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Abstract 

An optimization approach is presented for design of a new tuned mass damper called TD-TMD for three-directional seismic re-
sponse reduction of structures. The mass damper consists of a viscous damper and a mass connected by flexible springs. By utiliz-
ing the flexibility of springs, the movement of the mass in three-directions and the elongation of viscous damper are amplified, 
and the vibration energy of the mass is effectively absorbed by the viscous damper. The TD-TMDs are attached to a latticed roof 
and its seismic responses are compared with those with conventional single-directional dampers (SD-TMDs). The objective 
function of the parameter optimization problem is the mean norm of the response displacements at the nodes of the roof. The 
bounds of parameters are determined by solving a auxiliary nonlinear programming problem to maximize the minimum 
deformation of the damper against static loads of various directions. The parameters are discretized into integer values, and 
approximate optimal solutions are found using a heuristic approach called tabu search (TS) combined with pure random search 
(PRS) that generates efficient intial solutions. 
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1. Introduction 

Tuned mass damper (TMD) is effectively used for reduc-
tion of vibration due to seismic and/or wind excitations. How-
ever, a conventional TMD can reduce the responses in single 
direction. Therefore, several TMDs are needed for reduction 
of multi-directional and multi-frequency vibrations [1,2]. 

The authors presented a mass damper that can reduce two-
directional vibration of an arch using single set of a mass and 
a viscous damper [3]. A TMD for three-directional control 
was also presented [4]; however, the mechanism of the TMD 
in Ref. [4] is very complicated, and the response reduction 
against seismic motions with various levels is not ensured, 
because geometrical nonlinearity is utilized. 

In this study, a three-directional TMD (TD-TMD) as shown 
in Fig. 1 is proposed for reduction of three-directional vibra-
tion of a long-span structure subjected to multi-component 
ground motions. 

The parameters of the TD-TMD in Fig. 1 are optimized to 
reduce the seismic responses, and the performances of the 
optimized models are verified in comparison to the structure 
that have single-directional TMDs (SD-TMDs) with the same 
total mass as the TD-TMD. 

 
2. Description of TD-TMD and structural model 

2.1 TD-TMD model 

Fig.1 illustrates the proposed TD-TMD for reduction of 

three directional vibration. It consists of a mass, a damper, and 
five springs. Node A is connected to the main structure. The 
displacement of nodes A and C have the same values as we 
assume that the TD-TMD in Fig 1 is installed in a box. Nodes 
A and B have the same horizontal displacements. 

Fig. 1. Components of TD-TMD; a mass at node D, vertical viscous 

damper between nodes A and B, and five springs. 

 
2.2 Seismic motion 

The dynamic responses of the structure with TD-TMD are 
evaluated by time-history analysis using a software package 
called OpenSees Ver 2.4 [5]. Five artificial ground motions 
compatible to the acceleration response spectrum in Table 1 
are used. The duration is 20 sec., and the time step for integra-
tion is 0.01 sec. 

Different motions among the five motions are selected for 



 

2 
 

X-, Y-, and Z-directions; therefore, the total number of sets is 
60. The seismic motion is scaled by 5 in X- and Y-directions, 
and by 2.5 in Z-direction. 
 

Table 1. Target acceleration response spectrum (damping factor = 0.05). 

Period (s) T ≤ 0.16 0.16 ≤ T ≤ 0.864 0.864 ≤ T 

Acceleration (m/s2) 0.96 + 9T 2.40 2.074/T 

 
3. Parameter optimization method 

The stiffnesses of springs are denoted as K1, K2, K3, K4, and 
Kv as shown in Fig 1. Let XC, XD, and YD denote the X-
coordinates of nodes C, D, and the Y-coordinate of node D, 
respectively. The Z-coordinates of nodes C and D, which have 
the same value, and the damping coefficient of the vertical 
damper are denoted by ZCD and CV, respectively. These ten 
parameters are chosen as variables to be optimized. Note that 
the length of the vertical damper is 1 m, and the Y-coordinate 
of node C is fixed at 0. 

Fig. 2. Latticed shell model; rise = 0.833 m, open angle = 15 deg. 

