows: 
 

max

minimize ( ) ( )

subject to ( , ) ( , ) 0.01

{1, 2, , 10}, ( 1,2,3)i

f V

g

x i


 

  
  

x x

x Θ x Θ  (15) 

 
5.2 Verification of extreme value with specified accuracy 

The uncertain parameters representing the yield stresses are 
assumed to distribute uniformly between the upper and lower 
bounds, because the formulations in Sec. 3 do not depend on 
the types of distribution.  

By solving problem (7) for 3   and 0.9   , we 
obtain 65n   and 63k  , which means that the 62nd 
smallest value among objective values of 65 parameter sets 
generated by PRS is regarded as the approximate worst value 
of interstory drift angle. 

Table 7 shows the results of four sets PRS-1, …, PRS-4 of 
PRSs of 65 trials for the design 1 2 3( , , ) (5,10,5)x x x  . 

The number of parameter sets satisfying 62,65( )g YΘ  
among randomly generated 1000 sets is also listed. It is con-
firmed that the numbers are not less than 1000 900  . The 
results of 50 sets of 1000 trials are listed in Table 8. Note that 
the number of parameter sets satisfying 62,65( )g Y   is less 

than 900 in 5 trials. 
 

Table 7  Numbers and ratios of parameters sets satisfying 

62,65( )g Y   among randomly generated 1000 sets, and the extreme 

values for four PRS-1, …, PRS-4. 

PRS No. 1 2 3 4 

Y62,65 0.0103 0.0102 0.0102 0.0102

Y65,65 0.0103 0.0103 0.0103 0.0104

Verification by 1000 samples. 

Number of parameter
sets satisfying 

62,65( )g Y   
960 912 933 923 

Y1000,1000 0.0104 0.0104 0.0103 0.0104

 
Table 8 Number of parameter sets satisfying 62,65( )g Y    

among 50 sets of 1000 trials. 
960 980 953 957 842 
912 973 939 946 915 
933 915 881 924 957 
923 965 975 973 936 
955 950 918 887 888 
948 933 952 889 967 
929 944 971 903 969 
973 919 961 944 946 
925 934 936 972 957 
956 960 946 981 939 

 
5.3 Optimization results 

We carry out two sets of muitistart LSs with t = 30 and 50, 
respectively. Eight solutions found by 30 trials are listed in 
Table 9. The values of (9) (8)

8 8/P P , (10) (8)
8 8/P P , and (8)

8P are 
shown in Table 9.The objective values and the sizes of attrac-
tors are also listed. The results of t = 50 trials from different 
initial random seed from t = 30 are also listed in Tables 11 and 
12, where 11 solution are found for this case. Note that the LS 
used here is not completely deterministic, because the lower 
problem involves uncertainly.  

It is seen from Tables 9 and 11 that the solutions 6 and 7 in 
Table 9 do not exist in Table 11; therefore, there exist at least 
13 local optimal solutions. It can be confirmed from Tables 9 
and 11 that ( 1) ( )/w w

w wP P  and ( )w
wP  have the same value if 

C-mean is used. 
 

Table 9  Eight solutions found by 30 trials. 

1 2 3 4 5 6 7 8 

C1 10 10 6 7 4 10 8 8 

G1 1 5 2 2 5 4 2 1 

G2 4 2 5 4 1 3 4 5 

V(x) 0.401 0.416 0.404 0.400 0.396 0.415 0.403 0.403
*
is 65 33 24 20 8 4 9 8 

 
 
 
Table 10  Ratios (9) (8)

8 8/P P  and (10) (8)
8 8/P P , and the value of (8)

8P  

for 30t  . 

 (9) (8)
8 8/P P  (10) (8)

8 8/P P  (8)
8P  
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C-1-mean 0.02920 0.001238 0.02920 
C-1-min 0.37393 0.144257 0.37393 

C-2-mean 0.02920 0.001238 0.02920 
C-2-min 0.09997 0.253683 0.53240 

Table 11  Eleven solutions found by 50 trials. 

1 2 3 4 5 6 

C1 10 7 8 6 9 6 

G1 1 2 1 2 6 3 

G2 4 4 5 5 2 4 

V(x) 0.401 0.400 0.403 0.404 0.421 0.405
*
is  106 41 25 13 15 10 

 
 7 8 9 10 11 

C1 10 9 7 4 4 

G1 5 5 3 5 4 

G2 2 3 3 1 2 

V(x) 0.416 0.420 0.401 0.396 0.395 
*
is  9 5 11 7 3 

 
Table 12  Ratios of  (12) (11)

11 11/P P  and (14) (11)
11 11/P P , and the value of 

(11)
11P  for 50t  . 

 (12) (11)
11 11/P P  (14) (11)

11 11/P P  (11)
11P  

C-1-mean 0.01290 5.7974×10-6 0.01290 
C-1-min 0.39427 0.06466 0.37153 

C-2-mean 0.01290 5.7974×10-6 0.01290 
C-2-min 0.54415 0.16467 0.54415 

 
Table 13  Estimated and obtained numbers of local optimal solutions 

for 

t = 30 and 50. 

t 30 50 

estw  11.60 14.57 

w  8 11 
 

 
Fig.4  Histories of estw and w  for 50t  . 

 
We can see from these results that (11)

11P  for t = 50 is 
smaller than (8)

8P  for t = 30, if C-mean is used. The estimat-
ed and obtained numbers of local optimal solutions for t = 30 
and 50 are listed in Table 13, which shows that estw  is larger 
than w by about 3.6 for both t = 30 and 50. Therefore, estw  
exhibits slow convergence also in this example. For Rule 2, 

the value of (14) (11)
11 11/P P  for C-1-mean has sufficiently small 

value. Therefore, through further investigation for other prob-
lems, we may use Rule 2 for the stopping rule of LSs. 

 
6. Conclusions 

A robust design optimization problem has been formulated 
as a two-stage optimization problem. The worst response is 
found in the lower problem, and the locally optimal design 
variables is found in the upper problem. 

In the lower problem, the approximate worst value is found 
using the pure random search and order statistics. The accura-
cy of the results have been confirmed in the example of a 
four-story shear frame subjected to seismic motions, where 
the maximum average drift angle is considered as the repre-
sentative response. 

The upper problem is solved using a multistart local search, 
where the variables are supposed to take discrete values. 
Three stopping rules and formula for estimating number of 
local solutions are compared in a mathematical problem. It 
has been confirmed that the first rule proposed in Ref. [6] is a 
little conservative. The second rule proposed in this study may 
also be used after further investigation for other problems. 

It has been shown in the example of robust design of shear 
frame that there are multiple local optimal solutions; however, 
application of stopping rules to robust design is difficult, be-
cause computational cost for each local search is very large, 
and we cannot find many local optimal solutions. 
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