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1. Abstract
A simple systematic approach is presented for designing a spatial link mechanism with partially rigid
joints. An infinitesimal mechanism that undergoes the desired deformation is obtained by solving a
linear programming problem that maximizes the load factor under the equilibrium condition and upper-
and lower-bound constraints on the member-end forces of a given frame structure. Similarity between
this limit analysis problem and a linear programming problem to obtain a sparse solution, including
a few nonzero variables, is discussed comparing several formulations of linear programming problems.
Geometrically nonlinear large-deformation analysis is then carried out to verify geometrically nonlinear
behavior of the mechanism obtained by solving a presented linear programming problem. It is shown in
the numerical examples that various mechanisms can be easily found using the proposed method.

2. Keywords: Link mechanism; deployable structure; partially rigid joint; plastic limit analysis; linear
programming.

3. Introduction
Link mechanism is used mainly in the field of mechanical engineering to modify the amplitude and/or
direction of displacement. For designing mechanisms, many methods have been proposed mainly based
on analytical formulations that are applicable to mechanisms with small degrees of freedom of displace-
ments [1].

Recently, several computational optimization approaches have been developed to design of link mech-
anisms [2]. Most of them are based on the ground structure approach, i.e., they first prepare a ground
structure which has many bars and joints and next remove unnecessary bars or joints as a result of
optimization. However, only a limited number of initial solutions lead to a mechanism that exhibits the
desired deformation. Furthermore, a feasible solution, where the output displacement is in the specified
direction, is found only if the initial solution is selected appropriately. A graph theoretical approach
has been presented to enumerate mechanisms from a given ground structure [3]. An enumeration ap-
proach has also been presented for generating statically determinate trusses which can be used as ground
structures with small number of bars [4].

Most of the numerical approaches are applied to planar mechanisms. For three-dimensional mecha-
nisms, it is not practically acceptable to assign ideal pin-joints for all nodes to rotate around three axes.
Therefore, it is desired to design a three-dimensional mechanism with partially rigid joints. The authors
developed a method for generating deployable structures composed of bars connected with partially rigid
joints [5]. There, the formulation of plastic limit analysis was used to find an infinitesimal mechanism
that exhibits a desired deformation. However, it is difficult to find a mechanism such that the output
node moves with the desired magnitude in the specified direction as a result of displacement of input
node.

In this study several linear programming (LP) problems are presented for obtaining a link mechanism
that has moderately small numbers of hinges and members. Such problems are related with those
for finding a sparse solution of a system of linear equations, where a sparse solution means a vector
having small number of nonzero components. Mechanisms are found by solving one of the LPs. In the
numerical experiments, dependence of the solution on problem parameters is discussed. A solution is also
compared with the one obtained by solving the conventional plastic limit analysis problem. Finally, a
three-dimensional mechanism is generated to ensure applicability of the proposed approach to design of
deployable structures.

1



 inu

 outu

A

B

Figure 1: Model 1.

4. Design problem of link mechanisms as partially rigid frames
Like a conventional ground structure method, we prepare a frame structure in the two- or three-dimensional
space. The frame structure consists of m members and locations of the nodes are specified. This structure
is used as an initial solution for design process of link mechanisms. We adopt the Euler–Bernoulli beam
elements for modeling the members. We assume small deformation except in the geometrically nonlinear
large-deformation analysis performed in section 7.4.

Let u ∈ Rd denote the displacement vector of the frame structure, where d is the number of degrees
of freedom of displacements. We use c = (c1, . . . , cn)T ∈ Rn to denote the generalized strain vector,
where n = 3m for a planar frame structure and n = 6m for a spatial frame structure. The compatibility
relation between ci and u can be written as

ci = hT
i u, (1)

where hi ∈ Rd is a constant vector. Note that matrix H ∈ Rd×n defined by

H =
[
h1 h2 · · · hn

]
(2)

is the equilibrium matrix.
Fig. 1 shows an example of initial frame structure. We attempt to generate a link mechanism by

appropriately releasing some of member-end forces and removing some members. Each node with the
released member-end forces yields a partially rigid joint. A link mechanism with only partially rigid joints
has an advantage in manufacturability compared with the one involving pin-joints, because it is difficult
to realize ideal pin-joints that can freely rotate around all the three axes in the three-dimensional space.