 
Seismic responses against five sets of seismic motions 

among 60 sets are evaluated in next section for a latticed shell 
roof as shown in Fig. 2. Let xji, yji, and zji, denote the X-, Y-, 
and Z-directional displacements of node j of the roof at the ith 
step of analysis. The total numbers of analysis steps and nodes 
are denoted by N1 and N2, respectively. The mean value DXYZ 
of square of the norm of nodal displacements is defined by 
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The reduction ratio RXYZ is defined as the ratio of DXYZ with 

TD-TMD to the value without TMD. Let D denote the vector 
consisting of variables. The optimization problem is defined 

as follows for minimizing the mean value mean ( )XYZR D  of RXYZ 

among five sets of motions: 
 
Optimization problem of TD-TMD 

 Minimize mean ( )XYZR D  (2) 

 subject to bounds for D 
 

4. Optimization result 

4.1 Roof model 

The TD-TMDs are attached to the latticed roof in Fig. 2. 
The spans in X- and Y- directions are 26.946 m and 20 m, 
respectively. The height of column is 4 m, and the roof nodes 
are located on a circular cylinder with open angle 15 deg. The 
material is steel, and all beams and columns are connected 
rigidly at joints. The columns are pin-supported around Y-axis. 
All of 15 roof nodes have the mass of 500 kg. Although the 
details of member sections are omitted, the vibration proper-
ties of the structure are listed in Table 2. 
 

Table 2. Vibration properties of latticed shell. 

Order 
Frequency 

(Hz) 
Period (s) 

Effective mass ratio (%) 

X Y Z 

1 3.34 0.2998 87.68 0 0 

2 3.76 0.2661 0 59.19 0 

3 4.28 0.2337 0 0 54.92 

 
4.2 Parameter optimization 

Parameters of TD-TMD are optimized for the follow-
ing two cases. 

Case 1: A TD-TMD is attached at the center node 103 
of the latticed shell. The mass of TD-TMD is 
1/20 of the total mass of the roof. 

Case 2: Two types of TD-TMDs are attached at nodes 2, 
4, 202, 204 and nodes 3, 203, respectively, of 
the latticed shell. The mass of each TD-TMD is 
1/120 of the total mass of the roof. 

To prevent numerical difficulty in time-history analy-
sis, the 5% of the total mass of each TD-TMD is placed 
at nodes B and C; i.e., node D has the 90% of the total 
mass of TMD.  

The number of variables is 10 for Case 1, whereas we 
have 10 variables for each of two types of TD-TMDs, i.e., 
20 variables in total, for Case 2. 

The bounds of variables except the damping coefficient 
are determined by solving an auxiliary optimization prob-
lem considering static properties of TD-TMD and the opti-
mal values for SD-TMD. Let Ds denote a vector consisting 
of nine variables KV, K1, K2, K3, K4, XC, XD, YD, and ZCD. 

The optimal stiffness corresponding to the ith vibration 
mode i is denoted by iK opt . The mode i is normalized so 
that the displacement component at the node of the roof, 
where the SD-TMD is attached, is equal to 1. Let i, Mi, 
and mTMD denote the natural circular frequency of the ith 
node, the equivalent mass corresponding to i, and the 
mass of SD-TMD, respectively. The value of  iK opt  is 
determined as [6] 
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Let ui denote the vector consisting of the displacements 
in X-, Y-, and Z-directions of i at the node where the 
TD-TMD is attached. The static stiffness Ki(Ds) of the TD-
TMD with fixed displacement at node A is evaluated as the 
norm of force applied at node D in the direction of ui divid-
ed by the norm of displacement. The nine variables are de-
termined to satisfy the constraint ( )i iK KS optD  (i = 1,2,3). 

Furthermore, the damper of the TD-TMD should have 
enough deformation for any three-directional motion. 
Therefore, the minimum absolute value Umin(DS) of the 
extensions of the damper against unit static loads at node D 
in various 13 directions as listed in Table3 and 4 for Cases 1 
and 2, respectively. Note that the load numbers 4-13 for 
Case 1 are the same as those for Case 1. 

