
 
 

 
 
 

Shape Optimization of Energy Dissipation Devices for Passive Seismic Control of 
Building Frames 

 
Hidekazu Watanabe1, Makoto Ohsaki1 and Junki Nozoe1 

 
1Department of Architecture, Hiroshima University, Kagamiyama 1-4-1, 
Higashi-Hiroshima, 739-8527, Japan; PH: +81-82-424-7800; 
email: {hidekazu-watanabe, ohsaki, m124850}@hiroshima-u.ac.jp 
 
 
ABSTRACT 
 

Optimization results are presented for improving energy dissipation capacity of 
passive seismic control devices under cyclic deformation. The locations and 
thicknesses of the stiffeners, as well as the aspect ratio, of a shear-type hysteretic steel 
damper are optimized to improve energy dissipation capacity under static cyclic 
deformation. A general-purpose finite element software package is used for 
elastoplastic analysis, and a heuristic optimization algorithm called tabu search is 
utilized for optimization after discretization of variables into integer values. The 
objective function is the dissipated energy before the maximum value of equivalent 
plastic strains among all elements reaches the upper bound under the prescribed 
loading condition, and constraints on reaction force and moment are incorporated by 
penalty function approach. The material parameters of the low-yield-point steel are 
identified through optimization also using tabu search. 

 

INTRODUCTION 

 
Hysteretic steel dampers such as shear panels are widely used for passive 

seismic control of building frames in seismic-prone regions. The input energy of 
seismic excitation is dissipated through plastic deformation under cyclic motion. The 
geometrical and material parameters of such dampers are usually determined from 
experimental results and simplified analysis based on frame models. However, the 
physical experiments demand substantial cost, and the accuracy of the simple analysis 
mode is not enough for predicting behavior of the device and frame under seismic 
motion. Therefore, it is desired to design the devices through optimization with 
prediction of responses using a high-precision finite element analysis. The second 
author demonstrated through a series of studies that the performances of structural 
parts including beams and braces can be successfully improved through heuristic 
optimization algorithms combined with high-precision finite element analysis (Pan et 
al. 2007, Ohsaki and Nakajima 2012). 

The authors optimized the geometrical parameters of a shear panel damper, 
which is located between the upper and lower beams of a story, and consists of a 
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low-yield-point steel panel that dissipates seismic energy under forced interstory 
deformation (Watanabe et al. 2012). The shear panel is stiffened by several stiffeners 
to prevent local buckling that leads to premature fracture before a sufficient amount of 
energy is dissipated. However, in Watanabe et al. (2012), the material parameters are 
assigned empirically, and the height of the panel is optimized by enumeration of 
parameters discretized into integer values. 

In this study, we optimize the locations and thicknesses of the stiffeners as well 
as the aspect ratio of the shear panel using a heuristic optimization method called tabu 
search (Glover 1989) (hereafter referred to as TS). The elastoplastic responses under 
static cyclic loading are evaluated using a general-purpose finite element analysis 
software package called ABAQUS (Dassault Systems 2011). The parameters of 
constitutive relation of the low-yield-point steel, defined using a nonlinear 
isotropic-kinematic hardening model, are also identified through optimization using 
TS.  

OPTIMIZATION PROBLEM AND OPTIMIZATION ALGORITHM 

 

We use TS, which is classified as a single-point local search (Ohsaki 2010), and 
has been developed for optimization problem with integer variables. TS basically 
moves to the best neighborhood solution even if it does not improve the current 
solution. A tabu list is used to prevent an unfavorable phenomenon called cycling, in 
which several solutions are selected alternatively.  

Real variables X1, …, Xm are defined by integer variables J1, …, Jm with the 
specified standard value Xi0 and increment ΔXi as 
 
 0 ( 1, , )i i i iX X J X i m= + Δ = K   (1) 

 
Therefore, all of the objective and constraint functions are defined by the vector of 
integer variables J = (J1,.., Jm), where Jm is selected from is  integer values. We 
consider an optimization problem for maximizing the objective function F(J). The 
constraints are given as 0( )j jg g≤J  (j =1, …, n), where 0jg  is the specified upper 
bound. The optimization problem is formulated as follows: 
 

 Maximize F(J) = Ep(J)          (2a) 
    subject to 0( )j jg g≤J  (j =1, …, n)       (2b) 

{ }1,2, , , ( 1, , )i iJ s i m∈ =L K         (2c) 

 
In order to apply TS, the constraints are incorporated into the objective function 
through penalty function approach, as demonstrated in the numerical examples. 