In Fig. 1, we suppose that node A, called the input node, is subjected to a prescribed displacement,
ūin (> 0), in the specified direction. We denote by uout the displacement of node B, called the output
node, in the specified direction. Then we look for a link mechanism that satisfies uout ≥ ūout, where
ūout > 0 is a specified lower bound. Such a mechanism satisfies

ci = hT
i u, i = 1, . . . , n, (3a)

uin = ūin, (3b)
uout ≥ ūout. (3c)

Here, (3a) is the compatibility relation; see (1). Note that a system of linear equations in (3a) is
underdetermined, because c = (c1, . . . , cn)T and u are unknown variables. A solution (c,u) of (3)
represents the deformation of a generated link mechanism, where u is its displacement vector when no
external force is applied and the displacement of the input node is prescribed. The generalized strain, ci,
represents the internal deformation corresponding to u. In other words, if ci 6= 0, then the corresponding
internal force is released to generate the link mechanism. Conversely, if ci = 0, then the corresponding
degree of freedom of displacement is fixed rigidly so as to retain an internal force. More precisely, if
ci 6= 0 corresponds to elongation of a member, then the member itself is removed. Alternatively, if ci 6= 0
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corresponds to rotation of a joint, then the constraint on the rotation around the corresponding axis is
released to make a partially rigid joint.

Thus a candidate of link mechanism can be obtained as a solution of (3). Since (3a) is underdeter-
mined, system (3) has infinitely many, if any, solutions. Suppose that, at one of those solutions, many
components of c are nonzero. This means that many degrees of member-end forces are released. Usually
such a link mechanism is not suitable for practical use, because it has a large degree of kinematical
indeterminacy. It is desired that a mechanism has a few, possibly only one, mode of inextensional defor-
mations from a practical point of view. Such a link mechanism corresponds to a solution with sparse c.
This motivates us to minimize the number of nonzero components of c under the constraints in (3).

For vector c ∈ Rn, define supp(c) ⊆ {1, . . . , n} by

supp(c) = {i ∈ {1, 2, . . . , n} | ci 6= 0}.

We use | supp(c)| to denote the cardinality of supp(c), i.e., | supp(c)| is the number of nonzero components
of c. The problem of finding the sparsest solution c to (3) is formulated as

min | supp(c)| (4a)
s. t. ci = hT

i u, i = 1, . . . , n, (4b)
uin = ūin, (4c)
uout ≥ ūout. (4d)

Unfortunately, it is difficult to solve this optimization problem. In the next section, we introduce a closely
related optimization problem and an efficient heuristic method in literature.

5. Sparse solutions of linear equations
Problem (4) is closely related to a problem of finding a sparse solution of a system of linear equations.
The latter problem has various applications in, e.g., coding theory and machine learning. Usually it is
difficult to deal with an objective function and/or constraints including | supp(·)|. Rather, many heuristic
methods for finding sparse solutions have been proposed. It is known that, among them, methods using
`1-norm are efficient [6–10]．In this section we overview two examples in literature.

The first example is a problem of finding a sparse solution of an underdetermined system of linear
equations. Exposition below follows Matoušek and Gärtner [11, section 8.5]. Consider a system of linear
equations

Ax = b,

where A ∈ Rp×q, b ∈ Rp, and p < q. This system has infinitely many solutions. Among them, suppose
that we are interested in a solution x with at most r nonzero components, where r is a specified integer.
This problem is formally written as

Ax = b, (5a)
| supp(x)| ≤ r. (5b)

Problem (5) has applications in, e.g., error correction in a coding problem. In a coding problem, x
corresponds to an error vector and r is the upper bound for the number of corrupted components.

Solving (5) is difficult in general. However, it is known that a sparse solution of (5a) can be obtained
by minimizing an appropriate norm of x. Actually, minimization of the `1-norm of x, denoted ‖x‖1 =
|x1|+ |x2|+ · · ·+ |xq|, typically yields a solution with only a few nonzero components [7]. This problem,
called basis pursuit , is written as

min
q∑

j=1

|xj | (6a)

s. t. Ax = b. (6b)

This problem can be recast as an LP problem, and hence is solved efficiently.
The second example stems from regression analysis. Let x1, . . . , xq and y be explanatory variables and

a response variable, respectively. In the linear regression analysis, we attempt to find β0, β1, . . . , βq ∈ R
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such that

y ' β0 +
q∑

j=1

βjxj .