The auxiliary optimization problem is formulated as 
 
Auxiliary static optimization problem of TD-TMD 
 Minimize Umin(DS)  (4) 
 subject to ( )i iK KS optD , (i=1,2,3) 

 
Table 3. Loading direction: Case 1 

Load No. Loading direction 

1 （1, 0, 0） 

2 （0, 1, 0） 

3 （0, 0, 1） 

4 （1, 1, 0） 

5 （1, -1, 0） 

6 （1, 0, 1） 

7 （1, 0, -1） 

8 （0, 1, 1） 

9 （0, 1, -1） 

10 （1, 1, 1） 

11 （-1, 1, 1） 

12 （1, -1, 1） 

13 （1, 1, -1） 

 
Table 4. Loading direction: Case 2 

Load 
No. 

Loading direction: 
Type 1 TMDs attached at 
nodes 2, 4, 202, and 204 

Loading direction: 
Type 2 TMDs attached at 

nodes 3 and 203 
 1 （-0.8667, 0, -0.4988） （-1，0，0） 

2 （-0.0047, -0.9869, 0.1616） （0，-0.9823，0.1874）

3 （0.0238, 0, -0.9997） （0，0，-1） 

 
The optimization library SNOPT Ver. 7 [7] is used for 

solving the auxiliary optimization problem. The optimal 
values of nine variables for Case 1 are listed in the last col-
umn of Table 5. From these values, the lower and upper 
bounds of the variables for problem (2) are determined as 

listed in the 2nd and 3rd columns, respectively, in Table 5. 
The upper and lower bounds of variables for two types of 
TD-TMDs for Case 2 are listed in Tables 6 and 7, respec-
tively. 
 

Table 5. Ranges of variables and optimal value obtained by solving 

auxiliary static optimization problem (4): Case 1. 

variable Lower bound Upper bound 
Optimal value of 

auxiliary static 
problem (4) 

Kv (N/m） 200 1 101.5 

K1 (N/m） 400 200 290.2 

K2 (N/m） 1,000 300 552.5 

K3 (N/m） 2,300 1,300 1,781.2 

K4 (N/m） 150 40 89.9 

XC (m) 1.5 0.8 1.09 

XD (m) 0.7 0.1 0.60 

YD (m) 0.7 0.1 0.61 

ZCD (m) -0.2 -0.5 -0.28 

 

Table 6. Ranges of variables and optimal value obtained by solving 

auxiliary static optimization problem (4): Type 1 TMDs attached at nodes 

2, 4, 202, and 204 for Case 2. 

Variable Lower bound Upper bound 
Optimal value 

of static loading 

Kv (N/m） 50 1 2.4 

K1 (N/m） 250 10 147.9 

K2 (N/m） 350 150 266.8 

K3 (N/m） 500 250 385.2 

K4 (N/m） 450 200 335.7 

XC (m) 0.7 0.2 0.51 

XD (m) 0.6 0.2 0.40 

YD (m) 0.3 0.1 0.14 

ZCD (m) -0.3 -0.8 -0.58 

 
Table 7. Ranges of variables and optimal value obtained by solving 

auxiliary static optimization problem (4): Type 2 TMDs attached at nodes 

3 and 203 for Case 2. 

variable Lower bound Upper bound 
Optimal value 

of static loading 

Kv (N/m） 50 1 4.6 

K1 (N/m） 250 10 140.6 

K2 (N/m） 450 200 296.5 

K3 (N/m） 600 300 385.2 

K4 (N/m） 450 200 330.3 

XC (m) 0.7 0.3 0.50 

XD (m) 0.5 0.1 0.36 

YD (m) 0.3 0.1 0.18 

ZCD (m) -0.6 -0.9 -0.80 
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The bounds of CV is determined using the following formula 
for optimal value of SD-TMD [6]: 
 

 3
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To solve problem (2) using heuristic approaches of combi-
natorial problems, the ten variables are discretized into 21 
equally spaced values between their upper and lower bounds. 

Since the problem considered here is highly nonlinear, 2000 
sets of variables are randomly generated to carry out pure 
random search (PRS). The eight best objective values ob-
tained by PRS for Cases 1 and 2 are listed in the 2nd and 4th 
columns, respectively, of Table 8. 