The basic algorithm of TS for a maximization problem is summarized as 
follows:  
Step 1 Randomly generate a seed solution J = (J1,.., Jm) and initialize the tabu list T 

as T = {J}. Evaluate the objective function and initialize the incumbent 
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optimal objective value as Fopt= F(J). 
Step 2 Generate a set of q neighborhood solutions N N Nj

1( , , )j j
mJ J=J K , (j =1, …, q) 

from J, and evaluate the objective function of each solution. 
Step 3 Among the solutions in the set {JN1, …, JNq}, select the best one that has the 

maximum value of objective function, and is not included in the list T. Assign 
the best solution as the new seed solution J. 

Step 4 Update the incumbent optimal objective function as Fopt = F(J) when the 
value is improved. 

Step 5 Add the seed solution J to the list T if the size of tabu list is less than the 
prescribed limit. 

Step 6 Output Fopt and the corresponding optimal solution, if the number of 
iterations reaches the specified value; otherwise, go to Step 2. 

In Step 2, the neighborhood solution N N Nj
1( , , )j j

mJ J=J K  is defined as follows using 
uniform random numbers r: 

 
0.3333r < :   N 1j

i iJ J= −          (3a) 

0.3333 0.6667r≤ < : Nj
i iJ J=          (3b) 

0.6667r ≥ :   N 1j
i iJ J= +          (3c) 

 
Fig. 1 shows the data flow between TS and FE-analysis using ABAQUS 

Ver.6.11 (Dassault Systems 2011). The pre-process and post-process are carried out 
using the python script. The computations of functions and the process of TS are coded 
using FORTRAN. 
 

 
Figure 1. Optimization algorithm using TS and ABAQUS. 

 

SHEAR-TYPE HYSTERETIC STEEL DAMPER 

Shear-panel damper model.   The material parameters are identified and the analysis 
results are verified using the experimental results of the shear-type hysteretic steel 
damper as shown in Fig. 2 (Izumi et al. 1996). The size of the specimen is 2/3 of the 
real size. The specimen is a stud-type viscoelastic damper, which is extensively used 

Tabu search 
(1) Compute objective function. 
(2) Update variables. 

FE-model generation (Python Script) 
(1) Generate parts of flange, web, etc. 
(2) Define sections and material parameters. 
(3) Combine parts to assemble set. 
(4) Assign boundary and loading conditions. 
(5) Generate meshes. 

Input file： 
job.inp 

Analysis using 
ABAQUS/Standard 

Post-process (Python Script) 
Extract responses:  

dissipated energy, stresses and strains 

Output file: 
job.odb 
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as passive control device of seismic responses of building frames. The material of 
center shear panel of the device, indicated as hatched area in Fig. 2, is a 
low-yield-point steel. When the device is attached between the beams, the panel yields 
due to the interstory shear force prior to the bracket of the device and other members of 
a frame. This way, the panel zone can dissipate the earthquake energy efficiently 
without damaging other parts. The buckling restraining stiffeners are assigned to 
prevent premature out-of-plane buckling of the panel. The stiffeners are located 
longitudinally in the front side, and laterally in the rear side of the panel. 
 

 
Figure 2. Experimental specimen; left: front side, right: rear side). 

 
The material of the panel, flanges, and buckling restraining stiffeners are LY100 

(low-yield-point steel), SM490A, and SS400, respectively. The values of Young's 
modulus E, Poisson's ratio ν, yield stress σy, and tensile strength σu obtained by 
uniaxial tests are listed in Table1. 
 

Table 1. Material properties. 

 E [N/mm2] ν σy [N/mm2] σu [N/mm2] 

LY100 200000 0.3 98 254 
SM490A (PL-19) 

200000 0.3 
345 537 

SM490A (PL-16) 367 545 
SS400 200000 0.3 368 442 

 

Constitutive Model.   A finite element model of the experimental specimen in Fig. 2 
is generated using python script. A quadrilateral thick shell element called S4R is used, 
and the nominal size of mesh is 40 mm for automatic mesh generation. A linear 
kinematic hardening rule is used for SM490A and SS400, where the hardening ratio is 
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0.001 E. In contrast, a nonlinear isotropic-kinematic hardening rule, defined as follows, 
is used for LY100 (low-yield-point steel).  