For example, the least square estimate is the optimal solution of the following problem:

min
p∑

i=1

(
yi − β0 −

q∑
j=1

βjXij

)2

. (7)

Here, β0, β1, . . . , βq are variables to be optimized. For several reasons, a sparse solution is often desired
in regression analysis. One of well-known methods to find a sparse solution is the so-called LASSO (least
absolute shrinkage and selection operator) [9, 10]．In LASSO we add the `1 penalty function to (7) as

min
p∑

i=1

(
yi − β0 −

q∑
j=1

βjXij

)2

+ ω

q∑
j=1

|βj |, (8)

where ω > 0 is a constant weight. As ω becomes greater, the solution is expected to become sparser.
Thus LASSO solves `1-regularization of the least square problem. Other regularization methods

have been proposed for, e.g., avoiding over-fitting. Among them, making use of the `2 penalty function
is known as the Tikhonov regularization. This idea is sometimes used in optimization of continua to
remedy ill-posedness of the topology optimization problem [12].

6. Finding mechanisms as sparse solutions
As explained in section 4, `1-norm minimization often yields a sparse solution. On the other hand, as
discussed in section 3, for designing a practical link mechanism we attempt to find a solution of (3)
with sparse c. It may be natural to expect that such a sparse solution can be obtained by minimizing
the `1-norm of c under (3). As a slight generalization, we consider the weighted `1-norm of c. This
optimization problem, which is much easier than (4) as discussed below, is formulated as

min
n∑

i=1

|wici| (9a)

s. t. ci = hT
i u, i = 1, . . . , n, (9b)

uin = ūin, (9c)
uout ≥ ūout. (9d)

Here, wi > 0 (i = 1, . . . , n) are constant weights. For instance, if we set wi to a large value, then ci is
expected to become 0 at the optimal solution. Therefore, we use a large value for wi when we do not
expect to release a member-end force corresponding to ci.

We can solve problem (9) as an LP problem. To see this, we introduce additional variables γ1, . . . , γn

that serve as upper bounds for |c1|, . . . , |cn|. Then problem (9) can be rewritten as

min
n∑

i=1

wiγi (10a)

s. t. −γi ≤ hT
i u ≤ γi, i = 1, . . . , n, (10b)

uin = ūin, (10c)
uout ≥ ūout. (10d)

This is clearly an LP problem in variables u and γ1, . . . , γn.
We next discuss a similarity that exists between problem (10) and the conventional plastic limit

analysis. This similarity can be viewed clearly in the dual problem of (10). For simplicity of presentation,
define pin ∈ Rd as a vector such that the component corresponding to the degree of uin is equal to 1 and
all the other components are 0. Similarly, pout ∈ Rd is the vector such that the component corresponding
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to the degree of uout is equal to 1 and all the other components are 0, i.e.,

pin =


1
0
0
...
0


← uin

, pout =


0
1
0
...
0


← uout

.

From the standard duality theory of LP, the dual problem of problem (10) is given by

max ūinλin + ūoutλout (11a)

s. t.
n∑

i=1

yihi = λinpin + λoutpout, (11b)

wi ≥ |yi|, i = 1, . . . , n, (11c)
λout ≥ 0, (11d)

where λin ∈ R, λout ∈ R, and y ∈ Rn are variables to be optimized. Note that the primal problem, (9),
is always feasible, because for any u satisfying (9c) and (9d) we can define c by (9b). Moreover, the dual
problem, (11), is also always feasible; for instance, λin = λout = 0 and y = 0 are feasible for this problem.
Therefore, the strong duality of LP guarantees that problems (10) and (11) have optimal solutions and
that their optimal values coincide.

Problem (11) is analogous to the conventional plastic limit analysis problem based on the lower-
bound theorem; see, e.g., Jirásek and Bažant [13] for plastic limit analysis. Constraint (11b) is regarded
as the force-balance equation, because H defined by (2) is the equilibrium matrix. Here, yi corresponds
to the generalized stress that is work-conjugate to ci. The vector on the right-hand side of (11b) is
considered the external load, where λin and λout correspond to the loading parameters. Constraint (11c)
is analogous to the yield condition, where wi corresponds to the absolute value of the yield stress. In
this way, problem (11) can be regarded as the maximization of the load factor under the constraints of
the force-balance equation and the yield conditions. By controlling parameters w1, . . . , wn and ūout/ūin,
it may be possible to obtain a useful mechanism that has a small degree of kinematical indeterminacy.
Note that the mechanism obtained by this procedure may be either infinitesimal or finite, because issues
of geometrical nonlinearity are not taken into account.