The solutions are further improved using the tabu search 
(TS) [8] which is an extension of local search. The initial solu-
tions are the eight best solutions obtained by PRS, the number 
of steps is 100, and the number of neighborhood solutions is 
equal to the number of variables; i.e., 10 for Case 1 and 20 for 
Case 2. The optimal solutions obtained by PRS followed by 
TS are listed in Table 9 for Cases 1 and 2. 
 
Table 8. Optimal objective values of eight best solutions obtained by PRS 

and TS after PRS. 

Solution 
Case 1 Case 2 

PRS 
TS after 

PRS 
PRS 

TS after 
PRS 

1 0.4809 0.4516 0.5065 0.4271 

2 0.4855 0.4488 0.5338 0.4302 

3 0.4984 0.4493 0.5478 0.4287 

4 0.5011 0.4638 0.5525 0.4286 

5 0.5034 0.4532 0.5639 0.4248 

6 0.5133 0.4558 0.5674 0.5350 

7 0.5145 0.4595 0.5706 0.4662 

8 0.5153 0.4542 0.5709 0.4992 

 

Table 9. Optimal solutions for Cases 1 and 2. 

Variable Case 1 

Case 2 

Type 1 at 
nodes 2, 4, 
202, 204 

Type 2 at 
nodes 3, 203

Kv (N/m） 76.8 19.7 17.3 

K1 (N/m） 304.8 21.4 55.7 

K2 (N/m） 366.7 197.6 271.4 

K3 (N/m） 1347.6 369.0 485.7 

K4 (N/m） 102.9 307.1 390.5 

XC (m) 1.10 0.39 0.70 

XD (m) 0.19 0.49 0.12 

YD (m) 0.24 0.26 0.21 

ZCD (m) -0.47 -0.35 -0.80 

CV (Ns/m) 3714 240 200 

Following properties are observed for performance of PRS 
and TS: 
 The solutions for Case 1, only 88 solutions among 2000 

have the objective value less than 0.6. This means that very 
limit number of solutions have good performance, and it 
will be difficult to find a good solution using a local search 
only. 

 The number of steps before obtaining the best solutions of 
eight trials of TS is between 28 and 98; therefore, better so-
lution may be found if we increase the number of steps.  

 The number of neighborhood solutions that is rejected by 
tabu list is, for example, 1 for the solution 2 of Case 1. 
Therefore, the neighborhood solutions have not been 
searched intensively enough. 

 Eight trials for each of two cases do not converge to the 
same solution. The solutions are divided into at least three 
groups or more on the variable space. 

 The objective values are sufficiently reduced by carrying 
out TS after PRS, which shows the efficiency of the com-
bined approach. 

 Some variables have values close to their upper or lower 
bounds. Therefore, the solution may improve if optimiza-
tion is carried out again after reassigning the bounds of var-
iables. 
 

4.3 Performances of the optimized TD-TMD 

For verification of effectiveness of the proposed TD-TMD, 
the responses against 60 sets of motions are compared with 
those of conventional SD-TMD. Note that SD-TMD has three 
sets of spring, damper, and mass in three directions, respec-
tively, and the mass of each TMD is 1/3 of the total mass of 
TD-TMD. The SD-TMDs are attached at the same node as 
TD-TMD; therefore, the total numbers of SD-TMDs are 3 for 
Case 1, and 18 for Case 2. The theoretical optimal values in 
Ref. [6] are used for spring stiffness and damping coefficient 
in each direction assuming that SD-TMDs are installed in the 
directions of vibration of the node corresponding to dominant 
modes. 

Let RX, RY, and RZ, denote the squares of the response 
reduction ratios in X-, Y-, and Z-directions, respectively. The 
statistical resulds for 60 sets of motions for Cases 1 and 2 are 
listed in Table 10. 

For Case 1, the mean values of RXYZ for TD-TMD and SD-
TMD are 0.4856 and 0.4913, respectively. Therefore, TD-
TMD has an equivalent performance with SD-TMD, if they 
are attached at only one node, although the response 
reductions in Y- and Z-directions storongly depend on the 
properties of seismic motions. It should be noted here that TD-
TMD has only single mass and viscous damper, whereas three 
SD-TMDs consisting of three masses and dampers should be 
attached at a node in three directions.  