Using stress tensor σij and initial yield stress σy, the initial yield function F(σij) 
and subsequent yield function F(σij, αij, 

plε ) are defined as 
 
 2( ) ( ) 0ij ij yF σ φ σ σ= − =   (4a) 

 2
0( ) ( ) [ ( )] 0pl pl

ij ij ij ijf σ ,α ,ε φ σ α σ ε= − − =   (4b) 

 
where αij, 

plε and 0( )plσ ε  are backstress tensor, equivalent plastic strain and the 

radius of subsequent yield function, respectively. ( )ij ijφ σ α−  denotes equivalent stress, 

which is defined as 
 

 
3

( ) ( )( )
2ij ij ij ij ij ijφ σ α s α s α− = − −   (5) 

 
where sij is deviator stress tensor, ijα&  is deviatoric component of backstress tensor. 

Nonlinear kinematic hardening part  is defined as the sum of the Ziegler kinematic 
hardening rule and relaxation term for the nonlinearity as 
 

 
0

1k pl k pl
ij ij ij ijC (σ α )ε γα ε

σ
α = − −& &&   (6a) 

 
1

N
k

ij ij
k

α α
=

=∑   (6b) 

 
where C and γ  are initial hardening ratio and reduction ratio of  kinematic hardening, 
respectively, which are material parameters identified from the structural experiment. 
N is the number of function for the backstress. In the isotropic hardening part, the 
radius of subsequent yield function 0( )plσ ε  is defined as follows: 

 

 ( )0 (1 )
plpl -bε

yσ ε σ Q - e∞= +   (7) 

 
where Q∞  and b  are material parameters identified by the structural experiment. Q∞  
is the maximum increase of radius of yield function; b is the increase ratio of yield 
function depending on equivalent plastic strain. 

Parameter Identification.   The material parameters γ, Q∞ , and b are identified 

through optimization for minimizing the difference between the responses by analysis 
and experiment. The initial hardening ratio C is defined as 0.001E for simplicity. It is 
possible to utilize a material test for parameter identification; however, cyclic material 
test is very difficult to carry out. Furthermore, our purpose is to accurately predict the 
cyclic response of the panel attached to the frame. Therefore, the results of the test in 
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Fig. 1 are used for parameter identification. 
A vertical forced displacement equivalent to a compressive axial force of 710 

kN is applied at the top plate prior to the forced horizontal cyclic deformation. The 
loading program of the static shear force of 2.25 cycles is controlled by the forced 
displacement as shown in Fig. 3. 
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Figure 3. Forced displacement for parameter identification. 

 
The objective function to be minimized is the norm rmsτ  of difference between the 

shear stresses exp
iτ  by experiment and ana

iτ  by analysis, which is defined as  

 

 ( )2exp ana

1

1 M

rms i i
iM

τ τ τ
=

= −∑   (8) 

 
where M is the number of data in the experiment. The available data of experiment are 
shown in Fig. 4(a). Since the data are not uniformly distributed, and the accuracy in 
plastic loading range is more important than that in elastic or unloading range, the data 
for identification are selected as shown in Fig.4(b). 
 

 
(a) available data (b) selected data 

Figure 4. Experimental results of displacement-stress relation. 
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In the optimization problem for parameter identification, the vector of variables 
consists of the material parameters: γ, Q∞ , and b, which are defined in terms of integer 

variables J1, J2, and J3 as 
 
 1600 Jγ γ= + × Δ    1 {1,2, ,7}J ∈ L   (9a) 

 2yQ J Qσ∞ ∞= + × Δ    2 {1,2, ,7}J ∈ L   (9b) 

 310b J b= + × Δ    3 {1,2, ,7}J ∈ L   (9c) 

 
where γΔ , Q∞Δ , and bΔ  are 200, 0.1σy, and 2, respectively. For the TS, the number 

of neighborhood solutions is q = 3, and the number of steps n = 15. The best parameter 
values obtained from three trials of TS from random initial solutions are listed in Table 
2. The hysteresis loops of the experiment and the optimal parameter values are shown 
in Fig.5.  
 

Table 2.  Best parameter values obtained from optimization by TS. 
C [N/mm2] γ  [N/mm2] Q∞  [N/mm2] b 

200 2000 1.4σy 16 

                          
Figure 5. Hysteresis loop of the panel using best parameter values. 

Standard Model.   A finite element model called the Standard model is generated 
using the material parameters in Table 2. The constant displacement is applied at the 
top plate prior to the forced horizontal cyclic deformation in the same manner as the 
previous section. The loading program of the static shear force of five cycles is 
controlled by the peak drift angle of 1/60 rad. There have been many criteria proposed 
for ductile fracture of steel materials. However, we use the equivalent plastic strain as 
a measure of damage of the material, because most of the criteria are based on the 
equivalent plastic strain. 