As a variant of problem (9), we may transfer constraint (10d) to the objective function to obtain the
following problem:

min −uout + α
n∑

i=1

|wici| (12a)

s. t. ci = hT
i u, i = 1, . . . , n, (12b)

uin = ūin. (12c)

Here, α > 0 is a constant parameter controlling weights of the two objectives: maximization of uout and
the minimization of the weighted `1-norm of c. Problem (12) can also be converted to an LP problem.
The dual problem of problem (12) is formulated as

max ūinλin (13a)

s. t.
n∑

i=1

yihi = pout + λinpin, (13b)

αwi ≥ |yi|, i = 1, . . . , n, (13c)

where λin ∈ R and y ∈ Rn are variables to be optimized. In a manner similar to problem (11), problem
(13) is also analogous to the limit analysis problem. Here, pout corresponds to the fixed part of the
external load and λinpin corresponds to the proportionally increased part.

In contrast to problem (11), problem (13) is not necessarily feasible due to the presence of the fixed
external load, pout. To guarantee feasibility, α (or wi’s) should be sufficiently large. If problem (13) is
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(a) 0.42 ≤ α ≤ 0.63. (b) α ≥ 0.64.

Figure 2: The mechanisms obtained from model 1 by solving problem (12). Filled circle: rotational hinge;
dotted line: removed member.

infeasible, then it follows from the duality of LP that the objective value of problem (12) is not bounded
below.

The conventional limit analysis problem with loads corresponding to input and output displacement
is formulated as

max λ (14a)

s. t.
n∑

i=1

yihi = λ(pin + pout), (14b)

wi ≥ |yi|, i = 1, . . . , n, (14c)

Note that the nonzero values in pin and pout are the specified values pin and pout, which are not necessarily
1. This problem is always feasible, because the load factor λ is multiplied to both pin and pout. The dual
of problem (14) is derived as

min
n∑

i=1

|wici| (15a)

s. t. ci = hT
i u, i = 1, . . . , n, (15b)

uin + uout = 1, (15c)

which is analogous to problem (12).

7. Numerical examples
Mechanisms are found for various bar-joint models. All bars of initial ground structures are connected
rigidly at joints. Intersecting diagonal bars are not connected with each other. The units are omitted for
simple presentation of results.

7.1 Model 1
Problem (12) is solved for model 1 shown in Fig. 1. The size of square unit is 1×1. Parameter α in
problem (12) is regarded as the penalty parameter for member extensions and member-end rotations.
A mechanism is to be designed so that the output node B moves up when the input node A is moved
downward. The prescribed input displacement is ūin = 0.30.

This model is internally statically indeterminate, even if all member ends are replaced by pin-jointed;
therefore, mechanisms cannot be generated without removing some members. To prevent too many
members to be removed and to obtain a mechanism dominated by hinge rotations, we set weights wi to
1.0 for member extension and to 0.0001 for hinge rotation. The mechanism obtained by solving problem
(12) depends on the value of parameter α as shown in Fig. 2, where the filled circle and dotted line
represent a rotational hinge and a removed member, respectively. Note that the objective function is
not bounded below if α ≤ 0.41, because, with small value of α, increase of displacements does not lead
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Figure 3: Model 2.

(a) A local mechanism. (b) A global mechanism.

Figure 4: The mechanisms obtained from model 2 by solving problem (12). Filled circle: rotational hinge;
dotted line: removed member.

to enough penalty in the objective function and thence the displacements can be arbitrary larger. In
contrast, if α is large, only neighborhood of the input node moves as shown in Fig. 2(b). This way, the
mechanism exhibiting desired deformation can be found by choosing appropriate values of parameters α
and w1, . . . , wn.

7.2 Model 2
Mechanisms are next found for model 2 shown in Fig. 3, which has more members than model 1. The
size of square unit is 1×1, and the same values as model 1 are given for w1, . . . , wn. The prescribed input
displacement is ūin = 0.3. By solving problem (12), the local mechanism shown in Fig. 4(a) is found for
α ≥ 0.42. The objective function is unbounded with α ≤ 0.41. For structures with many members, a local
mechanism is often found, because local deformation leads to smaller penalty than global deformation.