By contrast, Case 2, the mean values of RXYZ for TD-TMD 
and SD-TMD are 0.4259 and 0.3876, respectively. Therefore, 
SD-TMD has better performance than TD-TMD.  
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Table 10. Response reduction ratio for 60 sets of motions. 

Case Model Ratio Minimum Maximum Mean 
Standard  

deviation

1 

TD-

TMD 

XYZR  0.3418 0.6543 0.4856 0.0726

XR  0.2640 0.5445 0.3846 0.0757

YR  0.3627 1.1046 0.6668 0.1849

ZR  0.3558 1.2287 0.7130 0.1609

SD-

TMD 

XYZR  0.3645 0.6240 0.4913 0.0700

XR  0.3476 0.6184 0.4827 0.0916

YR  0.4153 0.6767 0.5391 0.1017

ZR  0.3711 0.6395 0.4914 0.0658

2 

TD-

TMD 

XYZR  0.3110 0.5076 0.4259 0.0561

XR  0.2530 0.4581 0.3742 0.0655

YR  0.4009 0.6557 0.5200 0.0915

ZR  0.4014 0.6849 0.5493 0.0746

SD-

TMD 

XYZR  0.2640 0.5519 0.3876 0.0694

XR  0.2740 0.5200 0.3876 0.0825

YR  0.2551 0.6550 0.4164 0.1375

ZR  0.2236 0.5624 0.3798 0.0955

 
Table 11. Response reduction ratio for 60 sets of motion with the level of 

1/5 of those used for optimization. 

Case Model Ratio Minimum Maximum Mean 
Standard  

deviation

1 

TD-

TMD 

XYZR  0.3396 0.7082 0.4855 0.0820

XR  0.2333 0.5588 0.3822 0.0827

YR  0.3442 1.2552 0.6684 0.2293

ZR  0.3502 1.2905 0.7307 0.1761

SD-

TMD 

XYZR  0.3645 0.6240 0.4913 0.0700

XR  0.3476 0.6184 0.4827 0.0916

YR  0.4153 0.6767 0.5391 0.1017

ZR  0.3711 0.6395 0.4914 0.0658

2 

TD-

TMD 

XYZR  0.3126 0.5208 0.4297 0.0575

XR  0.2586 0.4536 0.3762 0.0659

YR  0.4271 0.7084 0.5504 0.0970

ZR  0.3703 0.6425 0.5170 0.0691

SD-

TMD 

XYZR  0.2640 0.5519 0.3876 0.0694

XR  0.2740 0.5200 0.3876 0.0825

YR  0.2551 0.6550 0.4164 0.1375

ZR  0.2236 0.5624 0.3798 0.0955

 
In order to investigate geometrical nonlinearity of TD-TMD, 

the response reduction ratios are evaluated for seismic motions 
with the level of 1/5 of those used for optimization. The statis-
tical results for 60 sets of motions are listed in Table 11. As 

seen from Tables 10 and 11, the results are almost the same. In 
this example, the effect of geometrical nonlinearity is negligi-
bly small because the deformation of TD-TMD is small 
enough such that the relative displacement of mass is about 
0.17 m at most. 
 
5. Conclusions 

An optimization approach has been proposed for a mass 
damper called TD-TMD for reduction of seismic responses 
in three directions using a set of single mass and damper. 
The objective function is the mean value of response re-
duction ratio against specified sets of seismic motions. An 
auxiliary static optimization problem is first solved to de-
termine the appropriate bounds of variables. 

It has been demonstrated that the parameters can be ef-
fectively optimized using the pure random search followed 
by the heuristic algorithm called tabu search.  

The performance of the proposed TD-TMD has been 
confirmed in comparison to the three conventional SD-
TMDs assigned in each direction. TD-TMD has an equiva-
lent performance with SD-TMDs, if they are attached at a 
single node. However, the comparison between the TD-
TMD and SD-TMD should be discussed considering con-
struction cost and robustness against errors in manufactur-
ing process. 
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