The results of Standard model are shown in Table 3, where Ep, εmax, Rmax, and 
Mmax denote the total dissipated energy, the maximum equivalent plastic strain among 
all elements, the maximum horizontal reaction force, and the maximum reaction 
moment, respectively. Fig. 6 shows distribution of equivalent plastic strain of the 
standard model at final step. It can be observed from this figure that the equivalent 
plastic strain has larger values mainly in the red region around the center of the shear 
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panel. 
The results of another model called Standard model-F are also shown in Table 3. 

The nominal size of mesh in the model is reduced to 30 mm from 40 mm. It is seen 
from Table 3 that difference of each response quantity is not large. Thus, considering 
the computation time, the Standard model with 40 mm mesh is used in optimization.  
 

Table 3. Analysis results of standard model. 

Model name Ep [ mkN ⋅ ] εmax Rmax [kN] Mmax [ mkN ⋅ ] 

Standard model 256.0 0.802 591.0 585.0 
Standard model-F 261.5 0.907 581.3 575.8 

 

 
Figure 6. Distribution of equivalent plastic strain of the standard model at final 

step; left: front side, right: rear side. 

OPTIMIZATION OF SHEAR-TYPE HYSTERETIC STEEL DAMPER 

 
In this section, we demonstrate in the numerical examples that the performance 

of a shear-type hysteretic steel damper can be successfully improved by optimization. 
First, the locations and thicknesses of the buckling restraining stiffeners are optimized. 
Second, aspect ratio of the panel and variables in the first problems are optimized 
simultaneously. The objective function to be maximized is the total dissipated energy 
Ep when the maximum value of equivalent plastic strain among all elements reaches 
εmax of the standard model. 

Optimization of locations and thicknesses of buckling restraining stiffeners.   In 
this optimization problem, the vector of design variables consists of the locations of 
the buckling restraining stiffeners (K1, K2) and the thicknesses of the stiffeners (S1, S2). 
In order to preserve the symmetry, the numbers of independent variables for location 
and thickness are one, respectively, for the stiffeners in front and rear. The location Xi 
of the stiffeners at each side is defined by K 1 and K 2 as  
 
 iii XKX Δ×=    }7,,2,1{ L∈iK   )2,1( =i   (10) 
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where 1XΔ  and 2XΔ  are 1/18  of the width and height of the panel, respectively. 
The independent variables for thicknesses T1 and T2 of the stiffeners in two sided are 
defined by S1 and S2 as 
 
 iii TST Δ×+= 002.0    }8,,2,1{ L∈iS   )2,1( =i   (11) 

 
where 1TΔ  and 2TΔ  are 0.001 m. 

For the TS, the number of neighborhood solutions is q = 4, and the number of 
steps n = 15. Optimization is carried out from two different random initial solutions to 
investigate dependence of the optimal solution on the initial solution. The solution 
with larger value 301.0 [ mkN ⋅ ] for Ep  is regarded as the optimal solution. The 
optimal values of this solution are (K1, K2, S1, S2) = (3, 1, 8, 8). The optimal model and 
its 30mm-mesh-size model are hereafter called the opt-S and the opt-S-F, respectively. 
As the result of optimization, the total dissipated energy Ep is improved by 25.0 % 
from the standard model-F. The number of cycles before reaching the specified bound 
of maximum strain is 6.1. The distribution of equivalent plastic strain of the opt-S-F at 
final step is shown in Fig. 7. 
 
Table 4. Analysis results of opt-S. 

Model name Ep [ mkN ⋅ ] εmax Rmax [kN] Mmax [ mkN ⋅ ] 

Standard model 256.0 0.802 591.0 585.0 
opt-S 301.0 0.802 606.6 601.9 

Standard model-F 261.5 0.907 581.3 575.8 
opt-S-F 326.9 0.907 599.8 595.6 

 

 
Figure 7. Distribution of equivalent plastic strain of opt-S-F at final step; 

 left: front side, right: rear side. 
 

In this optimal solution, the lateral buckling restraining stiffeners in the rear side 
are shifted to the center and the thicknesses of stiffeners in both sides are increased 
from the Standard model. It is seen from Figs. 6 and 7 that the equivalent plastic strain 
has large value in wider region as a result of optimization so that the large deformation 
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around the center of the standard model is restrained by moving the lateral stiffeners in 
the rear side to the center. This way, the energy dissipation property can be improved 
through this optimization.  