A global mechanism can be obtained by assigning very large weights wi for members that should not
have axial deformation. By assigning wi = 10000.0 for extension of members “a” and “b” in Fig. 3, we
obtain the global mechanism shown in Fig. 4(b).

7.3 Model 3
The height of the lower units of model 1 is increased to 3 to obtain model 3 shown in Fig. 5. If ūin = 0.20
is assigned for problem (12), the output node B moves 0.60 as shown in Fig. 6(a).

We next solve the limit analysis problem (14) to obtain the yielding members and plastic hinges shown
in Fig. 6(b) with the load factor λ = 2.4. Note that the nodal displacements of a mechanism are not
explicitly obtained by solving problem (14) which involves only static variables. However, we can see

7



 inu

 outu

A

B

Figure 5: Model 3.
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(a) The solution of problem (12). (b) The solution of problem (14).

Figure 6: The mechanisms obtained from model 3 by solving problems (12) and (14). Filled circle:
rotational hinge; dotted line: removed member.

from Fig. 6(b) that only the output node moves in the mechanism, because the lower part cannot have
displacements without axial deformation of an existing bar. In order to incorporate a parameter similar
to α in problem (12), the load ratio between the input and output nodes is varied. It has been confirmed
that the mechanism in Fig. 6(a) can be obtained with load ratio 0.82 ≤ pout/pin ≤ 0.88.

7.4 Model 4
Finally, we generate a spatial mechanism from the initial frame in Fig. 7. This frame structure is in the
XY -plane shown in Fig. 7, and the Z-axis is perpendicular to the XY -plane. The size of square unit
is 1×1. The rotations around the X- and Y -axes are fixed at node 1, the displacements in the Y - and
Z-directions are fixed at nodes 2 and 4, and displacements in the X- and Z-directions are fixed at nodes
3 and 5.

The output nodes 6, 7, 8, and 9 are expected to move upward, i.e., in the positive z-direction, as a
result of input downward displacement at node 1. For this purpose, the limit analysis problem (14) is
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Figure 7: Model 4.

(a) A local mechanism. (b) A global mechanism.

Figure 8: The release conditions for Mode 4. Filled circle: rotational hinge around the z-axis; thick
line: rotational hinge around the y-axis; “×”: rotational hinge around the x-axis. (a) A local mechanism
obtained by solving problem (14); (b) a global mechanism obtained after several trials of large-deformation
analysis.

Figure 9: Deformation process of model 4.

solved to obtain the plastic hinges shown in Fig. 8(a). Here, we use wi = 10000.0 for member extension
and wi = 1.0 for hinge rotation, and the obtained load factor is λ = 2.4. The initial local axes of each
bar, denoted (x, y, z), are defined as follows. The x-axis is in the direction of a bar, the y-axis is on the
XY -plane and perpendicular to the bar, and the z-axis is in the vertical direction. Note that these axes
rotate in accordance with geometrically nonlinear deformation. In Fig. 8(a), a thick bar represents a
rotational hinge around the y-axis.

Because the mechanism obtained by solving problem (14) is an infinitesimal mechanism, we carry out
displacement-controlled large-deformation analysis with the incremental vertical displacement u at the
output nodes and −u at the input node. A finite mechanism shown in Fig. 8(b) is obtained by releasing
the rotational constraints at member-ends that have nonzero bending moments. In Fig. 8(b), the filled
circle is a rotational hinge around the z-axis, and “×” indicates release of rotation around the x-axis, i.e.,
release of torsion. The deformation process obtained by large-deformation analysis is shown in Fig. 9.
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8. Conclusions
Various linear programming problems have been presented for generating a link mechanism, in which
moderately small numbers of hinges and yielding members exist. These problems are regarded as problems
for finding sparse solution of a system of linear equations. The related formulations in coding theory and
machine learning have been reviewed.

It has been shown in numerical examples that the mechanism found as a solution of a linear program-
ming problem strongly depends on values of the parameters, i.e., the weights for hinge rotation and bar
extension and the penalty parameter for the sum of generalized displacements at member ends. In the
context of the conventional plastic limit analysis problem, the penalty parameter is related to the load
ratio between the input and output nodes. Finally, a three-dimensional mechanism has been generated
to ensure applicability of the proposed approach to design of deployable structures.
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