In this model, the effect of optimization is summarized as follows: 

1. More energy can be dissipated by increasing the area of large plastic deformation. 
2. The maximum equivalent plastic strain can be reduced by increasing the 

stiffnesses of the stiffeners; hence, the number of cycles before reaching the 
specified bound of maximum strain can be increased. 

 

Optimization of locations and thicknesses of stiffeners and aspect ratio of the 
panel.   In this section, we optimize the thicknesses and locations of the buckling 
restraining stiffeners, as well as the aspect ratio of the panel, simultaneously. In order 
to preserve symmetry property, the independent variables of the aspect ratio of the 
panel are the panel width H1 and the panel height H2, which are defined by two integer 
variables R1 and R2 as 
 
 ( ) 111 7 HRH Δ×+=    }5,,2,1{1 L∈L   (12) 

 ( ) 222 7 HRH Δ×+=    }8,,2,1{2 L∈L   (13) 
 
where 1HΔ  and 2HΔ  are 1/10 of the width and height, respectively, of the panel of the 
Standard model. The vectors of design variables are K, S and L defined in Equations 
(10)-(13). 

Although larger horizontal reaction Rmax leads to larger energy dissipation, 
larger Rmax and the maximum reaction moment Mmax may also lead to damage in frame 
members attached to the damper. Thus, upper bounds should be assigned for Rmax and 
Mmax in the process of optimizing the aspect ratio. In the following, the values of 
standard model are chosen as the upper bounds 0

maxR  and 0
maxM .  

Since TS cannot be used directly for a constrained optimization problem, the 
optimization problem with constraints is converted to unconstrained problem using the 
penalty function approach. The objective function ( )JF  is replaced by the extended 

objective function ( )JF ′  using constraint functions g1(J) and g2(J) as follows: 
 

 ( ) ( ) ( )( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=′ ∑

=

2

1
2 0,

1
1max1

i ig
pFF

J
JJ   (14a) 

 ( ) ( )max
1 0

max

1
R

g
R

= ≤
J

J   (14b) 

 ( ) ( )max
2 0

max

1
M

g
M

= ≤
J

J   (14c) 

 
where penalty parameter p is equal to 0.25. 

For the TS, the number of neighborhood solutions is q = 6, and the number of 
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steps n = 15. Optimization is carried out from three different random initial solutions 
to investigate dependence of the optimal solution on the initial solution. The number of 
analyses for obtaining an approximate optimal solution is about 90, which is very 
small compared with the total number of combination 125440 )858877( ×××××= . 

The solution with largest value 392.5 [ mkN ⋅ ] for Ep is regarded as the optimal 
solution. The optimal values of this solution are (K1, K2, S1, S2, L1, L2) = (3, 1, 5, 6, 3, 8). 
The optimal model and its 30mm-mesh-size model are hereafter called the opt-SW and 
the opt-SW-F, respectively. The opt-SW-F achieves 67.8% increase of the total 
dissipated energy Ep from the standard model. The number of cycles before reaching 
the specified bound of maximum strain is 8.4. The distribution of equivalent plastic 
strain of opt-SW-F at final step is shown in Fig. 8.  
 
Table 5. Analysis results of opt-SW. 

Model name Ep [ mkN ⋅ ] εmax Rmax [kN] Mmax [ mkN ⋅ ] 

Standard model 256.0 0.802 591.0 585.0 
opt-SW 392.5 0.801 548.5 549.7 

Standard model-F 261.5 0.907 581.3 575.8 
opt-SW-F 438.9 0.907 544.8 545.9 

 

 
Figure 8. Distribution of equivalent plastic strain of opt-SW-F at final step;  

left: front side, right: rear side. 
 

CONCLUSIONS 

 
Optimization has been carried out for a shear-type hysteretic steel damper subjected to 
static cyclic deformation. The objective function is the total dissipated before the 
maximum equivalent stress reaches the specified value. The conclusions drawn from 
this study are summarized as follows: 

1. A heuristic approach called TS can be effectively used to obtain an approximate of 
a computationally expensive structural optimization problem with practically 
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acceptable small number of function evaluations. 
2. The material parameters of nonlinear isotropic-kinematic hardening can also be 

identifiedusing the TS for minimizing the error between the experimental and 
analysis results. 

3. The optimization algorithm using the TS and the penalty function approach has 
been proposed for a constrained oroblem. Using this method, energy dissipation 
property can be successfully improved by optimizing the shape of the panel, as 
well as the locations and the thicknesses of the stiffeners. About 68% of the total 
dissipated energy has been increased as a result of optimization from the standard 
model. 
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